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Abstract
Since many equations of practical systems such as Schrödinger equation,
Ginzburg-Landau equation and Orr-Sommerfeld equation are defined in complex
number fields, in this paper, the issue of controllability and observability for an
[r]-matrix time-varying impulsive system defined in complex fields is addressed.
Several sufficient and necessary conditions for state controllability and observability
of such a system are established. Meanwhile, corresponding controllability and
observability criteria for the [r]-matrix time-invariant impulsive system are also
obtained.
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1 Introduction
Since many evolution processes, optimal control models in economics, stimulated neural
networks, frequency-modulated systems and some motions of missiles or aircrafts are
characterized by impulsive dynamical behavior, the study of impulsive systems is of great
importance. Nowadays, there has been an increasing interest in the analysis and synthesis
of impulsive systems, or impulsive control systems, due to their theoretical and practical
significance; for example, [–] and the references therein.
As the fundamental issues of modern control theory, the controllability and observabil-

ity have been studied extensively in the context of finite-dimensional linear systems, non-
linear systems, infinite-dimensional systems, n-dimensional systems and hybrid systems
using different kinds of approaches [–]. In particular, many efforts have been focused
on the problem of controllability and observability for various kinds of impulsive systems
using different approaches. The geometric analysis of reachability, controllability and ob-
servability for impulsive systems in terms of invariant subspaces were presented in [,
]. By proposing the rank condition, Guan et al. [], Zhao et al. [] and Shi et al. []
proposed the sufficient and necessary conditions for state controllability and observability
of different kinds of linear time-varying impulsive systems, respectively.
However, the common setting adopted in the above-mentioned works except [, ,

] is always in real number fields. In fact, many classical systems such as Schrödinger
equation, Ginzburg-Landau equation, Riccati equation andOrr-Sommerfeld equation are
considered in complex number fields. But there have been few reports about the analysis
and synthesis of complex dynamical systems; for example [–] and references therein.
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More abstract than real system, the control theory of complex-valued dynamical systems
hasmany potential applications in science and engineering. For example, recently research
on the control theory of quantum systems has attracted considerable attention [–].
Quantum systems are a class of complex dynamical systems which take values in a Banach
space in a complex field.
Matrix differential equations are relevant to the description of many phenomena in

physics and engineering, ranging from such diverse applications as control theory to game
theory []. Themotivation for considering [r]-matrix differential systems arises from the
demand for a level of generality sufficient to deal with the increasingly important matrix
linear systems of control theory such as those associated with matrix Riccati differen-
tial equations and matrix bilinear control systems [, –]. In particular, recently re-
search on the control theory ofmultidimentional systems has attracted attention of quite a
few scientists [, ]. Multidimentional systems are a class of matrix differential systems
which have extensive application in image processing. Due to these reasons, it is important
and necessary to study the control theory of complex matrix impulsive systems.
To the best of our knowledge, there is no result so far about the control theory of complex

matrix impulsive systems. Inspired by [, ], in this paper, we consider the fundamental
concepts of controllability and observability of complex [r]-matrix time-varying impul-
sive systems by an algebraic approach. The main difficulty is to investigate the conditions
for controllability and observability of complex [r]-matrix impulsive systems in the con-
text of complex matrices. Explicit characterization for controllability and observability of
this kind of a system in terms of the rank conditions is presented by use of the matrix
differential theory in a complex field. These questions are meaningful and challenging.
The paper is organized as follows. In Section , the complexmatrix time-varying impul-

sive systems to be dealt with are formulated and several new results about the variation of
parameters for such systems are presented. Several sufficient and necessary conditions for
state controllability and state observability of complex matrix time-varying impulsive sys-
tems and corresponding complexmatrix time-invariant impulsive systems are established
in Sections  and , respectively. An example is given to explain those results in Section .
Finally, some conclusions are drawn in Section .

2 Notations and preliminaries
In order to make precise the concept of a complex [r]-matrix time-varying impulsive sys-
tem, we use the terminologies in [] and []. Let Mp×q(Cr×r) be the set of all block
matrices with p ≥  rows and q ≥  columns over the ring Cr×r of all r× r complex matri-
ces. Fix an open interval I ⊂ R and let the symbols Lloc(I,C), L∞

loc(I,C) and ACloc(I,C)
denote, respectively, the spaces of complex-valued Lebesgue measurable functions on I
which are locally integrable, locally bounded and locally absolutely continuous on I . Here
‘local’ implies a property holding on all compact subintervals of I . In the same way, de-
note by Lloc(I,Mp×q(Cr×r)) all p × q [r]-matrices whose entries are locally integrable on
I , and similar notations hold for L∞

loc(I,Mp×q(Cr×r)) and other relevant classes of matrix
functions on I .
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We are now able to define an [r]-matrix linear time-varying impulsive system on the
interval I = [t, +∞)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ(t) = A(t)x(t) + B(t)u(t), t �= tk ,
�x = Ekx(tk) + Fkuk , t = tk ,
y(t) = C(t)x(t) +D(t)u(t),
x(t+) = x,

()

where k = , , . . . , A(t) ∈ Lloc(I,Mn×n(Cr×r)), B(t) ∈ Lloc(I,Mn×m(Cr×r)), C(t) ∈ Lloc(I,
Mp×n(Cr×r)), D(t) ∈ Lloc(I,Mp×m(Cr×r)), x ∈ Lloc(I,Mn×(Cr×r)) is the state vector, x ∈
Mn×(Cr×r) is the initial state, u(t) ∈ L∞

loc(I,Mm×(Cr×r))∩Lloc(I,Mm×(Cr×r)) is the con-
trol input, uk = u(tk), Ek ∈ Mn×n(Cr×r), Fk ∈ Mn×m(Cr×r), y ∈ Lloc(I,Mp×(Cr×r)) is the
output, �x(tk) = x(t+k ) – x(t–k ), where x(t

+
k ) = limh→+ x(tk + h), x(tk) = x(t–k ) = limh→+ x(tk –

h), and the discontinuity points t < t < t < · · · < tk · · · , limk→∞ tk = +∞, which implies
that the solution of () is left-continuous at tk .

Definition  The [r]-matrix time-varying impulsive system () is called state controllable
on [t, tf ] (tf > t) if for any given initial state x ∈Mn×(Cr×r), there exists a piecewise lo-
cally bounded controller u(t) : [t, tf ] →Mm×(Cr×r) such that the corresponding solution
of () satisfies x(tf ) = .

Definition  System () is said to be observable on [t, tf ] (tf ∈ (tk , tk+]) if any initial state
x ∈ Mn×(Cr×r) can be uniquely determined by the corresponding system input u(t) and
output y(t) for t ∈ [t, tf ].

To study system (), we first consider the following [r]-matrix time-varying system:

ẋ(t) = A(t)x(t) + B(t)u(t). ()

See Everitt and Markus [], a solution x(t) of () is a column [r]-vector in ACloc(I,
Mn×(Cr×r)), which is determined by a controller u(t) on I = [t, t] ⊂ I , and an initial state
x ∈ Mn×(Cr×r), according to the classical Lagrange formula of variations of parameters

x(t) = X(t, t)x +
∫ t

t
X(t, s)B(s)u(s)ds. ()

Here X(t, s) = X(t)X–(s) is the transition matrix and X(t) is the n × n [r]-matrix funda-
mental solution characterized by

Ẋ(t) = A(t)X(t).

Let A* be the conjugated transpose of a complex matrix or a complex block matrix A,
and let

∏
i=k Ai stand for a matrix product AkAk– · · ·A. Next we will present the solution

of system ().

Lemma  For any t ∈ (tk , tk+], k = , , . . . , the solution of system () is

x(t) = X(t, tk)x
(
t+k
)
+
∫ t

tk
X(t, s)B(s)u(s)ds, ()

http://www.advancesindifferenceequations.com/content/2013/1/129


Fang and Sun Advances in Difference Equations 2013, 2013:129 Page 4 of 16
http://www.advancesindifferenceequations.com/content/2013/1/129

where

x
(
t+k
)
=

∏
j=k

(I + Ej)X(tj, tj–)x

+
k∑
i=

i∏
j=k

(I + Ej)X(tj, tj–)
∫ ti

ti–
X(ti–, s)B(s)u(s)ds

+
k∑
i=

i∏
j=k

(I + Ej)X(tj, tj–)Fi–ui– + Fkuk .

Proof According to (), we have

x(t) = X(t, t)x +
∫ t

t
X(t, s)B(s)u(s)ds, t ∈ [t, t],

so

x(t) = X(t, t)x +
∫ t

t
X(t, s)B(s)u(s)ds.

Since �x(tk) = x(t+k ) – x(tk) = Ekx(tk) + Fkuk , we have

x
(
t+
)
= (I + E)x(t) + Fu

= (I + E)X(t, t)
[
x +

∫ t

t
X(t, s)B(s)u(s)ds

]
+ Fu. ()

For t ∈ (t, t],

x(t) = X(t, t)x
(
t+
)
+
∫ t

t
X(t, s)B(s)u(s)ds,

where x(t+ ) is given by (). This implies that Lemma  holds for k = .
Now, assume that Lemma  holds when k =m, namely, for t ∈ (tm, tm+],

x(t) = X(t, tm)x
(
t+m
)
+
∫ t

tm
X(t, s)B(s)u(s)ds, ()

where

x
(
t+m
)
=

∏
j=m

(I + Ej)X(tj, tj–)x

+
m∑
i=

i∏
j=m

(I + Ej)X(tj, tj–)
∫ ti

ti–
X(ti–, s)B(s)u(s)ds

+
m∑
i=

i∏
j=m

(I + Ej)X(tj, tj–)Fi–ui– + Fmum.
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Then, () leads to

x(tm+) = X(tm+, tm)x
(
t+m
)
+
∫ tm+

tm
X(tm+, s)B(s)u(s)ds,

and hence we have

x
(
t+m+

)
= (I + Em+)x(tm+) + Fm+um+

= (I + Em+)
[
X(tm+, tm)x

(
t+m
)

+
∫ tm+

tm
X(tm+, s)B(s)u(s)ds

]
+ Fm+um+

= (I + Em+)X(tm+, tm)x
(
t+m
)
+ (I + Em+)X(tm+, tm)

×
∫ tm+

tm
X(tm, s)B(s)u(s)ds + Fm+um+

= (I + Em+)X(tm+, tm)

[ ∏
j=m

(I + Ej)X(tj, tj–)x

+
m∑
i=

i∏
j=m

(I + Ej)X(tj, tj–)
∫ ti

ti–
X(ti–, s)B(s)u(s)ds

+
m∑
i=

i∏
j=m

(I + Ej)X(tj, tj–)Fi–ui– + Fmum

]

+ (I + Em+)X(tm+, tm)
∫ tm+

tm
X(tm, s)B(s)u(s)ds + Fm+um+

=
∏

j=m+

(I + Ej)X(tj, tj–)x

+
m+∑
i=

i∏
j=m+

(I + Ej)X(tj, tj–)
∫ ti

ti–
X(ti–, s)B(s)u(s)ds

+
m+∑
i=

i∏
j=m+

(I + Ej)X(tj, tj–)Fi–ui– + Fm+um+.

Thus, when t ∈ (tm+, tm+],

x(t) = X(t, tm+)x
(
t+m+

)
+
∫ t

tm+

X(t, s)B(s)u(s)ds,

which implies that Lemma  is true when k =m+. According to the mathematical induc-
tion, we can immediately conclude that Lemma  is true. This completes the proof. �

3 Controllability
In this subsequent section, we discuss the controllability criteria of complex-valued [r]-
matrix impulsive system () using the algebraic method.

http://www.advancesindifferenceequations.com/content/2013/1/129
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For tf ∈ (tk , tk+], assume that I + Ej (j = , . . . ,k) are invertible and denote the following
n× n block matrices:

� := I(identity matrix), �i :=
i∏
j=

X(tj–, tj)(I + Ej)–,

Wi :=W (ti–, ti) =
∫ ti

ti–
X(ti–, s)B(s)B*(s)X(ti–, s)* ds,

Wk+ :=W (tk , tf ) =
∫ tf

tk
X(tk , s)B(s)B*(s)X(ti–, s)* ds,

W (�i–, ti–, ti) :=
∫ ti

ti–
�i–X(ti–, s)B(s)B*(s)X(ti–, s)*�*

i– ds,

W (�k , tk , tf ) :=
∫ tf

tk
�kX(tk , s)B(s)B*(s)X(tk , s)*�*

k ds,

Vi :=�iFi, i = , , . . . ,k.

()

Now we present a sufficient condition and a necessary condition for the controllability of
[r]-matrix time-varying impulsive system ().

Theorem  System () is controllable on [t, tf ] (tf ∈ (tk , tk+]) if there exist an l ∈
{, , . . . ,k} and a matrix G ∈ Mm×n(Cr×r) such that Wl is invertible or GFl = I (identity
matrix).

Proof (i) Without loss of generality, suppose that there exists an l ∈ {, , . . . ,k} such that
the complex matrixWl is invertible. For an initial state x, choose

u(t) =

{
–B(t)*X(tl–, t)*W–

l
∏

j=l–(I + Ej)X(tj, tj–)x, t ∈ (tl–, tl),
, t ∈ [t, tf ] \ (tl–, tl), ()

which implies also that the control is piecewise locally bounded on [t, tf ]. Thus applying
() into () yields that

x(tf ) = X(tf , tk)

[ ∏
j=k

(I + Ej)X(tj, tj–)x –
l∏

j=k

(I + Ej)X(tj, tj–)

×
∫ tl

tl–
X(tl–, s)B(s)B(s)*X(tl–, s)* dsW–(tl–, tl)

×
∏

j=l–

(I + Ej)X(tj, tj–)x

]

= X(tf , tk)

[ ∏
j=k

(I + Ej)X(tj, tj–) –
∏
j=k

(I + Ej)X(tj, tj–)

]
x = .

It follows that system () is controllable on [t, tf ].
(ii) Without loss of generality, suppose that there exist an l ∈ {, , . . . ,k} and a complex

matrixG ∈ Mm×n(Cr×r) satisfyingGFl = I . Then, given an initial state x ∈Mn×(Cr×r), we

http://www.advancesindifferenceequations.com/content/2013/1/129
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design the following control law:

u(t) =

{
–G
∏

j=l(I + Ej)X(tj, tj–)x, t = tl,
, t ∈ [t, tf ] \ tl, ()

which implies that the control u(t) is piecewise locally bounded on [t, tf ]. By Lemma 
and (), the corresponding solution of () yields

x(tf ) = X(tf , tk)

{ ∏
j=k

(I + Ej)X(tj, tj–)x –
l+∏
j=k

(I + Ej)X(tj, tj–)FlG

×
∏
j=l

(I + Ej)X(tj, tj–)x

}

= X(tf , tk)

[ ∏
j=k

(I + Ej)X(tj, tj–) –
∏
j=k

(I + Ej)X(tj, tj–)

]
x = .

Hence, by the definition of controllability, system () is controllable on [t, tf ]. This com-
pletes the proof. �

Theorem  If system () is controllable on [t, tf ] (tf ∈ (tk , tk+]), then

rank
{
W (�, t, t), . . . ,W (�k , tk , tf ),V, . . . ,Vk

}
= nr, ()

where W (·, ·, ·), �i and Vi are defined in ().

Proof Suppose that system () is controllable on [t, tf ] (tf ∈ (tk , tk+]), while

rank
{
W (�, t, t), . . . ,W (�k , tk , tf ),V, . . . ,Vk

}
< nr.

Then there exists a nonzero nr ×  complex vector x such that

 = x*Vi = x*�iFi, i = , , . . . ,k,

 = x*W (�i–, ti–, ti)x

= x*�i–

∫ ti

ti–
X(ti–, s)B(s)B*(s)X*(ti–, s)ds�*

i–x,

 = x*W (�k , tk , tf )x = x*�k

∫ tf

tk
X(tk , s)B(s)B*(s)X*(tk , s)ds�*

kx.

()

The integrands of () are nonnegative ‖x*�i–X(ti–, s)B(s)‖, i = , , . . . ,k, and it follows
that

{
x*�i–X(ti–, t)B(t) = , t ∈ (ti–, ti), i = , , . . . ,k,
x*�kX(tk , t)B(t) = , t ∈ (tk , tf ].

()

http://www.advancesindifferenceequations.com/content/2013/1/129
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Since system () is controllable on [t, tf ], then for the initial state x ∈Mn×(Cr×r), whose
first column is x, there exists a piecewise locally bounded controller u(t) such that

x(tf ) = X(tf , tk)

[ ∏
j=k

(I + Ej)X(tj, tj–)x

+
k∑
i=

i∏
j=k

(I + Ej)X(tj, tj–)
∫ ti

ti–
X(ti–, s)B(s)u(s)ds

+
k∑
i=

i∏
j=k

(I + Ej)X(tj, tj–)Fi–ui– + Fkuk

]

+
∫ tf

tk
X(tf , s)B(s)u(s)ds = ,

which implies that

–X(tf , tk)
∏
j=k

(I + Ej)X(tj, tj–)x

= X(tf , tk)

[ k∑
i=

i∏
j=k

(I + Ej)X(tj, tj–)
∫ ti

ti–
X(ti–, s)B(s)u(s)ds

+
k∑
i=

i∏
j=k

(I + Ej)X(tj, tj–)Fi–ui– + Fkuk

]
+
∫ tf

tk
X(tf , s)B(s)u(s)ds.

Multiplying both sides of the above equation by
∏k

j=[X(tj–, tj)(I + Ej)–]X(tk , tf ) from left
yields that

–x =

[ k∑
i=

�i–

∫ ti

ti–
X(ti–, s)B(s)u(s)ds +

k∑
i=

�i–Fi–ui– +�kFkuk

]

+�k

∫ tf

tk
X(tk , s)B(s)u(s)ds,

so

–x =

[ k∑
i=

�i–

∫ ti

ti–
X(ti–, s)B(s)u(s)ds +

k∑
i=

�i–Fi–u(ti–) +�kFku(tk)

]

+�k

∫ tf

tk
X(tk , s)B(s)u(s)ds,

where u(t) denotes the first column of u(t). Moreover, multiplying x* to both sides of the
above equality from left, from () and (), we have

–x*x =

[ k∑
i=

x*�i–

∫ ti

ti–
X(ti–, s)B(s)u(s)ds +

k∑
i=

x*�iFiu(ti)

]

+ x*�k

∫ tf

tk
X(tk , s)B(s)u(s)ds = .

http://www.advancesindifferenceequations.com/content/2013/1/129
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This contradicts the assumption that x �= , and we conclude that () holds. This com-
pletes the proof. �

Remark For system () with r =  and continuous A(t), B(t), C(t) and D(t), the sufficient
controllability criteria and necessary controllability criteria obtained in Theorem  and
Theorem  are the existing results in []. Furthermore, when system () is defined in
the real number fields, the sufficient controllability criteria and necessary controllability
criteria obtained in Theorem  and Theorem  are the existing results in []. However,
since the controllability criteria in Theorem  are sufficient conditions, there exists some
conservatism in Theorem , further research is needed for the controllability of system
().

4 Observability
In this section, our objective is to explicitly characterize the observability criteria of
complex-valued [r]-matrix impulsive system (). First, a claim is presented []: For n× n
complex matrix A, there exist scalar functions β(t),β(t), . . . ,βn–(t) such that

eAt =
n–∑
j=

βj(t)Aj. ()

From system () and Lemma , we can get the output

y(t) = C(t)X(t, t)x +C(t)
∫ t

t
X(t, s)B(s)u(s)ds +D(t)u(t), t ∈ [t, t], ()

and

y(t) = C(t)x(t) +D(t)u(t)

= C(t)X(t, tl)

{ ∏
j=l

(I + Ej)X(tj, tj–)x

+
l∑

i=

i∏
j=l

(I + Ej)X(tj, tj–)
∫ ti

ti–
X(ti–, s)B(s)u(s)ds

+
l∑

i=

i∏
j=l

(I + Ej)X(tj, tj–)Fi–ui– + Flul

}

+C(t)
∫ t

tl
X(t, s)B(s)u(s)ds +D(t)u(t), t ∈ (tl, tl+], ()

where l = , , . . . ,k. Rewrite () and ()

ỹ(t) =

{
C(t)X(t, t)x, t ∈ (t, t],
C(t)X(t, tl)

∏
j=l(I + Ej)X(tj, tj–)x, t ∈ (tl, tl+],

()

where

ỹ(t) = y(t) –C(t)
∫ t

t
X(t, s)B(s)u(s)ds –D(t)u(t), t ∈ [t, t],

http://www.advancesindifferenceequations.com/content/2013/1/129
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and

ỹ(t) = y(t) –
l∑

i=

i∏
j=l

(I + Ej)X(tj, tj–)
∫ ti

ti–
X(ti–, s)B(s)u(s)ds

–
l∑

i=

i∏
j=l

(I + Ej)X(tj, tj–)Fi–ui– – Flul

–C(t)
∫ t

tl
X(t, s)B(s)u(s)ds –D(t)u(t), t ∈ (tl, tl+].

It is easy to see, from Definition , that the observability of system () is equivalent to the
estimation of x from ỹ(t). We denote the nr × nr block matricesM(t, tf ) as follows:

M(t, tf ) =
k∑
i=

M(ti–, ti) +M(tk , tf ),

M(t, t) =
∫ t

t
X*(s, t)C(s)*C(s)X(s, t)ds,

M(ti–, ti) =
∫ ti

ti–

[ ∏
j=i–

(I + Ej)X(tj, tj–)

]*
X*(s, ti–)C(s)*C(s)

×X(s, ti–)
∏

j=i–

(I + Ej)X(tj, tj–)ds, i = , . . . ,k + ,

M(tk , tf ) =
∫ tf

tk

[ ∏
j=k

(I + Ej)X(tj, tj–)

]*
X*(s, tk)C(s)*C(s)X(s, tk)

×
∏
j=k

(I + Ej)X(tj, tj–)ds.

()

Now we present the sufficient and necessary condition for the observability of system
().

Theorem  System () is observable on [t, tf ] (tf ∈ (tk , tk+]) if and only if nr×nr complex
block matrix M(t, tf ) defined in () is invertible.

Proof Multiplying both sides of (), respectively, by X*(t, t)C(t)* and

[ ∏
j=l

(I + Ej)X(tj, tj–)

]*
X*(t, ti–)C(t)*

from left and integrating with respect to t from t to tf yield that

∫ t

t
X*(s, t)C(s)*ỹ(s)ds +

k∑
i=

∫ ti

ti–

[ ∏
j=i–

(I + Ej)X(tj, tj–)

]*
X*(s, ti–)

×C(s)*ỹ(s)ds +
∫ tf

tk

[ ∏
j=k–

(I + Ej)X(tj, tj–)

]*
X*(s, tk)C(s)*ỹ(s)ds
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=
∫ t

t
X*(s, t)C(s)*C(s)X(s, t)ds +

k∑
i=

∫ ti

ti–

[ ∏
j=i–

(I + Ej)X(tj, tj–)

]*

×X*(s, ti–)C(s)*C(s)X(s, ti–)
∏

j=i–

(I + Ej)X(tj, tj–)ds

+
∫ tf

tk

[ ∏
j=k

(I + Ej)X(tj, tj–)

]*
X*(s, tk)C(s)*C(s)X(s, tk)

∏
j=k

(I + Ej)X(tj, tj–)ds

=

[ k∑
i=

M(ti–, ti) +M(tk , tf )

]
x =M(t, tf )x. ()

It is easy to see that the left-hand side of () depends on ỹ(t), t ∈ [t, tf ]. So, if M(t, tf )
is invertible, then the initial state x(t) = x is uniquely determined by the corresponding
complex system output y(t) and input u(t) for t ∈ [t, tf ].
Next we consider the necessary part. If the complex matrix M(t, tf ) is not invertible,

then there exists a nonzero nr ×  vector xα such that x*αM(t, tf )xα = . Since M(ti–, ti)
(i = , . . . ,k) andM(tk , tf ) are positive semidefinite matrices, we have

x*αM(ti–, ti)xα = , i = , , . . . ,k, x*αM(tk , tf )xα = .

If let initial state x(t) = x = (xα ,xα , . . . ,xα), namely, each column of x is xα , then

x*M(ti–, ti)x = , i = , , . . . ,k, x*M(tk , tf )x = , ()

it follows from () and () that

∫ tf

t
ỹ(s)*ỹ(s)ds

=
k∑
i=

∫ ti

ti–
ỹ(s)*ỹ(s)ds +

∫ tf

tk
ỹ(s)*ỹ(s)ds

=
∫ t

t
x*X

*(s, t)C*(s)C(s)X(s, t)x ds +
k∑
i=

∫ ti

ti–
x*

[ ∏
j=i–

(I + Ej)X(tj, tj–)

]*

×X*(s, ti–)C(s)*C(s)X(s, ti–)
∏

j=i–

(I + Ej)X(tj, tj–)x ds

+
∫ tf

tk
x*

[ ∏
j=k

(I + Ej)X(tj, tj–)

]*
X*(s, tk)C(s)*C(s)X(s, tk)

×
∏
j=k

(I + Ej)X(tj, tj–)x ds

= x*

[ k∑
i=

M(ti–, ti) +M(tk , tf )

]
x = ,
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which implies that
∫ tf
t trac(ỹ(s)*ỹ(s))ds =

∫ tf
t ‖ỹ(s)‖F ds = . Thus by (),

 = ỹ(t) =

⎧⎪⎨
⎪⎩
C(t)X(t, t)x, t ∈ (t, t],
C(t)X(t, ti–)

∏
j=i–(I + Ej)X(tj, tj–)x, t ∈ (ti–, ti],

C(t)X(t, tk)
∏

j=k(I + Ej)X(tj, tj–)x, t ∈ (tk , tf ].

From Definition , system () is not observable on [t, tf ] (tf ∈ (tk , tk+]). This contradicts
the assumption of observability. This completes the proof. �

For system (), whenA(t) = A, B(t) = B,C(t) = C,D(t) =D, the complex impulsive system
becomes a complex linear time-invariant impulsive system.We have amore concise result
than Theorem . Denote

S :=

⎡
⎢⎢⎢⎢⎣

C
CA
...

CAnr–

⎤
⎥⎥⎥⎥⎦ , S̃ :=

⎡
⎢⎢⎢⎢⎣

S
SÊ
...

SÊk

⎤
⎥⎥⎥⎥⎦ , ()

where Êi =
∏

j=i(I + Ej), i = , , . . . ,k.

Theorem  If complex [r]-matrix impulsive system () has complex constant coefficient
matrices A, B, C, D, then the following conclusions hold.

(i) If rank(S) = nr, then complex [r]-matrix linear impulsive system () is observable on
[t, tf ] (tf ∈ (tk , tk+]).

(ii) Assume that AEi = EiA, i = , , . . . ,k. If complex [r]-matrix system () is observable,
then rank(S̃) = nr.

Proof (i) If rank(S) = nr while complex [r]-matrix system () is not observable, then by
Theorem  the matrixM(t, tf ) is not invertible, which implies that there exists a nonzero
nr×  vector xα satisfying x*αM(t, tf )xα = . Since thematricesM(ti–, ti) are non-negative
definite, we obtain

x*αM(t, t)xα =
∫ t

t

[
CeA(s–t)xα

]*[CeA(s–t)xα

]
ds = .

This shows that

CeA(t–t)xα = , t ∈ (t, t]. ()

Clearly, when t = t, we haveCxα = . Differentiating () j times and evaluating the results
at t = t yield that

CAjxα = , j = , , . . . ,nr – . ()

Hence we deduce that Sxα =  for xα �= . It follows that rank(S) < nr, which leads to a
contradiction with the assumption that rank(S) = nr. The proof of part (i) is completed.
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(ii) If otherwise, assume that complex impulsive system () is observable while rank(S̃) <
nr, then there exists a vector xα �=  satisfying S̃xα =  which reduces from () to

CAlxα = , CAl
∏
j=i

(I + Ej)xα = , l = , , . . . ,nr – , ()

where i = , . . . ,k. From (), () and the fact that AEi = EiA, we obtain

M(t, t)xα =
∫ t

t

[
eA(s–t)

]*C*
nr–∑
l=

βl(s – t)CAlxα ds = ,

M(ti–, ti)xα =
∫ ti

ti–

[ ∏
j=i–

(I + Ej)eA(tj––tj)
]*[

eA(s–ti–)
]*C*

×
nr–∑
l=

βl(s – ti–)CAl
∏

j=i–

(I + Ej)xα ds = , i = , . . . ,k,

M(tk , tf )xα =
∫ tf

tk

[ ∏
j=k

(I + Ej)eA(tj––tj)
]*[

eA(s–tk )
]*C*

×
nr–∑
l=

βl(s – tk)CAl
∏
j=k

(I + Ej)xα ds = .

So M(t, tf )xα = . Because xα �= , the matrix M(t, tf ) is not invertible. Hence complex
[r]-matrix impulsive system () is not observable from Theorem , and it contradicts the
assumption of observability. This completes the proof. �

5 Example
In system (), let Ek = kI , tk = k, t = , tf = t = ,m = n = r = ,

A(t) =

⎛
⎜⎜⎜⎝
i   
 i  
  t 
   t

⎞
⎟⎟⎟⎠ ,

where i =
√
–, and for the convenience of calculation, we take B(t), C(t) such that

B(t)B*(t) = I , C(t)C*(t) = I .
Next we consider the controllability and observability of system () on [, ]. It is easy to

compute

X(t) =

(
eitJ(t) 
 e 

 t
 I

)
, X(t, s) =

(
e–i(t–s)J(t – s) 

 e 
 (t

–s)I

)
,

where J(t) =
(  t
 

)
, and from ()

W =
∫ 


X(, s)X*(, s)ds =

∫ 



(
J( – s) 

 e–s I

)
ds =

(
J() 


∫ 
 e–s dsI

)
.
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Obviously,W is invertible, according to Theorem , system () is controllable. At the same
time, by Theorem , we should have

rank
{
W (�, , ),W (�, , ),W (�, , ),V,V

}
= . ()

In fact, it is easy to calculate

W (�, , ) =
∫ 


�X(, s)B(s)B*(s)X*(, s)�*

 ds

=
∫ 



(
eisJ(–s) 

 e– s
 I

)
ds

=

⎛
⎜⎜⎜⎝
i( – ei)  + (i – )ei  

 i( – ei)  
 

∫ 
 e

– 
 s

 ds 
  

∫ 
 e

– 
 s

 ds

⎞
⎟⎟⎟⎠ ,

and rank(W (�, , )) = , so () is right.
For the observability, from (), we have

M(t, t) =M(, ) =
∫ 


X*(s, )X(s, )ds =

(
J() 


∫ 
 e

s I

)
,

M(t, t) =M(, ) =
∫ 



[
I + EX(, )

]*X*(s, )X(s, )(I + E)X(, )ds

= 
∫ 


X*(, )X*(s, )X(s, )X(, )ds

=

(
J() 


∫ 
 e+s I

)
,

M(t, tf ) =M(, ) +M(, ) =

(
J() + J() 

 (
∫ 
 e

s +
∫ 
 e+s )I

)
,

M(t, tf ) is invertible, according to Theorem, system () is observable on [, ]. This com-
pletes the example.

6 Conclusion
In this paper, the issue of the controllability and observability criteria for a class of com-
plex [r]-matrix time-varying impulsive systems has been addressed for the first time. Tak-
ing advantage of the matrix differential equation theory in complex fields, several suf-
ficient and necessary conditions for state controllability and observability of such sys-
tems have been established respectively without imposing extra conditions.Moreover, the
corresponding criteria for controllability and observability of complex [r]-matrix time-
invariant systems have also been derived.
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