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Abstract
In this paper, we study the existence of solutions for Riemann-Liouville type
integro-differential equations of fractional order α ∈ (2, 3] with nonlocal three-point
fractional boundary conditions via Sadovskii’s fixed point theorem for condensing
maps. An illustrative example is also presented.
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1 Introduction
Fractional calculus has recently evolved as an interesting and important field of research.
The much interest in the subject owes to its extensive applications in the mathematical
modeling of several phenomena in many engineering and scientific disciplines such as
physics, chemistry, biophysics, biology, blood flow problems, control theory, aerodynam-
ics, nonlinear oscillation of earthquake, the fluid-dynamic trafficmodel, polymer rheology,
regular variation in thermodynamics, economics, fitting of experimental data, etc. [, ].
A significant feature of a fractional order differential operator, in contrast to its counter-
part in classical calculus, is its nonlocal behavior. It means that the future state of a dynam-
ical system or process based on the fractional differential operator depends on its current
state as well its past states. It is equivalent to saying that differential equations of arbitrary
order are capable of describing memory and hereditary properties of certain important
materials and processes. This aspect of fractional calculus has contributed towards the
growing popularity of the subject.
Nonlocal initial and boundary value problems of nonlinear fractional order differen-

tial equations have recently been investigated by several researchers. The domain of study
ranges from the theoretical aspects (like existence, uniqueness, periodicity, asymptotic be-
havior, etc.) to the analytic and numerical methods for fractional differential equations. In
fact the theory of differential equations of fractional order (parallel to the well-known the-
ory of ordinary differential equations) has been growing independently for the last three
decades. For some recent development of the subject, we refer, for instance, to a series of
papers [–] and references cited therein.
In this paper, we discuss the existence of solutions for a boundary value problem of

integro-differential equations of fractional order with nonlocal three-point fractional
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boundary conditions

⎧⎨
⎩
–Dαx(t) = Af (t,x(t)) + BIβg(t,x(t)),  < α ≤ , t ∈ [, ],

Dδx() = , Dδ+x() = , Dδx() –Dδx(η) = a,
()

where  < δ ≤ , α–δ > ,  < β < ,  < η < ,D(·) denotes the Riemann-Liouville fractional
derivative of order (·), f , g are given continuous functions, and A, B, a are real constants.
The objective of the present work is to establish the existence of solutions for the given

problem by applying Sadovskii’s fixed point theorem for condensingmaps. It is imperative
to note that the application of Sadovskii’s fixed point theorem for condensing maps in the
present scenario is new. Moreover, the right-hand side of the fractional differential equa-
tion in () provides a liberty to fix it in terms of non-integral and integral terms. Observe
that the integral term in () is a Riemann-Liouville integral of order β ∈ (, ), which re-
duces to the classical integral term (

∫ t
 g(s,x(s))ds) in the limit β → –. The nature of the

nonlinearity considered in the problem () becomes of non-integral type if we take B = 
in () and corresponds to integral type for A =  in (). Furthermore, the given bound-
ary conditions are also interesting and important from a physical point of view [, ] as
the condition Dδx() – Dδx(η) = a is a fractional analogue of the classical flux condition
x′() – x′(η) = a (the difference of flux values at the right end point and at an intermediate
point of the interval [, ] remains constant).

2 Auxiliary results
We recall here the following definitions.

Definition . The Riemann-Liouville fractional integral of order q for a continuous
function g is defined as

Iqg(t) =


�(q)

∫ t



g(s)
(t – s)–q

ds, q > ,

provided the integral exists.

Definition . The Riemann-Liouville derivative of fractional order q for a continuous
function g : (,∞) →R is defined as

Dq
+g(t) =


�(n – q)

(
d
dt

)n ∫ t


(t – s)n–q–g(s)ds, n = [q] + ,

where [q] denotes the integer part of the real number q.

By the substitution x(t) = Iδy(t) = D–δy(t), where y(t) is a suitable continuous function,
the problem () takes the form

⎧⎨
⎩
–Dα–δy(t) = Af (t, Iδy(t)) + BIβg(t, Iδy(t)), t ∈ [, ],

y() = , y′() = , y() – y(η) = a.
()

http://www.advancesindifferenceequations.com/content/2013/1/128


Agarwal et al. Advances in Difference Equations 2013, 2013:128 Page 3 of 9
http://www.advancesindifferenceequations.com/content/2013/1/128

Lemma. For any h ∈ C(, )∩L(, ), the unique solution of the linear fractional bound-
ary value problem

⎧⎨
⎩
–Dα–δy(t) = h(t), t ∈ [, ],

y() = , y′() = , y() – y(η) = a,
()

is

y(t) = –Iα–δh(t) +
tα–δ–

 – ηα–δ–

(
a + Iα–δh() – Iα–δh(η)

)
.

Proof It is well known that the solutions of the fractional differential equation in () can
be written as []

y(t) = –Iα–δh(t) + ctα–δ– + ctα–δ– + ctα–δ–, ()

where c, c, c ∈ R are arbitrary constants. Using the given boundary conditions, we find
that c = , c =  and

c =


 – ηα–δ–

(
a + Iα–δh() – Iα–δh(η)

)
.

Substituting these values in (), we get

y(t) = –Iα–δh(t) +
tα–δ–

 – ηα–δ–

(
a + Iα–δh() – Iα–δh(η)

)
.

This completes the proof. �

Thus, the solution of a linear variant of the problem () can be written as

x(t) = Iδy(t)

= Iδ
[
–Iα–δh(t) +

tα–δ–

 – ηα–δ–

(
a + Iα–δh() – Iα–δh(η)

)]

= –Iαh(t) +


 – ηα–δ–

(
a + Iα–δh() – Iα–δh(η)

)∫ t



(t – s)δ–

�(δ)
sα–δ– ds

= –Iαh(t) +


 – ηα–δ–

(
a + Iα–δh() – Iα–δh(η)

){ tα–

�(δ)

∫ 


( – ν)δ–να–δ– dν

}
,

where we have used the substitution s = νt in the integral of the last term. Using the rela-
tion for beta function B(·, ·),

B(β + ,α) =
∫ 


( – u)α–uβ du =

�(α)�(β + )
�(α + β + )

,

we get

x(t) = –Iαh(t) +
�(α – δ)tα–

( – ηα–δ–)�(α)
(
a + Iα–δh() – Iα–δh(η)

)
. ()
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The solution of the original nonlinear problem () can be obtained by replacing h with the
right-hand side of the fractional equation of () in ().
Let C = C([, ],R) denote the Banach space of all continuous functions from [, ]→R

endowed with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ [, ]}.

Definition . LetM be a bounded set in ametric space (X,d), then theKuratowskiimea-
sure of noncompactness α(M) is defined as inf{ε :M covered by a finitely many sets such
that the diameter of each set ≤ ε}.

Definition . [] Let 	 : D(	) ⊆ X → X be a bounded and continuous operator on a
Banach space X. Then 	 is called a condensing map if α(	(B)) < α(B) for all bounded sets
B ⊂D(	), where α denotes the Kuratowski measure of noncompactness.

Lemma . [, Example .] The map K + C is a k-set contraction with  ≤ k < , and
thus also condensing, if

(i) K ,C :D ⊆ X → X are operators on the Banach space X ;
(ii) K is k-contractive, i.e.,

‖Kx –Ky‖ ≤ k‖x – y‖

for all x, y ∈D and fixed k ∈ [, );
(iii) C is compact.

Theorem . [] Let B be a convex, bounded and closed subset of a Banach space X and
let 	 : B → B be a condensing map. Then 	 has a fixed point.

3 Main result
In the followingwe denote by L/p([, ],R+) the space of 

p -Lebesguemeasurable functions

from [, ] to R
+ with the norm ‖μ‖ = (

∫ 
 |μ(s)| p ds)p.

Theorem . Let f , g : [, ]×R →R be continuous functions satisfying the following con-
ditions:

(H) f satisfies the Lipschitz condition

∣∣f (t,x) – f (t, y)
∣∣ ≤ L(t)|x – y| for all (t,x), (t, y) ∈ [, ]×R,

where L ∈ L/p([, ],R+), p =min{q,q}, q ∈ (, ), q ∈ (,α – δ);
(H) there exist a function m ∈ L/p([, ],R+) and a nondecreasing function ψ : R+ → R

+

such that

∣∣g(t,x)∣∣ ≤ m(t)ψ
(‖x‖), ∀(t,x) ∈ [, ]×R.

Then the boundary value problem () has at least one solution, provided

γ :=
|A|‖L‖
�(α)

(
 – p
α – p

)–p

+
|A||Q|‖L‖
�(α – δ)

(
 – p

α – δ – p

)–p(
 + ηα–δ–p) < .
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Proof Let Br = {x ∈ C : ‖x‖ ≤ r} be a closed bounded and convex subset of C := C([, ],R),
where r will be fixed later. Using (), we define a map 	 : Br → C as

(	x)(t) = –A
∫ t



(t – s)α–

�(α)
f
(
s,x(s)

)
ds – B

∫ t



(t – s)α+β–

�(α + β)
g
(
s,x(s)

)
ds

+Qtα–
[
a +A

∫ 



( – s)α–δ–

�(α – δ)
f
(
s,x(s)

)
ds

+ B
∫ 



( – s)α–δ+β–

�(α – δ + β)
g
(
s,x(s)

)
ds

–A
∫ η



(η – s)α–δ–

�(α – δ)
f
(
s,x(s)

)
ds – B

∫ η



(η – s)α–δ+β–

�(α – δ + β)
g
(
s,x(s)

)
ds

]
,

where

Q =
�(α – δ)

( – ηα–δ–)�(α)
, ηα–δ– �= .

Observe that the problem () is equivalent to a fixed point problem 	x = x.
Let us decompose 	 as 	 = 	 +	, where

(	x)(t) = –A
∫ t



(t – s)α–

�(α)
f
(
s,x(s)

)
ds + aQtα–

+AQtα–
[∫ 



( – s)α–δ–

�(α – δ)
f
(
s,x(s)

)
ds

–
∫ η



(η – s)α–δ–

�(α – δ)
f
(
s,x(s)

)
ds

]
, t ∈ [, ]

and

(	x)(t) = –B
∫ t



(t – s)α+β–

�(α + β)
g
(
s,x(s)

)
ds

+ BQtα–
[∫ 



( – s)α–δ+β–

�(α – δ + β)
g
(
s,x(s)

)
ds

–
∫ η



(η – s)α–δ+β–

�(α – δ + β)
g
(
s,x(s)

)
ds

]
, t ∈ [, ].

Step . 	(Br) ⊂ Br .
For that, we select r ≥ ω

–γ
, where

ω = |A|σ +
|B|‖m‖ψ(r)

�(α + β)

(
 – p

α + β – p

)–p

+
|B||Q|‖m‖ψ(r)

�(α – δ + β)

(
 – p

α – δ + β – p

)–p(
 + ηα–δ+β–p),

σ = |a| +M
(


�(α + )

+
|Q|( + ηα–)
�(α – δ + )

)
, sup

t∈[,]

∣∣f (t, )∣∣ =M < ∞.
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Using |f (t,x(t))| ≤ |f (t,x(t)) – f (t, )| + |f (t, )| ≤ L(t)r +M for x ∈ Br , t ∈ [, ], we get

∣∣(	x)(t)
∣∣ ≤ |A|r

[∫ t



(t – s)α–

�(α)
L(s)ds + |Q|

∫ 



( – s)α–δ–

�(α – δ)
L(s)ds

+ |Q|
∫ η



(η – s)α–δ–

�(α – δ)
L(s)ds

]
+ σ |A|

≤ |A|r
�(α)

(∫ t


(t – s)

α–
–p ds

)–p(∫ 


L


p
 (s)ds

)p

+ σ |A|

+
|A||Q|r
�(α – δ)

(∫ 


( – s)

α–δ–
–p ds

)–p(∫ 


L


p
 (s)ds

)p

+
|A||Q|rηα–δ–p

�(α – δ)

(∫ η


(η – s)

α–δ–
–p ds

)–p(∫ 


L


p
 (s)ds

)p

≤ |A|r
[


�(α)

(
 – p
α – p

)–p

+
|Q|

�(α – δ)

(
 – p

α – δ – p

)–p

+
|Q|ηα–δ–p

�(α – δ)

(
 – p

α – δ – p

)–p]
‖L‖ + σ |A|.

In a similar manner, we have that

∣∣(	x)(t)
∣∣ ≤ |B|

∫ t



(t – s)α+β–

�(α + β)
m(s)ψ(r)ds

+ |B||Q|
∫ 



( – s)α–δ+β–

�(α – δ + β)
m(s)ψ(r)ds

+ |B||Q|
∫ η



(η – s)α–δ+β–

�(α – δ + β)
m(s)ψ(r)ds

≤ |B|ψ(r)
[


�(α + β)

(
 – p

α + β – p

)–p

+
|Q|

�(α – δ + β)

(
 – p

α – δ + β – p

)–p(
 + ηα–δ+β–p)]‖m‖.

Thus

∣∣(	x)(t)
∣∣ ≤ ∣∣(	x)(t)

∣∣ + ∣∣(	x)(t)
∣∣

≤ |A|r
[


�(α)

(
 – p
α – p

)–p

+
|Q|

�(α – δ)

(
 – p

α – δ – p

)–p

+
|Q|ηα–δ–p

�(α – δ)

(
 – p

α – δ – p

)–p]
‖L‖ + σ |A|

+ |B|ψ(r)
[


�(α + β)

(
 – p

α + β – p

)–p

+
|Q|

�(α – δ + β)

(
 – p

α – δ + β – p

)–p(
 + ηα–δ+β–p)]‖m‖

≤ γ r +ω ≤ r,

which implies that 	(Br) ⊂ Br .
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Step . 	 is continuous and γ -contractive.
To show the continuity of 	 for t ∈ [, ], let us consider a sequence xn converging to x.

Then, by the assumption (H), we have

∥∥(	xn)(t) – (	x)(t)
∥∥ ≤

[ |A|‖L‖
�(α)

(
 – p
α – p

)–p

+
|A||Q|‖L‖
�(α – δ)

(
 – p

α – δ – p

)–p(
 + ηα–δ–p)]‖xn – x‖.

Next, we show that 	 is γ -contractive. For x, y ∈ Br , we get

∥∥(	x)(t) – (	y)(t)
∥∥ ≤

[ |A|‖L‖
�(α)

(
 – p
α – p

)–p

+
|A||Q|‖L‖
�(α – δ)

(
 – p

α – δ – p

)–p(
 + ηα–δ–p)]‖x – y‖.

By the given assumption,

γ =
|A|‖L‖
�(α)

(
 – p
α – p

)–p

+
|A||Q|‖L‖
�(α – δ)

(
 – p

α – δ – p

)–p(
 + ηα–δ–p) < ,

it follows that 	 is γ -contractive.
Step . 	 is compact.
In Step , it has been shown that 	 is uniformly bounded. Now we show that 	 maps

bounded sets into equicontinuous sets of C([, ],R). Let t, t ∈ [, ] with t < t and
x ∈ Br . Then we obtain

∥∥(	x)(t) – (	x)(t)
∥∥ ≤ |B|

�(α + β)

∫ t



[
(t – s)α+β– – (t – s)α+β–]∣∣g(s,x(s))∣∣ds

+
|B|

�(α + β)

∫ t

t
(t – s)α+β–∣∣g(s,x(s))∣∣ds

+ |B||Q|∣∣tα– – tα–
∣∣[∫ 



( – s)α–δ+β–

�(α – δ + β)
∣∣g(s,x(s))∣∣ds

+
∫ η



(η – s)α–δ+β–

�(α – δ + β)
∣∣g(s,x(s))∣∣ds

]

≤ |B|
�(α + β)

∫ t



[
(t – s)α+β– – (t – s)α+β–]m(s)ds

+
|B|ψ(r)
�(α + β)

∫ t

t
(t – s)α+β–m(s)ds

+ |B||Q|ψ(r)
∣∣tα– – tα–

∣∣[∫ 



( – s)α–δ+β–

�(α – δ + β)
m(s)ds

+
∫ η



(η – s)α–δ+β–

�(α – δ + β)
m(s)ds

]
.

Obviously, the right-hand side of the above inequality tends to zero independently of x ∈ Br

as t – t → . Therefore it follows by the Arzelá-Ascoli theorem that 	 : C([, ],R) →
C([, ],R) is completely continuous. Thus 	 is compact on [, ].
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Step . 	 is condensing.
Since 	 is continuous, γ -contraction and 	 is compact, therefore, by Lemma .,

	 : Br → Br with 	 = 	 +	 is a condensing map on Br .
Consequently, by Theorem ., themap	 has a fixed point which implies that the prob-

lem () has a solution. �

In the special case when L(t) = L, L a constant, we have the following.

Corollary . Let f , g : [, ] × R → R be continuous functions. Assume that g satisfies
(H) and f satisfies the following condition:

(H)′ |f (t,x) – f (t, y)| ≤ L|x – y| for all (t,x), (t, y) ∈ [, ]×R, L >  is a constant.

If

γ ′ :=
|A|L

�(α + )
+

|A||Q|L
�(α – δ + )

(
 + ηα–δ

)
< ,

then the boundary value problem () has at least one solution.

Example . Consider a boundary value problemof integro-differential equations of frac-
tional order with nonlocal fractional boundary conditions given by

⎧⎨
⎩
–D/x(t) = Af (t,x(t)) + BIβg(t,x(t)), t ∈ [, ],

D/x() = , D/x() = , D/x() –D/x(η) = a,
()

where A = B = , β = /, η = /, f (t,x) = e–t |x|
(+et )(+|x|) , g(t,x) =

t|x|
+|x| .

Then we have

∣∣f (t,x) – f (t, y)
∣∣ = e–t

 + et

∣∣∣∣ |x|
 + |x| –

|y|
 + |y|

∣∣∣∣
≤ e–t|x – y|

 + et

≤ L(t)|x – y|, where L(t) =


e–t .

Also, for all x ∈ C and each t ∈ [, ], we have

∣∣f (t,x)∣∣ = e–t

 + et

∣∣∣∣ |x|
 + |x|

∣∣∣∣ ≤ e–t

 + et
<m(t), wherem(t) =



e–t ,

and |g(t,x)| ≤ m(t)ψ(‖x‖) with m(t) = t (‖m‖ = (/)/) and ψ(‖x‖) = . Selecting
p = / and using the given data, we find that

γ :=
|A|‖L‖
�(α)

(
 – p
α – p

)–p

+
|A||Q|‖L‖
�(α – δ)

(
 – p

α – δ – p

)–p(
 + ηα–δ–p)

� ..

As γ < , therefore, by the conclusion of Theorem ., the problem () has a solution.
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