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Abstract
The paper deals with the forced oscillation of the fractional differential equation

(Dq
ax)(t) + f1(t, x(t)) = v(t) + f2(t, x(t)) for t > a ≥ 0

with the initial conditions (Dq–k
a x)(a) = bk (k = 1, 2, . . . ,m – 1) and limt→a+ (I

m–q
a x)(t) = bm,

where Dq
ax is the Riemann-Liouville fractional derivative of order q of x,m – 1 < q ≤ m,

m ≥ 1 is an integer, Im–q
a x is the Riemann-Liouville fractional integral of orderm – q of

x, and bk (k = 1, 2, . . . ,m) are/is constants/constant. We obtain some oscillation
theorems for the equation by reducing the fractional differential equation to the
equivalent Volterra fractional integral equation and by applying Young’s inequality.
We also establish some new oscillation criteria for the equation when the
Riemann-Liouville fractional operator is replaced by the Caputo fractional operator.
The results obtained here improve and extend some existing results. An example is
given to illustrate our theoretical results.
MSC: 34A08; 34C10
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1 Introduction
The aim of the paper is to establish several oscillation theorems for forced fractional dif-
ferential equation with initial conditions of the form

(Dq
ax)(t) + f(t,x(t)) = v(t) + f(t,x(t)), t > a≥ ,

(Dq–k
a x)(a) = bk (k = , , . . . ,m – ), limt→a+(I

m–q
a x)(t) = bm,

}
(.)

where Dq
ax is the Riemann-Liouville fractional derivative of order q of x, m –  < q ≤ m,

m ≥  is an integer, Im–q
a x is the Riemann-Liouville fractional integral of order m – q of x,

bk (k = , , . . . ,m) are/is constants/constant, fi : [a,∞) × R → R (i = , ) are continuous
functions, and v : [a,∞)→R is a continuous function.
By a solution of (.), wemean a nontrivial function x ∈ C([a,∞),R) which has the prop-

erty Dq
ax ∈ C([a,∞),R) and satisfies (.) for t ≥ a. Our attention is restricted to those

solutions of (.) which exist on [a,∞) and satisfy sup{|x(t)| : t > t∗} >  for any t∗ ≥ a.
A solution x of (.) is said to be oscillatory if it is neither eventually positive nor eventu-
ally negative; otherwise, it is nonoscillatory. Equation (.) is said to be oscillatory if all its
solutions are oscillatory.
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Differential equations of fractional order have recently proved to be valuable tools in
themodeling of many phenomena in various fields of science and engineering. Indeed, we
can findnumerous applications in viscoelasticity, electrochemistry, control, porousmedia,
electromagnetic, etc.; see, for example, [–]. There has been a significant development
in ordinary and partial differential equations involving both Riemann-Liouville and Ca-
puto fractional derivatives in recent years. The books on the subject of fractional integrals
and fractional derivatives by Diethelm [], Miller and Ross [], Podlubny [] and Kilbas
et al. [] summarize and organize much of fractional calculus and many of theories and
applications of fractional differential equations. Many papers have studied some aspects
of fractional differential equations such as the existence and uniqueness of solutions to
Cauchy type problems, the methods for explicit and numerical solutions, and the stability
of solutions, and we refer to [–] and the references quoted therein.
However, to the best of our knowledge, very little is known regarding the oscillation of

fractional differential equations up to now. Recently, Chen [] established some oscilla-
tion criteria for the fractional differential equation

[
r(t)

(
Dq

–x
)η(t)

]′ – p(t)f
(∫ ∞

t
(s – t)–qx(s) ds

)
=  for t > ,

where q ∈ (, ) is a constant, η >  is a quotient of odd positive integers, Dq
–x is the Liou-

ville right-sided fractional derivative of order q of x defined by

(
Dq

–x
)
(t) := –


�( – q)

d
dt

∫ ∞

t
(s – t)–qx(s) ds for t > ,

here � is the gamma function defined by

�(t) :=
∫ ∞


st–e–s ds for t > .

For details of the Liouville fractional integrals and fractional derivatives, one can refer to
[, Sections . and .].
Grace et al. [] discussed the oscillation of a forced fractional differential equation with

initial conditions of the form (.) under the conditions

xfi(t,x) >  for i = , ,x 	=  and t ≥ a, (.)

and

∣∣f(t,x)∣∣ ≥ p(t)|x|β and
∣∣f(t,x)∣∣ ≤ p(t)|x|γ for x 	=  and t ≥ a, (.)

where p,p ∈ C([a,∞), (,∞)) and β ,γ >  are constants. Grace et al. gave several oscilla-
tion results for (.) by reducing the equation to the equivalent Volterra fractional integral
equation (see [, Lemma .])

x(t) =
m∑
k=

bk(t – a)q–k

�(q – k + )

+


�(q)

∫ t

a
(t – s)q–

[
v(s) + f

(
s,x(s)

)
– f

(
s,x(s)

)]
ds for t > a (.)
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when β >  = γ , β =  > γ >  and β >  > γ > , respectively. The results are also stated
when the Riemann-Liouville fractional operator is replaced by the Caputo fractional op-
erator.
Obviously, Grace et al. [] did not consider the cases β > γ >  and  > β > γ >  for (.).

In this paper, we establish several oscillation criteria for (.) under the conditions (.),
(.) and β > γ >  by using Young’s inequality. Furthermore, we obtain some oscillation
theorems for (.) without the condition (.) butwith the condition (.) and the following
conditions:

∣∣f(t,x)∣∣ ≤ p(t)|x|β and
∣∣f(t,x)∣∣ ≥ p(t)|x|γ for x 	=  and t ≥ a, (.)

where p,p ∈ C([a,∞), (,∞)) and β ,γ >  are constants. We also get some new oscilla-
tory properties of (.) when the Riemann-Liouville fractional operator is replaced by the
Caputo fractional operator. Our results improve and extend some of those in [].

2 Preliminaries and a lemma
In this section, we recall several definitions of fractional integrals and fractional derivatives
and the well-known Young’s inequality, which will be used throughout this paper. More
details on fractional calculus can be found in [–].

Definition . [] The Riemann-Liouville fractional integral of order q >  of a function
x : [a,∞)→R is defined by

(Iqax)(t) :=


�(q)

∫ t

a
(t – s)q–x(s) ds, (.)

provided the right-hand side is pointwise defined on [a,∞), where � is the gamma func-
tion. Furthermore, we set Iax := x.

Definition. [] TheRiemann-Liouville fractional derivative of order q >  of a function
x : [a,∞)→R is defined by

(
Dq

ax
)
(t) :=

dm

dtm
(
Im–q
a x

)
(t), (.)

provided the right-hand side is pointwise defined on [a,∞), where m –  < q ≤ m and
m ≥  is an integer. Furthermore, we set D

ax := x.

Definition . [] The Caputo fractional derivative of order q >  of a function x :
[a,∞)→R is defined by

(CDq
ax

)
(t) :=

(
Im–q
a x(m))(t), (.)

provided the right-hand side is pointwise defined on [a,∞), where m –  < q ≤ m, m ≥ 
is an integer and x(m) denotes the usual derivative of integer order m of x. Furthermore,
we set CD

ax := x.
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Lemma. (Young’s inequality) (i) Let X,Y ≥ , u >  and 
u +


v = , then XY ≤ 

uX
u+ 

vY
v,

where the equality holds if and only if Y = Xu–.
(ii) Let X ≥ , Y > ,  < u <  and 

u + 
v = , then XY ≥ 

uX
u + 

vY
v, where the equality

holds if and only if Y = Xu–.

3 Main results
Theorem . Suppose that (.) and (.) hold with β > γ . If

lim inf
t→∞ t–q

∫ t

T
(t – s)q–[v(s) +H(s)] ds = –∞ (.)

and

lim sup
t→∞

t–q
∫ t

T
(t – s)q–[v(s) –H(s)] ds = ∞ (.)

for every sufficiently large T , where H(s) := (β/γ – )[γ p(s)/β]β/(β–γ )pγ /(γ–β)
 (s), then every

solution of (.) is oscillatory.

Proof Let x be a nonoscillatory solution of (.). Firstly, we suppose that x is an eventually
positive solution of (.). Then there exists T > a such that x(t) >  for t ≥ T. Let s ≥ T

and take X = |x|γ (s), Y = γ p(s)/(βp(s)), u = β/γ and v = β/(β – γ ), then from Part (i) of
Lemma . we conclude

p(s)|x|γ (s) – p(s)|x|β (s)

=
βp(s)

γ

[
|x|γ (s)γ p(s)

βp(s)
–


β/γ

(|x|γ (s))β/γ
]

=
βp(s)

γ

[
XY –


u
Xu

]
≤ βp(s)

γ


v
Y v =H(s) for s ≥ T, (.)

where H is defined as in Theorem .. From (.), (.), (.) and (.), we obtain

�(q)x(t) = �(q)
m∑
k=

bk(t – a)q–k

�(q – k + )
+

∫ T

a
(t – s)q–

[
v(s) + f

(
s,x(s)

)
– f

(
s,x(s)

)]
ds

+
∫ t

T
(t – s)q–

[
v(s) + f

(
s,x(s)

)
– f

(
s,x(s)

)]
ds

≤ �(t) +�(t,T) +
∫ t

T
(t – s)q–

[
v(s) + p(s)xγ (s) – p(s)xβ(s)

]
ds

≤ �(t) +�(t,T) +
∫ t

T
(t – s)q–

[
v(s) +H(s)

]
ds for t ≥ T, (.)

where

�(t) := �(q)
m∑
k=

bk(t – a)q–k

�(q – k + )
(.)
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and

�(t,T) :=
∫ T

a
(t – s)q–

[
v(s) + f

(
s,x(s)

)
– f

(
s,x(s)

)]
ds. (.)

Multiplying (.) by t–q, we have, for t ≥ T,

 < t–q�(q)x(t)≤ t–q�(t) + t–q�(t,T) + t–q
∫ t

T
(t – s)q–

[
v(s) +H(s)

]
ds. (.)

Take T > T. Next, we consider the cases  < q ≤  and q > , respectively.
Case (i). Let  < q ≤ . Then we get m = , �(t) = b(t – a)q–,

∣∣t–q�(t)
∣∣ = |b|t–q(t – a)q– ≤ |b|

(
T

T – a

)–q

:= c(T) for t ≥ T (.)

and

∣∣t–q�(t,T)
∣∣ = ∣∣∣∣t–q

∫ T

a
(t – s)q–

[
v(s) + f

(
s,x(s)

)
– f

(
s,x(s)

)]
ds

∣∣∣∣
≤

∫ T

a
t–q(t – s)q–

∣∣v(s) + f
(
s,x(s)

)
– f

(
s,x(s)

)∣∣ds
≤

∫ T

a

(
T

T – s

)–q∣∣v(s) + f
(
s,x(s)

)
– f

(
s,x(s)

)∣∣ds
:= c(T,T) for t ≥ T. (.)

It follows from (.)-(.) that t–q
∫ t
T
(t– s)q–[v(s)+H(s)] ds > –[c(T)+ c(T,T)] for t ≥

T. Therefore, we find lim inft→∞ t–q
∫ t
T
(t – s)q–[v(s) +H(s)] ds ≥ –[c(T) + c(T,T)] >

–∞, which contradicts (.).
Case (ii). Let q > . Then we havem ≥ ,

∣∣t–q�(t)
∣∣ = ∣∣∣∣t–q�(q)

m∑
k=

bk(t – a)q–k

�(q – k + )

∣∣∣∣
≤ �(q)

m∑
k=

|bk|t–q(t – a)q–k

�(q – k + )
≤ �(q)

m∑
k=

|bk|(T – a)–k

�(q – k + )

:= c(T) for t ≥ T (.)

and

∣∣t–q�(t,T)
∣∣ = ∣∣∣∣t–q

∫ T

a
(t – s)q–

[
v(s) + f

(
s,x(s)

)
– f

(
s,x(s)

)]
ds

∣∣∣∣
≤

∫ T

a
t–q(t – s)q–

∣∣v(s) + f
(
s,x(s)

)
– f

(
s,x(s)

)∣∣ds
≤

∫ T

a

∣∣v(s) + f
(
s,x(s)

)
– f

(
s,x(s)

)∣∣ds := c(T) for t ≥ T. (.)
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From (.), (.) and (.), we conclude t–q
∫ t
T
(t – s)q–[v(s) + H(s)] ds > –[c(T) +

c(T)] for t ≥ T. Hence, we obtain lim inft→∞ t–q
∫ t
T
(t – s)q–[v(s) +H(s)] ds≥ –[c(T) +

c(T)] > –∞, which contradicts (.).
Finally, we assume that x is an eventually negative solution of (.). Then a similar argu-

ment leads to a contradiction with (.). The proof is complete. �

Remark . In [], the plus sign ‘+’ in (.) in Theorem ., (.) in Theorem ., (.)
in Theorem ., (.) in Theorem ., (.) in Theorem . and (.) in Theorem .
should be the minus sign ‘–’.

Remark . Theorems . and . in [] are the special cases of our Theorem . with
β >  = γ and β =  > γ > , respectively. Our Theorem . improves and extends the
results of Theorems .-. in [] since these theorems did not include the cases β > γ > 
and  > β > γ >  for (.).

The following example shows that the condition (.) cannot be dropped.

Example . Consider the Riemann-Liouville fractional differential equation

(Dq
x)(t) + x(t) ln(e + t) =

t–q

�( – q)
+ (t – t/) ln(e + t)

+ x/(t) ln(e + t), t > ,
limt→+(I

–q
 x)(t) = ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (.)

where  < q < .
In (.), a = , m = , f(t,x) = x ln(e + t), v(t) = t–q

�(–q) + (t – t/) ln(e + t), f(t,x) =
x/ ln(e + t) and b = . Taking p(t) = p(t) = ln(e + t), β =  and γ = /, we find that the
conditions (.) and (.) are satisfied. But the condition (.) is not satisfied since for every
sufficiently large T ≥  and all t ≥ T , we have v(t) >  and

lim inf
t→∞ t–q

∫ t

T
(t – s)q–

[
v(s) +H(s)

]
ds ≥ lim inf

t→∞ t–q
∫ t

T
(t – s)q–H(s) ds

= lim inf
t→∞ t–q

∫ t

T
(t – s)q––/ ln(e + s) ds

≥ lim inf
t→∞ t–q

∫ t

T
(t – s)q––/ds

= lim inf
t→∞

–/t–q(t – T)q

q

= ∞,

where H is defined as in Theorem .. Taking x(t) = t, by Definition . we get

(
I–q x

)
(t) =


�( – q)

∫ t


(t – s)–qs ds.
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Integrating by parts twice, we obtain

(
I–q x

)
(t) =


�( – q)

t–q

( – q)( – q)( – q)
. (.)

Therefore, by Definition . we conclude

(
Dq

x
)
(t) =

d
dt

(
I–q x

)
(t) =


�( – q)

t–q

( – q)( – q)
=

t–q

�( – q)
,

which implies that x(t) = t satisfies the first equality in (.). From (.) we get
limt→+(I

–q
 x)(t) = , which yields that x(t) = t satisfies the second equality in (.).

Hence, x(t) = t is a nonoscillatory solution of (.).

Next, we consider the case when (.) holds, which was not considered in [].

Theorem . Let q ≥  and suppose that (.) and (.) hold with β < γ . If

lim sup
t→∞

t–q
∫ t

T
(t – s)q–

[
v(s) +H(s)

]
ds = ∞ (.)

and

lim inf
t→∞ t–q

∫ t

T
(t – s)q–

[
v(s) –H(s)

]
ds = –∞ (.)

for every sufficiently large T , where H is defined as in Theorem ., then every bounded
solution of (.) is oscillatory.

Proof Let x be a bounded nonoscillatory solution of (.). Then there exist constants M

andM such that

M ≤ x(t)≤ M for t ≥ a. (.)

Firstly, we suppose that x is a bounded eventually positive solution of (.). Then there ex-
istsT > a such that x(t) >  for t ≥ T. Similar to the proof of (.), by Part (ii) of Lemma.
we find

p(s)|x|γ (s) – p(s)|x|β(s) ≥ H(s) for s ≥ T, (.)

where H is defined as in Theorem .. Define � and � as in (.) and (.), respectively.
Similar to the proof of (.), from (.), (.), (.) and (.), we get, for t ≥ T,

t–q�(q)x(t)≥ t–q�(t) + t–q�(t,T) + t–q
∫ t

T
(t – s)q–

[
v(s) +H(s)

]
ds. (.)

Take T > T. Next, we consider the cases q =  and q > , respectively.
Case (i). Let q = . Then (.) and (.) are still true. From (.), (.), (.) and (.), we

conclude M�(q) ≥ –c(T) – c(T,T) + t–q
∫ t
T
(t – s)q–[v(s) +H(s)] ds for t ≥ T. Thus,

http://www.advancesindifferenceequations.com/content/2013/1/125
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we see lim supt→∞ t–q
∫ t
T
(t– s)q–[v(s)+H(s)] ds≤ c(T)+c(T,T)+M�(q) < ∞, which

contradicts (.).
Case (ii). Let q > . Then (.) and (.) are still valid. From (.), (.), (.) and

(.), we concludeM�(q)t–q ≥ –c(T) – c(T) + t–q
∫ t
T
(t – s)q–[v(s) +H(s)] ds for t ≥

T. Since limt→∞ t–q = , we obtain lim supt→∞ t–q
∫ t
T
(t – s)q–[v(s) +H(s)] ds ≤ c(T) +

c(T) <∞, which contradicts (.).
Finally, we suppose that x is a bounded eventually negative solution of (.). Then a sim-

ilar argument leads to a contradiction with (.). The proof is complete. �

4 Results with the Caputo fractional derivative
The Riemann-Liouville fractional derivatives played an important role in the develop-
ment of the theory of fractional derivatives and integrals and for their applications in
pure mathematics. But it turns out that the Riemann-Liouville derivatives have certain
disadvantages when trying to model real-world phenomena with fractional differential
equations. When comparing the Riemann-Liouville definition and the Caputo definition
of fractional derivatives, we will see this second one seems to be better suited to such
tasks. The main advantages of the Caputo fractional derivatives is that the initial condi-
tions for fractional differential equations with Caputo fractional derivatives take on the
same form as for integer-order differential equations, i.e., they contain the limit values of
integer-order derivatives of unknown functions at the lower terminal t = a.
In this section, we study the oscillation of (.) when the Riemann-Liouville fractional

operator is replaced by the Caputo fractional operator, i.e., the oscillation of the initial
value problem

(CDq
ax)(t) + f(t,x(t)) = v(t) + f(t,x(t)), t > a ≥ ,

x(k)(a) = bk (k = , , . . . ,m – ),

}
(.)

where CDq
ax is the Caputo fractional derivative of order q of x defined by (.),m–  < q ≤

m, m ≥  is an integer, bk (k = , , . . . ,m – ) are/is constants/constant, fi : [a,∞) × R →
R (i = , ) are continuous functions, and v : [a,∞) → R is a continuous function. The
corresponding Volterra fractional integral equation (see [, Lemma .]) becomes

x(t) =
m–∑
k=

bk(t – a)k

k!
+


�(q)

∫ t

a
(t – s)q–

[
v(s) + f

(
s,x(s)

)
– f

(
s,x(s)

)]
ds for t > a.

Similar to the proof of Theorems . and ., we can prove the following theorems.

Theorem . Suppose that (.) and (.) hold with β > γ . If

lim inf
t→∞ t–m

∫ t

T
(t – s)q–

[
v(s) +H(s)

]
ds = –∞

and

lim sup
t→∞

t–m
∫ t

T
(t – s)q–

[
v(s) –H(s)

]
ds = ∞

for every sufficiently large T , where H is defined as in Theorem ., then every solution of
(.) is oscillatory.
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Theorem . Let q ≥  and suppose that (.) and (.) hold with β < γ . If

lim sup
t→∞

t–m
∫ t

T
(t – s)q–

[
v(s) +H(s)

]
ds = ∞

and

lim inf
t→∞ t–m

∫ t

T
(t – s)q–

[
v(s) –H(s)

]
ds = –∞

for every sufficiently large T , where H is defined as in Theorem ., then every bounded
solution of (.) is oscillatory.

Remark . Theorems . and . in [] are the special cases of our Theorem . with
β >  = γ and β =  > γ > , respectively. Our Theorem . improves and extends the
results of Theorems .-. in [] since these theorems did not include the cases β > γ > 
and  > β > γ >  for (.). The case considered in our Theorem . was not discussed in
[] and hence our Theorem . is a new result.
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