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Abstract

In the present study, the first and second order of accuracy stable difference schemes
for the numerical solution of the initial boundary value problem for the fractional
parabolic equation with the Neumann boundary condition are presented. Almost
coercive stability estimates for the solution of these difference schemes are obtained.
The method is illustrated by numerical examples.
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1 Introduction
Mathematical modeling of fluid mechanics (dynamics, elasticity) and other areas of
physics lead to fractional partial differential equations. Numerical methods and theory
of solutions of the problems for fractional differential equations have been studied exten-
sively by many researchers (see, e.g., [1-31] and the references given therein).

The method of operators as a tool for investigation of the well-posedness of boundary
value problems for parabolic partial differential equations is well known (see, e.g., [32—41]).
In paper [42], the initial value problem

du(t)
dt

s DI ult) + Aul) =f(), 0<t<T,  u(0)=0 (L1)

for the fractional differential equation in a Banach space E with the strongly positive op-
erator A was investigated. This fractional differential equation corresponds to the Basset
problem [43]. It represents a classical problem in fluid dynamics where the unsteady mo-

tion of a particle accelerates in a viscous fluid due to the gravity of force. Here D% = Dé,r is
the standard Riemann-Liouville’s derivative of order %

The well-posedness of (1.1) in spaces of smooth functions was established. The coercive
stability estimates for the solution of the 2mth order multidimensional fractional parabolic
equation and the one-dimensional fractional parabolic equation with nonlocal boundary
conditions in space variable were obtained.

In paper [44], the stable first order of accuracy difference scheme for the approximate
solution of initial value problem (1.1)

1
T Wug — ug_) + Aug + D2 ug = f,

1.2)
fi=f(t), ti=kt,1<k<N,Nt=T, uy=0
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was presented. Here (see, [45]),

Let F,(E) be the linear space of mesh functions ¢* = {¢}) with values in the Banach
space E. Next, on F, (E) we introduce the Banach space C, (E) = C([0, T, E) with the norm

T —
lo* N, = max lexle-

The well-posedness of (1.2) in difference analogues of spaces of smooth functions was
established. Namely, we have the following theorems.

Theorem 1.1 Let A be a strongly positive operator in a Banach space E. Then, for the so-
lution u® = {ux}Y in C.(E) of initial value problem (1.2) the stability inequality holds:

L PR e O B S I P T (1.4)

Ce(B)

Theorem 1.2 Let A be a strongly positive operator in a Banach space E. Then, for the
solution u® = {u} in C.(E) of initial value problem (1.2) the almost coercive stability in-
equality is valid:

_ N
e G - ”"H)}l ”c,(E) + [ {Am HCI(E)

1
< Mmin{ln ;,1 +1n ||A||EQE} I ||c,<E>- (1.5)

Here, and in future, positive constants, which can differ in time (hence: not a subject of
precision) will be indicated with an M. On the other hand M(«, 8, ...) is used to focus on
the fact that the constant depends only on o, 8, ...

Finally, the coercive stability and almost coercive stability estimates for the solution of
difference schemes the first order of approximation in ¢ for the 2mth order multidimen-
sional fractional parabolic equation and the one-dimensional fractional parabolic equa-
tion with nonlocal boundary conditions in space variable were obtained.

In the present paper, applying the second order of approximation formula

—dN2/3ug + d~/2/3uy, k=1,
2d6/5uq + d/6/5u; + d/6/5u5, k=2,
g = | @ ezl = )k = m) & e = )l w6
’ + [(2m — 2k = 1)A(k — m) = 2u(k — m)] ;-1
+ [k — m + DAk — m) + u(k — m)]u,,}
+ %[—Mkfz — 4w + Surl, 3<k<N

for

1/2 1 el 12
D/ ulty—t/2) = mfo (tx—1/2—=5)""u/(s)ds,
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and using the Crank-Nicholson difference scheme for parabolic equations, we present the
second order of accuracy difference scheme

1
T ok — wier) + 3 Ak + ug1) + D g = fi,
fo=f(t—12), ti=ktl<k<N,NT=T,  u=0

1.7)

for the approximate solution of initial value problem (1.1). Here,
2
VT

u(r) = —% ((r+1/2*2 — (r - 1/2)3/2).

d= AMr)=~r+1/2-+r-1/2,

The well-posedness of (1.7) in C,(E) is established. In applications, the initial boundary
value problem for the fractional parabolic equation

2
P+ DPult, ) = Y ap() S + L by P + oult,x) = f(6,),

x=(x1,...,%,) €2,0<t<T, (1.8)
b)) —0, xe8,0<t<T,

u(0,x)=0, xe
is considered. Here, Q2 is the open cube in the m-dimensional Euclidean space
R {xe Q:ix=®,...,%4);0<x<1,1 fjfm}

with boundary S, Q = QUS, a,(x) and by, (x) (x € Q) and f(¢,%) (¢ € (0, T), x € Q) are given
smooth functions and a,(x) > a > 0, o > 0 and 7 is the normal vector to S.

The first and second order of accuracy difference schemes for the approximate solution
of problem (1.8) are presented. The almost coercive stability estimates for the solution of
these difference schemes are established. The theoretical statements for the solution of
these difference schemes for one-dimensional fractional parabolic equations are sup-
ported by numerical examples.

2 The well-posedness of difference scheme
It is clear that the following representation formula

k 1 k
we=-y BTCD}ur+) B°Cfir, 1<k<N (2.1)

s=1 s=1

holds for the solution of problem (1.7). Here, C = (I + %)’1 and B=(I - %)C.

Theorem 2.1 Let A be a strongly positive operator in a Banach space E. Then, for the
solution u® = {u Y\ in C,(E) of initial value problem (1.2) the following stability inequality
holds:

} oW ¥
” {DT ”k}1 ”CT(E) +

A
{t_l(uk —Up_1) + E(uk + uk_l)} < MH/” || ) (2.2)
E)

1

T
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Proof Using formulas (2.1) and (1.6), we get

1 1
D2y, = dx/i/?){—CDf2 Ut + Cflr},

1 1 C 1 C
D2y, = d\/E/S{—CZD,2 mT — EDTZ u T+ C* AT + Efﬂ}’

A k-1
D?u; =dZ {[(k—m)k(k—m) +/L(k—m)]
m=2
-2 1 m-2
X |:— Z B" Y SCD2y,t + ZB’”—Z_S Cfgt:|
s=1 s=1
+ [(Zm -2k = 1)A(k —m) —2u(k - m)]
r m-1 1 m-1
x | - ZB’"‘I_SCDE UsT + ZB’”_HCfSI:| (2.3)
s=1 s=1

+ [(k = m + DAk — m) + u(k — m)]

B m i m
x| = ZB’”_SCD? UT + ZBm_sCfsr] }
L s=1 s=1

J k=2 , k=2
+——= 1| =Y BsCDZusr+ Y BESChit

k-1 N k-1
—4 |:— Z B*1CD2 u,t + ZB"_I_SCfST

s=1 s=1

s=1 s=1

k A k
+5|:—ZB/‘_SCD§ust+ZBI‘_SCfsr , 3<k<N.

1
Now, let us first estimate z; = || D7 ux || for any 1 < k < N. Using formula (2.3) and the

estimate

ICNesE =M, (2.4)
we get

21 < ICe- e[| D21 |, + WAlE]VT < Mz [z + Iflle], (2.5)

1 1 1
22 = {S1C0e-e{DF . + Valle] + 1 [P + W] | v

<MJt[z+z + fille + If2ll]- (2.6)

Now we consider the case 3 < k < N. Applying formula (2.3), the triangle inequality and
estimates [46]

4B, =M, |BC], =M 1sk=N, )

Page 4 of 16
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we get
k-1 1 X
zZk < M3 SZ:; ﬁf(% +fllg) + Ma(ze + ficllg)T 2. (2.8)
Applying the difference analogue of the integral inequality and inequalities (2.5), (2.6)
and (2.8), we get
|{D? Uik ”CT(E) = | {Zk}]lv”cr(ﬁ) <M|f ”cf(E)' (2.9)

Using the triangle inequality and equation (1.2), we get

Estimate (2.2) follows from estimates (2.9) and (2.10). Theorem 2.1 is proved. (]

1
<[l ”CT(E) +[{p2 ”k}f[Hc,(E)]

=M Hfr H Cr(E) (210)

A N
{T_l(uk — Up-1) + E(Mk + Mk—l)}
1 1C(E)

Theorem 2.2 Let A be a strongly positive operator in a Banach space E. Then, for the
solution u™ = {w}Y in C,(E) of initial value problem (1.2) the almost coercive stability in-

equality is valid:

N
{é(”k + uk1)}

[ {e " (e - ”kfl)}iv I et

2 1l
. 1
§Mm1n{1n ;,1+1n ||A||E_>E}|[ff ”c,(E)‘ (2.11)
Proof Using formula (2.1), we get
T (g — wr)
c 1 k-1 N c M
=~ Diug =Y ABTICDust + —fi+ ) ABTCr (2.12)
s=1 s=1
The proof of estimate
- N . 1
e 0} L,y = Momin i Lol [ g 213

for the solution of initial value problem (1.2) is based on formula (2.12) and estimate (2.2)
and the following estimates [46]:

max
1<k<N

C k-1
St D ABTC r
s=1

E

1
< Mmin{ln ?,1 +1n ||A||E—>E} H/ﬂ “C(E)’
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c k-1 .
max || —f + E AB1C D2yt
1<k<N| 2 : -
=

. 1 1 N
< Mmm{ln ;,1 +1n ||A||E%E} {p? ur}, ”cus)‘

Using these estimates, the triangle inequality and equation (1.2), we get

N
” {%(uk + uk—l)}

1

1
<M min{ln —,1+In ||A||EQE} I ||C(E). (2.14)
C:(B) T

Estimate (2.11) follows from estimates (2.13) and (2.14). Theorem 2.2 is proved. a

3 Applications
Now, we consider the applications of Theorems 2.1 and 2.2 to initial boundary value prob-
lem (1.8). The discretization of problem (1.8) is carried out in two steps. In the first step,

let us define the grid space

STZ1’1 = {x:xp = (hlpl"urhmpm)’p: (plr»--’pm);
0fpjEMj,h/MjZl,jZl,,..,m},
Qh=QhﬂQ, Sh=§zhﬂs.

We introduce the Banach space C, = C(2;) of the grid function ¢"(x) = {p(lpy,...,
Hypm)} defined on Q, equipped with the norm

h _ h
le “c(s'zh) _E?z)ﬂ(p @)].

To the differential operator A* generated by problem (1.8), we assign the difference oper-
ator A7 by the formula

Al ) ==Y apy@ul, . %)+ Y by (x)ugj (x) + o (x)
p=1 p=1 4

acting in the space of grid functions u"(x), satisfying the conditions D" (x) = 0 for all
x € Sy. Here, D"u"(x) is the first or second order of approximation of g—g It is known that
(see, [47, 48]) A}, is a strongly positive definite operator in C (R21,). With the help of AT we

arrive at the initial boundary value problem

dt

(1) + DYV (t, x) + AiVi(t,x) = f"(t,x), O0<t<T,x€Qy, (3.1)
V(0,%)=0, x€Q ’

for a finite system of ordinary fractional differential equations.

In the second step, applying the first order of approximation formula defined by (1.3) for

1 Tk
Du(ty) = T /0 (t — 8)7V%/ (s) ds

Page 6 of 16
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and using the first order of accuracy stable difference scheme for parabolic equations, we
can present the first order of accuracy difference scheme
@)~ ”ﬁ 1) + DV _fh S
u; (%) +Ahuk x)=f{(x), xeQ,
fk(x) fh (to,x), ti=kt,1<k<N,Nt=T, (3.2)
uo(x) =0, xe€

for the approximate solution of problem (1.8).
Moreover, applying the second order of approximation formula defined by (1.6) for

1/2 1 b2 1/2
D/ u(ty—t/2) = m/() (tr—t/2-5)""u'(s)ds

and using the Crank-Nicholson difference scheme for parabolic equations, we can present
the second order of accuracy difference scheme
W@ o Lgx(, b h h S
S+ D (x) + S A (g (x) + uy_ (%) = fi' (%), x €y,
R =flte-5%), t=kr1<k<N,Nt=T, (3.3)
ug(x) =0, x€Qy,

for the approximate solution of problem (1.8).

Theorem 3.1 Let T and |h| = /h} + - - - + h be sufficiently small numbers. Then the solu-
tions of difference scheme (3.2) satisfy the following almost coercive stability estimates:

”Z - “2—1
max | ———
1<k<N

ax [,

<M;In

T G T+ |h| 1<k<N

5, D)Ly =000 0 ma

The proof of Theorem 3.1 is based on the abstract Theorem 1.2 and on the estimate

1
mm{ln; 1+ |In||Aj ||Ch"ch|} <M(o)ln . (3.4)

as well as on the positivity of the operator A7 in Cy, [47, 48], along with the following theo-
rem on the almost coercivity inequality for the solution of the elliptic difference equation
in Cj,.

Theorem 3.2 [49] Let |h| = \/h} + - - - + h2 be sufficiently small number. Then, for the so-
lutions of the elliptic difference equation

A’h“uh(x) =o'(x), xeQy (3.5)

the following almost coercivity inequality

Z”uxpxplp ”Ch M(J)ln |h| ”wh ||Ch
p=1

is valid.
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Theorem 3.3 Let v and |h| = \/h} + - - - + h2, be sufficiently small numbers. Then the solu-

tions of difference scheme (3.3) satisfy the following almost coercive stability estimates:

h h

Up — U
I T | SMn i ma [,
i 11
max ZH sy ey = M) In o ma 7] .

The proof of Theorem 3.3 is based on the abstract Theorem 2.2 and on estimate (3.4)
and on the positivity of the operator A7, in Cj, and on Theorem 3.2 on the almost coercivity
inequality for the solution of the elliptic difference equation in Cj,.

Note that one has not been able to get a sharp estimate for the constants figuring in the
almost coercive stability estimates of Theorems 3.1 and 3.3. Therefore, our interest in the
present paper is studying the difference schemes (3.2) and (3.3) by numerical experiments.
Applying these difference schemes, the numerical methods are proposed in the following
section for solving the one-dimensional fractional parabolic partial differential equation.

The method is illustrated by numerical experiments.

4 Numerical results

For the numerical result, the initial value problem

20 4 D2, x) — (14 2) 24 + u(t,x) = £ (2, %),
f(t x)=[3+t+ 26‘\/[ + (1 +x)m2t]t2 cosx

+asinmx, O<t<l,0<x<l, (4.1)
ux(t; O) = I/ix(t, 1) = 0; 0 <t=< 1,

u(0,x)=0, 0<x<l1

for the one-dimensional fractional parabolic partial differential equation is considered.

The exact solution of problem (4.1) is u(¢,x) = £3 cos .

4.1 First order of accuracy difference scheme
Applying difference scheme (3.2), we obtain

Mléfun Z k—r+l/2 (Ltnfur 1)
T f r=1 k ) 12

Iy
[(1 + KXppyp) 2 ml -Q +xn) u ]+u —(/)nx
¢n<ﬂ@wm, m—knlskahm—nh1§n§A4—L

ub = uk, uk  =uk, 0<k<N,

=0, 0<n<M.
It can be rewritten in the matrix form

Aun+1 + Bun + Cun—l = D‘pm 1 <n=< M- 1’
Uy =, Upr1 = Upr,
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bN3

bN+l,3

where
0 0 o0
0 a, 0
Ao 0 0 a,
0 0 0
| O 0 0
[ by 0
by by
b b
B- 31 32
b bno
_bN+l,1 bN+1,2
[0 0 o
0 Cy 0
C- 0 0 Cn
0 0 0
L O 0 0
[0 0 o0
0 1 0
0 0
D=
0 0 0
| O 0 0
_ QDS -
%
o2
‘pn = . ’
ot
N
L @u (N+1)x1
1+ %04
a}’l = - h2 )
1 1 2+x,0+%,
bypy=—4—+—4+—-——

JTooT

h2

S TA+1/2)-T(@/2) 1

b
32 —

H

_L(i=2+1/2)
Jre(i-2)!’
I (i—j+1/2) I (i—j-1+1/2)
VTS - o

0
0
0
0
n (N+1)x (N+1)
0 0 ]
0 0
0 0
bN+1,N bN+1,N+1_ (N+1)x (N+1)
0]
0
0
0
Cn (N+1)x (N +1)
0]
0
0
0
1 = (N+1)x(N+1)
0
¥
u
U
‘q , g=n=xln,
N-1
qN
I/[q -1 (N+1)x1
1 1
b =1, byy=—————
1 21 \/? .
ra+1/2)
b3 = ———x—y,
VT
b 1 1 2+x,0+x, 1
=—+ -+ ———+1,
BTt h?
j=1
2 E} = i— 2)

l,

b=\ JmTTA+1/2)-T(1/2)] -1, j=i-1,

1 1 24+%y41+Xn + 1,

ﬁ+;+ h?

0,

j=i
i<j<N+1
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fori=4,5,...,N +1 and

16kt
57

<pl; = [3 + kT + +(1+ nh)yrzkt:|(kt)2 cos(mnh) + 7 (kv)? sin(w nh).

So, we have the second order difference equation with respect to n matrix coefficients.
This type system was developed by Samarskii and Nikolaev [50]. To solve this difference
equation, we have applied a procedure for difference equation with respect to k matrix

coefficients. Hence, we seek a solution of the matrix equation in the following form:
Uj = aj U + By, Uu=U-op) By, j=M-1,...,2,1,

where o (j =1,2,...,M) are (N + 1) x (N + 1) square matrices and g; (j=1,2,...,M) are

(N +1) x 1 column matrices defined by

®jy1 = —(B + CO[,‘)_IA,

Bjs1 = (B+Ca)(Dg; - CB), j=12,....M~1,

wherej=1,2,...,M -1, o is the (N +1) x (N + 1) identity matrix and B; is the (N +1) x 1

zero matrix.

4.2 Second order of accuracy difference scheme

Applying the formulas
k_ .k
- h
{6, 0) = A0 - S (t,0) +o(i), 0=k =N,
3uk —4uk, .+ uk
ux(tk)M) = M 21\;[/171 M2 + O(hz)’ 0 =< k =< N:
k+1 _ k-1
u(t,0) = % +o(r?), 1<k=<N-1,
T
3 N_4 N71+ N-2
(i, 0) = =02y o(2?), k=N
T

and using difference scheme (3.3), we obtain the second order of accuracy difference

scheme in ¢ and in x

k_ k-1 k K,k Kk
Up—Uy 1/2. .k 1 Uy =2+l Upe1 =1 k
2t 4 D uy, — 5 [(1+ %) 2 + sl g
kel o k1, k=1  k-1_ k-
S s B S R g k=11 _ k
+ (1 +x,)-2 e el 1=o,,
ok =ftx —t/2,%,), te=kt,x,=nh1<k<N,1<n<M-1,

uy=0, k=0,

Ly + (3 + EDY? o+ Bl Euftt = Luf 4

Ly By [ 3 DV B = LUl + Lol k=N,
3uk, —4uk,  +uk, ,=0, 0<k<N,

=0, 0<n<M.
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Here, DY Zu’; is the fractional difference derivative defined by the formula (1.6). It can be

rewritten in the matrix form

AL[n+1 + BU,, + CU,H = D‘pm 1 <n=< M-1, (4 2)
EU, = FU; + Ry, 3Uy — 44Uy + Upp_o = 0, '
where
[0 0 o 0 0]
a, da, 0 0 0
A 0 a, ay 0 0 ’
0 0 o0 a, 0
L 0 0 0 an  Gn (N+1)x (N+1)
[ by 0 0 0 0 |
b21 b22 0 0 0
b b b 0 0
B-= 31 32 33 7
bt bno bns ban 0
_bN+1,1 bN+1,2 bN+l,3 bN+1,N bN+1,N+1_ (N+1)x (N+1)
o0 o0 o0 0 0]
¢ ¢ 0 0o o
C- 0 C, Cy 0 0 ,
0 0 0 ¢, O
L O 0 0 Cn Cn (N+1)x (N+1)
[0 0 o 0 0]
0 1 o0 0 o0
0 0 1 0 o0
D= ,
0 0 0 1 0
— 0 0 0 0 1 = (N+1)x(N+1)
[ @) ] [ ul |
o, u,
on u
©On = . ) uq_ . ) q:}’lil,}’l,
(0,,1)]_1 ug{-l
N N
L Y | (N+1)x1 - Ltq 1 (N+1)x1
1/1+x, 1 1/1+x, 1 2
an=—7= +— ) Chp=—7 -~ | = )
2\ 2 2h 2\ K2 2h JIT
1
Ar) = r+1/2-+r-1/2, u(r) = -3 [(r+1/2)*2 - (r—1/2)*7],
b1 b dv2 1 1+x, 1 b dv2 1 1
=1 =-—— -+ + o =—+—+ + =,
" 2 3 . K 2 23T 2
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b _ 426 _dve 1 1+, 1 po V6 1 lix, 1
31 = 5’ 32 = 5 . 2 +2, 33 = 5 + -+ 2 X
d
by =d[AQ) + n()],  bay =d[-32Q) -2uQ)] - —,
m =d[A(Q1) + pu(1)] 42 = d[-31(1) - 2u(1)] o3
d 1 1+x, 1 d 1 1+x, 1
bz =d[21(1 N]-4——-= =, byu=5——+ ,
43 = d[20(1) + pu(1)] o/ T T2 N A TR
bs = d[21(2) + u(2)], bsy = d[-51(2) — 2(2) + A(1) + n(1)],
d
bs3 = d[30(2) + 1(2) - 30(1) - 2u(1)| - —=,
53 = d[3A(2) + w(2) = 3A(1) — 2p(1) ] o3
d 1 1+x, 1 d 1 1+x, 1
=d[2,0 )]-4——-— -, =5—— ,
bsy d[ ()+,u()] 6ﬁ ‘L’+ 2 +2 bss 56ﬁ+ 2 +2
dli - 3)A6i -3) + u(i-3)], j=1
dl(5-2)A-3)—2u(i—3) + (i —4A(i—4) + u(i—4)], j=2,
dAli—j+ DA —j) + pu(i—j) + (2 —2i + Da(i—j—1)
“2u(i—j-D)+(—j-29r(~j-2)+pi-j-2), 3=<j<i-3,
b= ) dsa@ + u@) - 310) - 20(0) - 22, j=i-2,
d2a1) + n(1)] -46% il j=i-1,
0, i<j<N+1

fori=6,7,...,N +1and

16kt
57

<p5:|:3+k1:+

For the solution of the matrix equation (4.2), we use the same algorithm as in the first

order of accuracy difference scheme, where

s = 31 = 4oy + aprgo] ™ % [(4 = 1) By = Buia ],

o =E'F, P =E"Rgo,
"0 o0 o 0 0]
0 1k O o 0
. 0 0 1/h 0 0 )
0 0 o 1/h 0
o 0 0 -+ 0 1/h] (N+1)x (N+1)
"0 0 o 0 0]
0 1 o0 0 0
e |0 0 1 00 ’
0 0 0 0
K 0 0O --- 0 N+ 1) x(N+1)

+(1+ nh)yrzkti| (kt)? cos(wnh) + 7 (kt)3 sin(w nh).
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[ en 0 0 .- 0 0o
€21 €22 0 s 0 0
0 0
E= €31 €33 €33 )
en1 ena eNs 't enn 0
| EN+1,1  eN+1,2 €N+13  °°  eN+LN EN+1,N+1_| (N+1)x (N+1)
i h 4h 1 h 4h h
en =1, ey = —— — , €ry = — — ey3 = —,
. T4 3wt 2Rt " e
2324 162k h 1 14\/§h h
e31= ——, e3p=—— — —, €33 = — + —, €3 = —,
3 15 /71 32 15\/7t 4t 3 h 15 /71 7 4

eq = %[(1 +1/2)A(1) + ()], es = %[—M(l) =2u(1) +1/21(0) + u(0)],

43 = —ﬁ + dn [(2+1/2)A(1) + p(1) -2 - 2(-1/3)],
h d h
ey = % + 3 + 7[(1 +1/2)1(0) + ,u(O)], €45 = o

dh
est = —-[(2+1/2)(2) + n(2)],
dh
esy = 7[—2 30(2) —2u(2) + 1+ 1/2)A(1) + ()],
es3 = %h[(z +1+1/2)A(2) + p(2) =2 - 22(1) — 2(1) + 1/24(0) + u(0)],

esq = —% dz—h[(l +1+1/2)A(1) + (1) - 24(0) — 21(0)],

4
es5 = % + g d?h[(l +1/2)1(0) + ,u(O)] €56 = 4ht»

24[(i -3 +1/2)A( - 3) + u(i - 3)], j=1

P2 -2)ri-3) -2 - 3)

+ (=4 +1/2)A - 4) + n(i - 4)], j=2,
LG —j+ 1+ 12— ) + puli— ) =20 - A —j - 1)
“2u(i—j -1+ (i—j—2+412Ai—j-2) + u(i—j-2)], 3<j<i-2,

——+—[(2+1/2)x(1)+u(1) 27(0) —21(0)], j=i-1,
. L+ B4 21 +1/2)2(0) + 1(0)], j=i
v ;; j=i+],

aw t —[(z—N+2+1/2)A(z—N+1)+u(z—N+1)
—2(l—N+1))\.(l—N) 2u(i — N)

+(-N-1+1/2A(-N-1)+ u(i - N -1)], j=N-1,
—2+ D2 +1/2)2(1) + p(1) - 22(0) - 21(0)], j=N,
Lyl 3 i1+ 1/2)A(0) + (0)], j=N+1,
0, j>i+1

fori=6,7,...,N +1and

1
<pl(§ = (3 +kT + :«j_:_r + nzkt)(kt)z.
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Table 1 Comparison of errors

Method N=M=30 N=M=60 N=M=120
1st order difference scheme 0.0910 0.0448 0.0222
2nd order difference scheme  0.0160 0.0040 0.0010

4.3 Error analysis
Finally, we give the results of the numerical analysis. The error is computed by the follow-

ing formula

k
n

E,A\,[I = max |u(tk,x,,) —u
1<k<N,1<n<M-1

)

where u(ty, x,) represents the exact solution and ufl represents the numerical solutions of
these difference schemes at (&, x,,).

The numerical solutions are recorded for different values of N and M. Table 1 is con-
structed for N = M = 30,60 and 120, respectively.

Thus, the results show that, by using the Crank-Nicholson difference scheme increases

faster then the first order of accuracy difference scheme.

5 Conclusion

In the present study, the second order of accuracy difference scheme for the approximate
solution of initial value problem (1.1) is presented. A theorem on almost coercivity of this
difference scheme in maximum norm is established. Almost coercive stability estimates
for the solution of the first and second order of accuracy stable difference schemes for
the numerical solution of the initial boundary value problem for the fractional parabolic
equation with the Neumann boundary condition are obtained. Of course, stability esti-
mates permits us to obtain the convergence of difference schemes for the numerical solu-
tion of the initial boundary value problem for the fractional parabolic equation with the
Neumann boundary condition. Moreover, the Banach fixed-point theorem and method of
the present paper enables us to obtain the estimate of convergence of difference schemes
of the first and second order of accuracy for approximate solutions of the initial-boundary

value problem:

p a2
—dugi’x) +Dfu(t,x) = 3" ap(x) 8 :;é’x) +ou(t,x)

=f(t w5 u(t, %), y, (6,%), .. s U, (6,%)), X = (X1, ., %) €RQ,0<t< T,
%'SZO, OStST,OSO[<1,

w0,%)=0, xe

for semilinear fractional parabolic partial differential equations with smooth a,(x) and
f&xu(t,x), vi(,%),..., vt x)).
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