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where ¢, is the p-Laplacian operator, i.e., ¢,(s) = Is|P~%s,p>1,and Qg = golg], 2—) + % =1.
CD* is the standard Caputo derivative and f(t,u,u’) : [0, 1] x [0, 00) X (—00, +00) —>

[0, 00) satisfies the Carathéodory type condition. The nonlinear alternative of
Leray-Schauder type and the fixed-point theorems in Banach space are used to
investigate the existence of at least single, twin, triple, n or 2n — 1 positive solutions for
p-Laplacian fractional order differential equations. As an application, two examples
are given to illustrate our theoretical results.
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1 Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbi-
trary noninteger order. The increasing interest of fractional equations is motivated by their
applications in various fields of science such as physics, fluid mechanics, heat conduction
in materials with memory, chemistry and engineering. Fractional derivatives and integrals
are proved to be more useful for the formulation of certain electrochemical problems than
the classical models [1-8]. In consequence, the subject of fractional differential equations
is gaining diverse and continuous attention. For more details of some recent theoretical
results on fractional differential equations and their applications, we refer the reader to

[9-16] and the references therein.
Turbulent flow in a porous medium is a fundamental mechanics problem. For study-
ing this type of problem, Leibenson [17] introduced the following p-Laplacian differential
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equation:

(0o () =f (£u(®),u/ (), te(0,1), )

where ¢,(s) = |s|P~%s, p > 1, and ¢, = (plgl, }7 + % = 1. The study of differential equation (1)
is of significance theoretically and practically [7], then many important results relative to
differential equation (1) with different boundary value conditions have been obtained. It
is quite natural that to investigate arbitrary noninteger order differential equation relative
to equation (1).

Motivated by the references [17-19], in this paper, we consider the following p-Laplacian

fractional differential equations with Caputo fractional derivative:

(@p CD*u(t))) = @p(Mf (&, ue), u'(t), te(0,1),
kou(0) — kiu(1) = 0,

(2)
mou(0) — nmyu(l) =0,
20)=0, r=2,3,...,[al,
where ¢, is the p-Laplacian operator, i.e., ¢,(s) = |s|P~2s, p>1,and ¢, = <p1;1, }9 + % =1

¢D? is the standard Caputo derivative and f(t, u, #) : [0,1] x [0, 00) x (—00, +00) — [0, 00)
satisfies the Carathéodory type condition. « > 2 is real and [«] denotes the integer part
of the real number o, A > 0, k;, m; (i = 0,1) are constants satisfying 0 < k; < ko and
0 < my < my. The existence criteria of at least one or two positive solutions are estab-
lished by using the nonlinear alternative of Leray-Schauder type and the Krasnosel’skii’s
fixed-point theorem, and the existence of at least n or 2n — 1 distinct positive solu-
tions are obtained by using of the Leggett-Williams fixed-point theorem, the generalized
Avery-Henderson fixed-point theorem as well as the Avery-Peterson fixed-point theo-
rem.

The rest of the paper is organized as follows. In Section 2, we present some basic defini-
tions and several fixed-point theorems. In Section 3, we give and discuss the completely
continuous operator of p-Laplacian fractional differential equation (2). In Section 4, by us-
ing the nonlinear alternative of Leray-Schauder type and the Krasnosel’skii’s fixed-point
theorem, some new sufficient conditions of the existence of at least one or two positive
solutions of p-Laplacian fractional differential equation (2) are obtained. In Section 5, the
existence criteria for at least three or arbitrary # or 2z — 1 positive solutions of p-Laplacian
fractional differential equation (2) are established. In Section 6, we present two exam-
ples.

In this study, we assume that f (¢, 11, u2) : [0,1] x [0,00) x (—00, +00) — [0, 00) satisfies
the following conditions of Carathéodory type:

(S1) f(t,u1,uy) is Lebesgue measurable with respect to ¢ on [0,1];

(S2) fora.e. te[0,1],f(¢-,-) is continuous on [0,1] x [0, 00) X (—00, +00).

2 Preliminaries
In this section, we list some basic definitions and the several fixed-point theorems, which

help us to better understand our proofs presented in next a few sections.
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Definition 1 [1] Let « > 0, the fractional integral of order « of function y: (0,00) — R is
defined by

1

I*y(¢t) = m

t
| -9 oyas
0
provided the integral exists.

Definition 2 [1] The Caputo derivative of a function y : (0,00) — R is given by

C o _ 1 ! y(n)(s)
Drye) = r(n—a)/o g &

provided that the right side is pointwise defined on (0,00), where n —1<a <nandnisa

integer.

The Gamma function is given by

+00
MNa) = / el dt,
0

and the Beta function is given by

1
B(p,q) = /0 #7H1 -4t dt.

In addition,

T

Bp.q) = Tp+q)

The following are two fixed point theorems. The former one is the so-called nonlinear
alternative of Leray-Schauder type and the latter one is the Krasnosel'skii’s fixed-point
theorem [20, 21].

Lemmal Let X be a Banach space with C C X being closed and convex. Assume that U is
a relatively open subset of C with 0 € U and A : U — C is a completely continuous operator,
then either

(i) A has a fixed point in U, or

(ii) there exists u € OU and y;" € (0,1) with u = y;*Au.

Lemma 2 Let P be a cone in a Banach space E. Assume 2, and Q2 are open subsets of E
with 0 € Q; and Q; C Q. IfA:PN (Q2\Q1) = Pisa completely continuous operator such
that either

(i) NAx| < |lx]l, Vo € PN 32 and ||Ax|| > |lx||, Vx € PN 3y, or

(ii) [JAx|l > |lxll, Vx € PN 0 and ||Ax| < |lx||, Vx € PN 3.
Then A has a fixed point in P N (Q\Q).
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Assume that P, = {u € P: |u| < c} and P(q,b,d) = {u € P: b < q(u), |u|| < d}, where
the map g is a nonnegative continuous concave functional on P. The following two theo-
rems are the Leggett and Williams fixed-point theorems [22] and the generalized Avery-
Henderson fixed-point theorem [23], respectively.

Lemma 3 Suppose that A : P, — P. is completely continuous and there exists a concave
positive functional q on P such that q(u) < ||u| for u € P,. Suppose that there exist constants
0<a<b<d<csuchthat:
(i) {ueP(q, b,d):qu)>b}#Wand q(Tu) > b ifu € P(q,b,d);
(i) |Tull <a if u € Py;
(iii) g(Tu) > b for u € P(q,b,c) with || Tul|| > d.
Then A has at least three fixed points u;, u, and us such that

||l < a, b<q(uy) and us>a with q(us)<b.

For each d > 0, let P(y,d) = {x € P: y(x) < d}, where y is a nonnegative continuous
functional on a cone P of a real Banach space E.

Lemma 4 Let P be a cone in a real Banach space E. Let a, B and y be increasing, nonneg-
ative continuous functionals on P such that for some ¢ >0 and H > 0, y (x) < B(x) < a(x)
and ||x|| < Hy (x) for all x € P(y, c). Suppose that there exist positive numbers a and b with
a<b<c,and A:P(y,c)— Pisa completely continuous operator such that:
(i) y(Ax) <cforallx € dP(y,c);

(i) B(Ax) > b forall x € dP(B, b);

(ili) P(o,a) # 0 and a(Ax) < a for x € 0P(a, a).
Then A has at least three fixed points x,, x, and x3 belonging to P(y,c) such that

0<a()<a<alxy) with Bx)<b<pBxs) and y(x3)<c.

Let 8 and ¢ be nonnegative continuous convex functionals on P, A be a nonnegative
continuous concave functional on P and ¢ be a nonnegative continuous functional on P.

We define the following convex sets:

P(¢p, 2, b,d) = {x € P: b < A(x),p(x) <d},
P(¢,B,4,b,¢,d) = {x eP:b<Ax),Bx) <c k) < d},

and
R(¢,p,a,d)={x€P:a < px),¢(x) <d}.
We are ready to recall the Avery-Peterson fixed-point theorem [24].

Lemma 5 Let P be a cone in a real Banach space E, and B, ¢, A and ¢ be defined as
the above. Moreover, ¢ satisfies p(A'x) < X ¢(x) for 0 < A" <1 such that for some positive
numbers h and d,

Ax) = @x) and ||lx|| < he(x) 3)
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holds for all x € P(¢,d). Suppose that A : P(¢,d) — P(¢,d) is completely continuous and
there exist positive real numbers a, b, ¢, with a < b such that:
(i) {xeP(p,B,Ab,c,d): Mx)> b} #0 and AM(A(x)) > b for x € P(¢, B, 1, b, ¢, d);
(i) A(A(x))> b forx e P(p, A, b d) with B(A(x)) > ¢;
(ili) O & R(¢, p,a,d) and M(A(x)) < a for all x € R(¢p, ¢,a,d) with ¢(x) =
Then A has at least three fixed pomts X1,X2,X3 € P(¢, d) such that

¢(xl) Sd fori=1,2,3, b<)\-(‘x1)1

a<@xy) and Axy)<b with @(x3)<a.
3 Completely continuous operator
In this section, we firstly present some lemmas, which will be used in our discussions. Then
we establish the completely continuous operator for our p-Laplacian fractional differential
equation, and obtain that solving the solutions of p-Laplacian fractional differential equa-

tion (2) are equivalent to finding the fixed points of the associated completely continuous

operator.

Lemma 6 Let 0 <n—1<a<n,assume that u € C"(0,1) N L[0,1], then the following frac-

tional differential equation:
CD(t) =0 (4)

has the unique solution

n-1 k)
u(t) = Z 4 kfo)tk.

k=0

Proof 1t follows from Definition 2 that the result is true. d

Lemma 7 Assume that h € L((0,1),R"), then the p-Laplacian fractional differential equa-
tion

(@p (CD"u(t)))’ = @(Mh(1), te(0,1),
kou(0) — kiu(1) =0

mou(0) — mu(l) = 0,

u(0)=0, r=2,3,...,[c]

(5)

has a unique solution

_ mi A k1 1 w2 i
u) = mo —my (o —1) (ko -k * t) /0 t-=) <Pq(f0 h(S)dS> ar
ko — k1 oz) (/0 h(s) ds) dt
F(a) / (t-1)* qoq </0 h(s) ds) dr. (6)

Page 5 of 32
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Proof 1t follows from (5) that

CDul(t) = )\goq( /0 th(s) ds).

The fractional integral of order « of function u denotes by I“u, then

" (n-1) ¢
u(t) = @) + )t + “ 0 O +m<pq</ ) dS)
0

2! (m—1)!
_ e 2 et '
=u(0) + ' (0)t + ) /0 (t—1)" ¢4 (/0 h(s) ds) dt, 7)

the latter inequality holds since #”(0) = 0, r = 2,3, ..., [«]. In addition,

4 s L ! _ a2 ‘
u(t)-u(0)+r(a_1)f0(t 7) (pq(/o h(s)ds)dr,

hence

1 T
u(1) = u(0) + «/(0) + I‘?oz) /0 1- t)"H(pq (/0 h(s) ds) dr,
/ — 1/ A ! -2 i
lxl(l)—u(o)‘l'm‘/0 (I—T) ¢q<A h(S)dS)dT

The boundary conditions of (5) reduce to

_ /(1 mi A 1 ) T
w0) = ko — ki mo—my T'(a —1) /0 a-7) (pq(-/(; ) dS) ar

k1 A ! a1 ’
+ko—k1m/(; 1-1) (pq</0 h(s)ds)dr, (8)
and
4 — m A ! -2 ‘
Now, plugging (8) and (9) into (7), then (6) is satisfied. O

Suppose that E; = C'([0,1],R), then E; is a Banach space endowed with norm

llell = sup{lluelly, el },
where

llully = sup |u()],
te[0,1]

and

llully = sup |u'(2)].
te[0,1]
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The cone P; C E; is defined by

. k
u(t) >0, sup |u(t)| < mln{ 0
te[0,1] k() K1 te[0,1] t€[0,1]

u is increasing and convex on [0,1]

P1: MGEl

The operator A : E; — E; is defined by

l 1 T
(Au)(£) = mO’flml - (ak_ 5 ( k()(_l s +t> /0 (1-r)”<pq< /0 flsuu) ds) dr
oty ool [ ra)
F( )/(t—r)"‘ lgoq(/fsuu ds)dr (10)

Then the solutions of fractional differential equation (2) are the corresponding fixed points

of the operator A.

Lemma 8 Suppose that conditions (S1) and (S2) are satisfied. For any t € [0,1] and all
(111, u2) € [0, +00) X (—00, +00), we assume that there exist two nonnegative real-value func-
tions ay,a, € L[0,1] such that

[ 76015 = gy (0 + ) s ) an

or
| 76,015 = gy (0 + x0) max 0] 12)

Then the operator A : Py — P is completely continuous.

Proof of Lemma 8 Firstly, we show that A : P, — P is continuous.
Let u € Py, it is obvious that Au(t) > 0 for arbitrary ¢ € [0,1]. By using the property of
the fractional integral and derivative, we obtain that

l _ my A ! o2 i /
(Au)(t)—mo_mlr(a_l)/o(l—t) goq(/(; f(s,u,u)ds)dt

A ' o—2 ! ,
+mﬂ(t—f) Qﬂq(/o f(S,M,M)ds)d-L—zo’

and

" A ! o ‘ /
(Au) (t):m/o(t—r) 3<pq(/0 f(s,u,u)ds)dtzo.

Since Ax is nonnegative, increasing and convex on [0, 1], we have
sup |(Aw)(®)] = max (Au)(6) = (Au)(D),
te[0,1] te[0,1]

SI[.sz|(Au) (t)| = max (Au) ®) = (Au) (1),
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and
inf |(Au)(8)] = (Au)(0), inf |(Au) (8)| = (Au)(0).
te[0,1] te[0,]
Moreover,
kO k()
sup [(A)(0)] = (A1) = 2 (Aw(0) = 72 inf |(Au)
te(0,1] 1 1 te0,1]
and
sup |(Au)(2)|
te[0,1]
= (Au)(1)
my kO A 1 o /r ,
B 1-7) i) ds ) d
mo —my ko — ki F(a—l)/ 1-7) (Pq< f(s,u,u')ds)dr
kO A a-1
ko—kl INC" )/( -7) ‘/’q<f fS,M, d5>d7:
m ko A v / / )
1_ ) )
= mo—m1ko—/qr(06—1)/0 1-1) ‘Pq< | Slswu)ds )de
k() A ' -2 ' ,
+k0—k1F(Ot—1)/O‘(1_t) €0q</0 f(s:u;u)dS)dT
ko mo A 1 » T
) 1-7)* i) ds ) d
/(0—/<1m0—mlr(a_1)£( ), /Of(suu) s ) dt
k()
(Aw)'(1) = sup |(Au) (2)|.
ko_kl /0—](1 tE[OI,)1]| |
Therefore,

sup |(An) |}

sup |(4w)(0)] < {k—O inf [(4w)(©),
ki " ko — kl re[0.1]

te[0,1] te(0,1]

which implies that A : P; — P;.

Suppose that {u,}:°, C Py, n=1,2,...,and u, uniformly converges to u on [0, 1], that is

lim ||u, —u| =0

n—00
So, we have

lim ||u#, —ul; =0 and lim ||u, —u|> =0,

n—00 n—0o0
which implies that

lim u,(t) =u@) and lim u, () =4'(¢), te€][0,1].

n— 00 n— 00

Then (S1) and the continuous of ¢, imply that

lim @, (f (£ un(t), u,(2))) = g (f (£, u(t),u' (1)), te[0,1],

n—00

(13)

Page 8 of 32
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then, we obtain

|Aun(t) —Au(t)|

< my A < k1 +t)

T mg—m T —1) \ ko — ki
/Ol(l—r)“2<<pq</rf(s,un,u/n)ds) —<pq<‘/otf(s,u,u/)ds>)dr
ko—kl F(a) 1-1)* 1(‘/’q</ f(s,u,,,u/n)ds)
_¢q</tf(s,u L/)d))dr

_ -1 / _ f /
F( )/(t 7) ((pq(/ f(s,u,,,un)ds) (pq(/(; f(s,u,u)ds))dr

—0 asn— o0, (14)

X

and

|A’u,,(t) —A/u(t)|

<

A 1 T
=< monilmll*(a—l)/o (1_f)a—2<¢q</0 f(s,un,u;)ds)
—%(/tf(s,u,u/)ds))dr
0
o[ . .
""F—(a_l)_/o(t_f)“_Z((pq(/o f(s,un,u;)ds>—<pq(/(; f(s,u,u/)ds))dr

—0 asn— 0. (15)

By virtue of (14) and (15), we have
||(Au,,)(t) — (Au)(t) H —0 asn— oo,

which means that A is continuous.

Secondly, we show that A maps bounded sets into bounded sets in P;. It suffices to show
that for any n > 0, there is a positive constant / > 0 such that for each u € B, = {u € P, :
llll < n}, we have [[Au| <.

Let

kO mo w2 1 .,
L= ko — ki mo — mm F(a—l) (/ 1-1) (t)d1:+;7/ -7 ﬂz(T)dT>
> 0. 16)

According to (11) and (13), we have

k() mo A 1 2 ’
Aul(t 1-17)® Ju,u ) ds | d
| M()|Sk0—/qm0—mlf‘(a—1)/o( 7) e /Of(suu) )t

< k() mo
- ko—klmo—ml F(O{—l) 0

1
(1-1)*2 (al(r) + ay(t) max u(t)) dr

te[0,1]
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< k() mo =2 ! -2
Pty (/ a- 0 2a@dr sy [ 00 amdr)
L.

Using (12) and (13) yields

ko mo

1
[Au(0)] = 1 /o (-0 2(m(0)+ az(z)gg§]|u/(t)|) dr

—/qmo—mlF(oc—l)
k() mo A ! -2 ! -2
1-7)* 1-1)*
Sko—/qmo—mlf‘(ot—l)(/o( o tade e [ (0= 0 s
=1

In addition, using (11) and (12), we also have

’ mo A ! a2 i ’
|(AM) (t)|§mmv/0\ (l—f) ¢q(/0 f(S,M,M)dS)dT

< k() mo A
- ko—kl moy — F(O{—l)

1 1
X (/0 1-1)2a1(t)dt + n/o 1- f)“‘zaz(r)dt>

Hence, we have ||Au| <.
Thirdly, we consider that A maps bounded sets into equicontinuous sets of P;. Since
(t — s)*7! and ¢ are uniformly continuous on [0,1], then for any & > 0, there exists § > 0,

whenever |f; — t5| < §, we have

I'(a)e
2x[a1 (1) + nas(t)]’

|(t1 -8 = (ty - s)“_1| <

we also obtain

&
2[5 (1= 1) 2[ay(2) + nay(v)] dv

[t — ta] <

For convenience, we assume t; < . For any u € B, according to (11) and (12), we get

1 T
(- tz)/o 1-1)"g, (/0 flsuu) ds) dr

! T
' ‘%‘1)./0 [(6r =) = (62 - r)“‘l]wq(fo flsui) ds> dr

|Au(ty) - Au(t)| <

1
<lt-w) / (1= 1) [ar(r) + nas(r)] dr

[ - 1) = (2 — 0)* ][ (r) + nas()] dT

il
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and

|(Aw)'(82) - (Aw) (1)

A ! i
< ‘m /0 [ =1 = (ta - 1)* ?]eg (/0 S(suu') ds) dr

A 1
*Tw@-1 /0 [t =7 = (e = 1) ]|[an(s) + naa()] ds

')
-1

Consequently, we obtain

. ()
”Au(tg) —Au(t) ” < mm{ Wa—l)’ 1}8,

which implies that the family of functions {Au : u € B,} is equicontinuous. It follows from
the virtue of the Arzela-Ascoli theorem that the operator A : P} — P is completely con-

tinuous. O

Remark1 Iff(z,u;,u;) : [0,1] x [0,00) x (—00, +00) — [0, 00) is continuous, we can obtain

that A : P, — P is completely continuous by using a similar argument as the above.

4 Existence of one or two solutions
In this section, we discuss the existence of single or twin positive solutions to problem (2).

Theorem 1 Assume that all assumptions of Lemma 8 and

(ko — ki) (mg — my)T (@ — 1)
koWlo

A‘/Ol(l —1)%2ay(1)dt <
hold, then the fractional differential equation (2) has at least one positive solution.
Proof of Theorem 1 Let

u= {u e P |yl < r},

where

ko mo Py 1 -2
ko—ky mo—my T'(a-1) f() (1 - T)a (11(7.') dt

ko __mg A 1 -2 g
1 )fo(l—r) ay(t)dr

~ ko—ki mo—nn T(a—1

Assume that there exist # € P; and y;" € (0,1) such that u = y;*Au. Then we find

u(t) = Vl*AM < Vl*Au(l)
< ¥ ko my A
=N ko—kl moy — n F(a—l)

X /01(1 —7)*2 (ul(r) + a»(t) max{ max u(t), max ‘u’(t)‘ }) dt

t€[0,1] t€[0,1]
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< * k() my A
=N ko—kl moy — F(O[—l)

1 1
X (/0 (1-1)2a(z)dr + IIMII/O 1- ‘E)a_zﬂz(f)dl'),

and
/(1) = |v(Au) (2)|

!
N oo T =) Jo 7l [, Slomu)ds |

<t ko mMy A
=N k()—k1 moy — mp F(O[—l)

1 1
X (/0 (1-1)*2a () dr + ||u||/0 1- t)“_zaz(r)dt>.

Thus, we have

ko mo A

ul| < -
” ” ko —kl moy — ny F(Ol - 1) "

X (/01(1 — 1) 2 (t)dt + 7/01(1 - t)a_zﬂg(l’)dt)

*
=nn

which means that # ¢ 0U and ||u| #r.

By virtue of Lemma 1, we conclude that the fractional differential equation (2) has at
least one positive solution. 0

Remark 2 ‘All assumptions of Lemma 8 hold’ can be replaced by ‘f(¢,u1,u,) : [0,1] x
[0, 00) x (=00, +00) — [0, 00) is continuous’ in Theorem 1.

Theorem 2 Assume that all assumptions of Lemma 8 and the following conditions hold:
(i) there exists a constant m > 0 such that f(t, u1, us) < @,(mA1) for
(8,1, 12) € [0,1] x [0, 7] x [, m], where Ay = (o o 0@yl
(ii) there exists a constant e > 0 such that f(t, u1,us) > ,(eA,) for
(t,u1,u2) € [0,1] x [0,e] x [—e, €], where Ay = (mg"_ﬂm r(’}ﬂ;’jl))‘l, and m #e.
Then the fractional differential equation (2) has at least one positive solution u such that

||| lies between m and e.

Proof of Theorem 2 Without loss of generality, we assume that m < e.
Let

Qu={uck :ul <m}.
For any u € P; N 3L2,,, there is

max ’z/(t)’ <|lu]l<m and max u(t) <m.
te[0,1] te[0,1]
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It follows from condition (i) that

I Aull = max{(|Aulh, |Aul.,}

e
1-7) Ju,u)ds ) d
fko_klmo—mlr(a_l)‘/(;( T) Pq of(suu) s T

k() my A 1 92 _a-1
A 1-1)* 7 d
" lko—klmo—mlF(a—l),/O( T) ‘ ‘

ko mg AT(q)

A

< WIAlko —kgmog—-m T(e+qg-1)
<m, 17)
which implies that
|Au|| < |lu]| forue PyNIR,,. (18)
We define

Qe ={uekE |ul<e}
for arbitrary u € P; N 9€2,, and find

max |u/(t)| <|lu]l<e and max u(t) <e.
te[0,1] te[0,1]

On the other hand, it follows from condition (ii) that

lAu| =

max (Au)/(t)‘
te[0,1]

_ mo A 1 w2 T /
_MW/OU—T) w:;(/() f(S,M,u)ds)dt

mo A
> el

1
_ \a-2_g-1
) /0 Q-7)* 9 dt

mgoy — nmy F(Ol -1
Mo AI'(q)

> eA =e, 19
=€ 2m0—m11"(oz+q—1) ¢ 19)

which implies that
|Au|| > lul| foru e Py NaIL,. (20)

By using (18) and (20), it follows from Lemma 2 that the fractional differential equation

(2) has a positive solution u in P; N (Q,\$2,,,). O
P
Let
t,u,u
f0 = lim u M for uy, u, € P,
(u1,u2)=(0,0) refo,1] @p(|Us2l)
t,u,u
foo=lim M for uy, uy € Py,
w1+l 00 t€[0,1] @, (uy + |U2|)

t} )
fo= lim  inf JEHH)

( for uy,u, € Py,
(u1,2)—(0,0) t€[0,1] (11 + |U2])
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and

t,uy, u
% = lim f( ) for uy,u, € Py.
)= (00,00) o] Pp(|242])
Now, we have the following two results.

Theorem 3 Assume that all assumptions of Lemma 8 hold. In addition, when f° €
[0, 9,(A1)) and foo € (9,(A2), 00) U {00} hold too, then the fractional differential equation
(2) has at least one positive solution.

Proof of Theorem 3 1t is easy to obtain that

sup u(t) <
te(0,1] ko — ky te[0,1]

then, according to the assumption f© < g,(A1), there exists a sufficiently small 7 > 0 such
that

f(t, u, u/) < <pp(A1|u") < @y(Aym) for (t, u, u/) €[0,1] x |:0, mi| X [-m, m],

ko
ko — ky

we can obtain (17) is true. That is, if we let

Q €Er: ull < —
ik =AU lull < myg,
! ko — ki
then
JAu|| < |lul| foru e Py NI,

kao such that

It follows from f5, > A, that there exists an H >

flow ') = @p(As(u+ [1]) = gp(Aallul), (21)

where ¢t € [0,1] and u + |u/| > H.
Set

QHZ{M€E1:M+|M/|<H},

then we see that Q,,+ C Qp.
For any u € P; N 9Qy, we have u + |u'| = H. Equation (21) gives

lAu| =

max (Au)’(t)‘
te[0,1]

mo A 1 v T )
MW/(I—I) %(/0 f(s,u,u)ds>dt

z Agllull ————o 1F( _1)/(1 )t dr

Page 14 of 32
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mo Al (q)
0 — F(Oé+q—1)

> Agllu|
m

= llul.

Consequently, it follows from the virtue of Lemma 2 that the fractional differential equa-
tion (2) has a positive solution  in Py N (Qp\ 2. O

Theorem 4 Assume that all assumptions of Lemma 8 hold. In addition, fy € (¢,(A2), 00) U
{oo} and f*° € [0, p,(A1)) are satisfied. Then the fractional differential equation (2) has at

least one positive solution.

Proof of Theorem 4 1t follows from fy > ¢,(A») that there exists a sufficiently small e > 0
such that

Ft1) = oy (s o+ 1)

> gp (Ao max{|lully, lull}) for (¢,u,u') € [0,1] x [O,k—oe] x [e,e].
k() —kl

When (¢, u,u’) € [0,1] x [0, &e] x [-e, e], we get

f(tou,u') > @p (Ao max{llufly, llu]2})

= (pp(AZe)r

we can obtain (19). Take

ko
Qe*Z E;: .
{ue 1 ||u||<k0_kle}

Then

IlAul| > |lul| foru e P, N oy

ko
ko—ky

Let &y = A; —f* (> 0). Since f* < ¢, (A1), there exists a p; (> e) such that

flowu) <@p((er+) i) = gp(Aa]w]), 22)

where (t,u,u') € [0,1] x [%pl,oo) x (=00, —p1] U [p1, +00).
Note that

f€C([0,1] x [0,00) x (-00,00),[0,00)).

So there exists a C; > 0 such that

f(t, u, u/) <@,(Cy) for (L‘, u, u/) €[0,1] x [O, p1:| x [-p1,p1]. (23)

ko
k() - /(1
Equations (22) and (23) reduce to

f(tu,u') <max{@,(Ca), 0 (A1]e|)}  for (¢,u,u') € [0,1] x [0, 00) x (~00, 00).
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Let

2k
P> max{ Cal Ay, k——okle}’

and
Qs = {u e Er: |ul <p§}.

IfueP N 9825, one has ||lu|| = p5 and

Wl < s J, 0 e o))
u T ko—-kimog—-m T'(x-1) Jy 7 ; s,u,u’)ds

ko mo A /1 5
< 1-1)* 2 max{Cy, A |u/|} 17 d
T ko—kymg—my I'(a-1) 0( ) (G Al [ de
k Al
< A1P§ 0 My (q)
ko —kimog—m; (@ +q-1)
= |lul.
This implies our desired result. O

Next, we deal with the existence of at least two distinct positive solutions to the fractional

differential equation (2).

Theorem 5 Assume that all assumptions of Lemma 8 hold. Moreover, suppose that f, = 0o
and fo, = 00, and the condition (i) in Theorem 2 is satisfied. Then the fractional differential

equation (2) has at least two distinct positive solutions uy, u; € P;.
Proof of Theorem 5 In view of f = 0o, there exists an H; such that 0 < H; < m and

S(ewu) = gp(h(u+ )

, k
> gp(hllull) for (t,u,u’) €[0,1] x (0, ko—_olel] x [=Hy, Hy], (24)

where / is given by

my Al (g)
mo—m Dla+q-1) —

Take
QHl = {M e E;:|ul <H1}.
If u € Qp, with ||u|| = H, it means that

sup |u/(8)] < llull =Hy for ¢ €[0,1],
te[0,1]
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and

sup u(t) <H; fortel0,1].
te[0,1]

It follows from (24) and (25) that

v

[l Al

max (Au)/(t)‘
te[0,1]

&L ! a2 ( T / )
mgy — my F(Ol—l)/(\)(l T) Pq /Of(S,u,u)ds dr

mo A

1
)/ (1-1)* 22 ||| dr
0

- moy — ny F(Ol -1
M AT(q)
mo—m D(e+qg-1)

>h

el

which implies that
lAul| > ||lull forueP;NoQy,.
Let
Qu={uck :ul <m}.

Then we obtain that (18) holds by using the condition (i) of Theorem 2. According
to Lemma 2, the fractional differential equation (2) has a positive solution u; in P; N

It follows from fo, = oo that there exists an H, > kili(;q e such that

ftwu) = gp(k(u+ |u]) = gp(kllul), (26)
where t € [0,1] and u + |#/| > H,. Moreover, k satisfies that

mo Al(q)
mo—m D(a+q-1) ~

Let
Qp, = {ue Qu:u+ !u’| <H2},

then we see that Q,, C Hy -
For any u € P, N 9Q2y,, we have u + |u/| = Hy. According to (26), we deduce that

>7m0 _ A ! _ a2 ( ‘ / )
[lAu]| )/0(1 )" gy, /Of(s,u,u)ds dr

moy — ny F(Ol—l

mo A
>
moy — ny F(Ol—l)

1
/ (1-7)* 209 k| |u|| ds
0
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AT
- D
mo—my D(e+qg-1)

= [lull.

Thus, it follows from (i) of Lemma 2 that the fractional differential equation (2) has at least

a single positive solution u; in P; N (§H2 \2,,,) with
m<|uzll and  uy + |uy| < H,.
It is easily seen that #; and u, are distinct. O
By a closely similar way, we can obtain the following result.

Theorem 6 Assume that all assumptions of Lemma 8 hold. Moreover, suppose that f° = 0
and f* = 0, and the condition (ii) in Theorem 2 is satisfied, then the fractional differential

equation (2) has at least two distinct positive solutions uy, u; € P;.

5 Existence of triple or multiple solutions

In this section, we will further discuss the existence of at least 3, n or 21 — 1 positive so-
lutions to p-Laplacian fractional differential equation (2) by using different fixed point
theorems in cone.

For the notational convenience, we define

Mo Mo AT(q) ,
mo—my Do +q-1)
N my ky Al (q)

- moy —my ko — ky F(a+q—1)’
and

ko mo Al (q)

L= .
ko—kimo—m C(a+qg-1)

5.1 Existence of three solutions
In this subsection, we investigate the existence of at least three distinct positive solutions

of equation (2).

Theorem 7 Let a, b and c be constants such that 0 <a < b <d < ¢ and bkq < cky. In addi-
tion, if all assumptions of Lemma 8 hold and f(t, u,, uy) satisfies the following conditions:
(i) £t u1,u2) < (%) for (¢, u1,u2) € [0,1] x [0,a] x [~a,al;
(i) f(t, m,u) > (pp(%)for (£, u1,u2) € [0,1] x [b,d] x [—¢,c];
(iii) f(t, u1,uz) < wp(f)for (t,u1,u3) € 10,1] x [0,c] x [-¢,c].
Then the fractional differential equation (2)has at least triple positive solutions uy, u, us €
Py such that

0< |lm] < a, b< inf u,, a<uz with inf uz<b. (27)
tel0,1] te[0,1]
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Proof of Theorem 7 By the virtue of the completely continuous operator A and Lemma 3,
we need to show that all conditions of Lemma 3 with respect to A are satisfied.
Let

q(u) = inf u(t) forue P,
te[0,1]

then g(u) is a nonnegative continuous concave function and satisfies
q(u) <|lull forueP, ={ueP:|ul<c}
Since
uel0,c] and u €[-cc] forueb,
it follows from condition (iii) that

lAu| < ko "o * ‘/1(1—r)°“2 /Tf(s u,u') ds) dt
T ko—kimog—m T'(a-1) Jo “a 0o

c ki m A 1

L ko —Okl my —Oml MNo-1) /0 A-r)dr

¢ ko mo Al (q)

Lko—kymog—m T(a+qg-1)

c, (28)

IA

IA

IA

which implies A : P, — Py.

When u € Py, = {u € Py : ||u| <a}, it implies that u € [0,a4] and &’ € [-a,a], from this,
we can easily obtain that the conditions (ii) of Lemma 3 is true.

Let d be a fixed constant such that b < d < ¢, then we have q(d) =d > b and ||d|| = d. This

means that

d e Pyq,b,d) = {u €P :b=<qu),|u|l < d}.
For any u € P1(q, b, d), we get

lul| <d and gq(u)= tei[réﬁ]u > b,
which implies that

uelb,dl and u e[-d,d] fortel0,1].
Hence, the condition (ii) gives that

q(Au) = inf Ay = min |(Au)(t)| = (Au)(0)
te[0,1] te[0,1]

my A kl 1 , .
i 1-7)" Ju,u)ds ) d
mo—m1r(0{—1)k0_k1/(;( 7) Pq /Of(suu) s) T
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mo A k1 /1 )
1-17)%*td
moy — mp F(O{—l)k()—kl 0 ( T) rar

mo )»F(q) kl
mo—m D(a+q-1)ko—k

Z|ls z|s

v
S

which means that the condition (i) of Lemma 3 holds.

For any u € Pi(q, b, c) with ||Au| > d, it gives |u|| < ¢ and infic[o1) # > b. By using the
same argument as the above, we see that g(Au) > b. This implies that the condition (iii) of
Lemma 3 is fulfilled.

Consequently, all conditions of Lemma 3 are verified. That is, the fractional differential
equation (2) has at least three distinct solutions distributed as (27). O

Corollary 1 Assume that all assumptions of Lemma 8 hold. If the condition (iii) in Theo-
rem 7 is replaced by

(i) [ = lim sup f(& uy,up) < (pp<%) foruy,uy € Py,

(u1,12)—(00,00) 410, 1]
then (27) in Theorem 7 also holds.

Proof of Corollary 1 We only need to prove that the condition (iii’) implies the condition
(iii) in Theorem 7. That is, assume that (iii’) holds, then there exists a number ¢* > d* such
that

*

/ 4 / k 3k 3k k
f(t,u,u) §<pp(f> for (t,u,u) €[0,1] x [O, ko—oklc :| X [—c ,C ]

Conversely, we suppose that for any ¢* > d*, there exists

(uc, u/c) € [0, %C*] X [_c*,c*]

such that

*

f(t, Ue, U,) > (pp(%) for t € [0,1].
Take
c>d* (n=1,2,...) with ¢; — oco.
Then there exists
ko
(tn,11,) € [0» mcﬁ] x [~ e]

such that

I

f(t, Uy, u'n) > <pp< ) for t € [0,1], (29)
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and
lim f(z, u,,,u;l) =oo fortel0,1]. (30)

n—00

Since the condition (iii") holds, there is a T > 0 such that

fltuw) < w('%')

k
for (¢,u,u') €[0,1] x 0 100) x (=00, 7] U [T, 00). (31)
ko — kq
Thus, we have
’u/n(t)’ <t forte[0,1],
and
u,(t) < % _Oklr for t € [0,1].
Otherwise, if
’ kO
|un(t)| >t and u,(t) > t forte0,1],
k() - kl

it follows from (31) that

f(t)un’u:«,) S wp(“?') S (pp(CL_n) fOI' t € [0)1],

which contradicts inequality (29).
Let

W = max ftuu),

ki
(b0 €011 [0, 750 ) x [.t]

so we have
fGupu,) =W (n=1,2,...).
This apparently contradicts formula (30). Consequently, we complete the proof. d
5.2 Existence of arbitrary n solutions
In this subsection, the existence criteria for at least three or arbitrary » positive solutions

to p-Laplacian fractional differential equation (2) are obtained.
We define the nonnegative, increasing, continuous functionals y;, $; and «; by

yi(u) = Bi1(u) = max[ inf u, inf |u’|] foru € Py,
te[0,1]  t€[0,1]
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and
oy(u) = max{ sup u, sup ‘u”} for u € Py,
te[0,1]  te[0,1]
SO
v(u) = B1(u) < ay(u) for each u € P;.
Since
inf u(t) = min u(t) = u(0)
te[0,1] te[0,1]
mo A k1 /1 ) T
= 1-17) / h(s)dsdrt
mo —my I'(a —1) ko — ki Jo 0
/(1 mo A ko /1 ) /r
> = 1-1)* h(s)dsd
_k()Wl()—Wllr(Ot—l)ko—kl 0( t) 0 (S) sat
k
== = max u(®) = el
and
inf |u t)| =u/(0)
te[0,1]
o A 1 _2/‘[
= 1-17)* h(s)dsd
mo—mlF(a—l)/( t) (S) sat
my mo a-2
= S 1- h(s)dsd
mo mo —my T (e — 1)/( ") / (s)dsdr
= L
mo

Hence, we have
My k()
llze]| < max] —, — ty(u) = yy(u) forallue Py,
my k1

where y = max{i”n—‘:, %}.

Theorem 8 Assume that there exist real numbers a’, b', ¢ with a’ < b’ < ¢’ such that 0 <
kob' < a'ky. In addition, if all assumptions of Lemma 8 hold and f(t,u;,u;) satisfies the
following conditions:
(1) £(t,10,142) < @p(£) for (& s, ) € [0,1] x [0, y€] % [=y ¢,y

(i) £(t 11, 102) > 9p(2) for (&1, 12) € [0,1] x [B, yb] x [=y b, yb'L;

(iti) f (¢, up,up) < (pp(”f/)for (¢, u1,up) € [0,1] x [0,ad'] x [-d,a].
Then the fractional differential equation (2) has at least three distinct positive solutions
U, U, Uz € Pr(y1,¢') such that

0 <llmll <a’ <lluzl,

(32)
max{ inf u,, inf |u2|] <b <max{ inf u3, inf |u3|}
tel01]  te[0,1] elo1]  te[01]
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Proof of Theorem 8 We only need to check all conditions of Lemma 4 are fulfilled with

respect to the operator A. By using a similar way as to the proof of (28), we can obtain that

A:Pi(y1,c) = Pi.

For arbitrary u € 9P;(y1,¢'), one has

v (u) =max{ inf u, inf |u/|} =c,
te[0,1]  t€[0,1]

and
lull < yynu)=yc.
This implies that
0O<u<ycd, tel0,1],
and

-y <u <yd, te[0,1].
According to the condition (i), it gives

n(Au) = max{ inf Au, inf |Au’|}
te[0,1] te[0,1]

o * ko /1(1 - r)“’z(pq (/rf(s, u, M/) ds) dt
0 0

_mo—mlf‘(a—l)ko—kl

¢ my A ko /‘1 o
— 1-1)**td
Lmo—mlr‘(a—l)ko—kl 0( T) rar
c_/ mo AT (q) ko
Lmy-mT(a+q-1) ko -k

=

<.

We see that y(Au) < ¢’ for u € 9P (y1,¢).
For any u € 9P1(B1, V'), it gives

,31(u)=rnax{ inf u, inf |u/|} -v,
te[0,1]  t€[0,1]
and

lull < yBi(u) = yy1(u) = yb'.

This implies that

bV <u=<yb, tel0,1],
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and
—yb <u <yb, te]0,1].

Making use of the condition (ii), we get

Bi(Au) = max{ inf Awu, inf |Au’|}

te[0,1] te[0,1]
kl mo mi A
= max ’
ko —ky mg —my mg—my | T'(a—1)

1 T
X /0 1-1)"¢, (/0 flsuu) ds) dt

b k1 mo A 1 2
> — 1-1)"*td
_Nko—klmO—mlF(Ol—l)/o( T) rar

_ b/ k1 mo )\,F(q)
" N ko —ky mg —my MNa+g-1)
=V,

So we have B1(Au) > b’ for u € 0P (B1,0).
We now show that P;(ay,a’) # ¥ and o1 (Au) < a’ for arbitrary u € 9Py (ay,4’). Since “7/ €

Pi(ay,a’), for u € 9P (o, a’), we have

a;(u) =max{ sup u, sup |u’|} =d,
te[0,1]  te€[0,1]

which gives
0<u<d and -da <u <d fortel0,1].

It follows from the assumption (iii) that

a1(Au) < ko "o » /‘1(1—1)0“2 /Tf(suu’)ds dt
! ~ ko —kimo—m T'(a-1) Jo va 0o

a ko my A /1 )
<— 1-1)%*td
_Lk()—kll’}’l()—mlr(a—l) 0( T) rar

=d.

All conditions in Lemma 4 are satisfied. From (S1) and (S2), we know that solutions
of equation (2) do not vanish identically on any closed subinterval of [0, 1]. Consequently,
equation (2) has at least three distinct positive solutions u;, #;, and u3 belonging to P(y1,c)
distributed as (32). O

The following result is regarded as a corollary of Theorem 8.

Corollary 2 Assume that all assumptions of Lemma 8 hold and f satisfies the following

conditions:
(i) f°=0andf> =0;
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(ii) there exists a co > 0 such that

f(s,u1,u) > (pp(lc—o) for (t,u1,u3) € [0,1] x |:C—O,co] X [=co,¢o]-
y N 14

Then the fractional differential equation (2) has at least three distinct positive solutions.

Proof of Corollary 2 Let b’ = %co. It follows from the condition (ii) that

b/ / / / /
ftu,up) > (pp<ﬁ) for (t,u1,uy) € [0,1] x [b b y] X [—yb ,yb ],
which implies that the condition (ii) of Theorem 8 holds.
We choose a sufficiently small €5 > 0 such that

ko mg AT (q)

1. 33
ko—klmo—mlr(a+q—1)< (33)

85L =¢&5
In view of /0 = 0, there exists a sufficiently small k; > 0 such that
ko * % Lk
f(t,ul,MQ) = (Pp(85|u2|) for (tr ui, MZ) € [0;1] X 0! ﬁkl X [_kl)kl]' (34')
0— K1

Without loss of generality, let kf = a’ < b'. Because of max;cjo;) |#2| < @', we have

k k .
MaXe[o] 1 < ko—i)lq maXe[o] |Uz| < koi)lq a’. Thus, it follows from (33) and (34) that

flt,m,up) < <.0p(85|u2|) < §0p(85ﬂ/) < §0p<%>

ki
for (t,u1,us) €[0,1] x | 0, 0 4| x [—a’,a’],
ko — ki

which implies that the condition (iii) of Theorem 8 holds.
Choose ¢¢ sufficiently small such that

mo M"(q)
ko—kl mo — ny F(Ol+q—1)

geyYL =¢ey <1

By using the continuity of f, there exists a constant C* such that

ko
ko — ki

flt,ur,up) < (pp(C*) for (t, u1, u2) € [0,1] x [0 yc’] X [—yc’,yc/]. (35)

Since f*° = 0, there exists a k, > LC* sufficiently large such that

St w1, 1u2) < @p(6lus)

ko

for (¢, u1,u2) € [0,1] x [ﬂ

ks, +oo> x [ka, +00) U (=00, k2 ].

Without loss of generality, let k, > b?/ and ¢’ = ky, so we see if

(t, u1,us) € [0,1] x |:0, k—oyc/:| X [—yc/, —c’] U [c’, yc'],
ko — ki
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then
/ C/
St w1, u2) < @p(6lual) < @p(e6v¢) <¢p<z>- (36)

Moreover, in view of (35), one has

k
fltm, ) < 9p(C*) < ‘pp<f2>
= ¢ for (t, u1, us) € [0,1] x OL | x[-yc,yd] (37)
= U L ) 41, U2 ’ ’ko—kly ye,yc|.

From (36) and (37), we see that the condition (i) of Theorem 8 is fulfilled. Hence, equation
(2) has at least three distinct positive solutions according to Theorem 8. 0

According to Theorem 8, we can prove that the existence for multiple positive solutions
to the equation (2) when conditions (i), (ii) and (iii) are modified appropriately on f.

Theorem 9 If there exist constant numbers a;, b; and c; such that 0 <aj; <by <cf <--- <
a, < b, < ¢, together with

0 < kob; < ciki < kobly < cyky < -+ < kob, < ¢, ki, neN, (38)

where i = 1,2,...,n. In addition, if all assumptions of Lemma 8 hold and the function f
satisfies: ’
() f(t,u1,u2) < 9p(F) for (&, ur, u3) € [0,1] x [0, ¥¢]] x [~y ¢}, ye]l;
(i) f(t, ur,u) > (pp(%)for (&, m,u2) € [0,1] x [b, yb]] x [-y b, ybl];
(iti) f(¢,u1,uz) < (pp(%;)for (&, u1,uz) € [0,1] x [0,a] X [-a},a]].
Then the fractional differential equation (2) has at least n distinct positive solutions.

Proof of Theorem 9 By using almost same technique as to the proof of Theorem 9 in [15].
O

By virtue of Lemma 4, we can obtain the following results by using the similar way as to

those of Theorem 8.

Theorem 10 Assume that there exist positive numbers a', b', ¢’ with a’ <b' < ¢ such that
cky < b'ky. In addition, if all assumptions of Lemma 8 hold and f(t,u1,u,) satisfies the
following conditions:

(W) f(t,u,u2) > 9p($) for (t,m,u2) € [0,1] x [0, ] x [~y yc;

(i) £(t 11, 102) < 9p( ) for (8,1, 2) € [0,1] x [B, yb] x [=y b, yb');

(iti) f(¢, u1,up) > (pp(%)for (t, u1,up) € [0,1] x [0,d'] x [-d,a].
Then the fractional differential equation (2) has at least three distinct positive solutions
w1, s, Uz € Pr(y1,¢') such that

0 <llmll <da < ul,

max{ inf uy, inf |u’2|}<b/<max[ inf us3, inf |u/3|} <c.
te[0,1] te[0,1] te[0,1] te[0,1]
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It also follows from Theorem 10 that we can obtain the following corollary and theorem,

respectively.

Corollary 3 Assume that all assumptions of Lemma 8 hold and f satisfies conditions:
(©) fo =00, foo = 00;
(ii) there exists ¢y > 0 such that f(¢,u1, us) < wp(% %})for
(t,u1,u2) € [0,1] x [, co] X [=co, col-
Then the fractional differential equation (2) has at least three distinct positive solutions.

Theorem 11 Assume that all assumptions of Lemma 8 hold and there are positive numbers

a, b, ¢ such that ay; < by < ¢y < --- < a), < b, < c, together with
0 < koby < ciky < koby < cyky < -+ < kob, < ki, mneN,

where i =1,2,...,n. In addition, f(t, u1, uy) satisfies the following conditions:
@) f(t,ur, up) > wp(%)for (t,u1,u) € [0,1] x [0,yc] x [-yc,yc];
(i) f(t w1, us) < ¢p(%)f0r (t,u1,u2) € [0,1] x [b}, y b] x [~y b}, y bj];
(iti) £t u1,up) > (pp(%)for (¢, 1, u3) € [0,1] x [0,a]] x [-a),a].
Then the fractional differential equation (2) has at least n distinct positive solutions.

5.3 Existence of arbitrary 2n — 1 solutions
In this subsection, the existence of at least three or arbitrary odd positive solutions to
p-Laplacian differential equation (2) are established.

Define the nonnegative continuous convex functionals ¢ and 8, concave functional A
and functional ¢ on P; by

o(u) =max{ sup u, sup |u/ },
te[0,1]  te€[0,1]

B(u) = p(u) = sup u,
te[0,1]

and

Au) = inf ‘u'|
te[0,1]
Theorem 12 Assume that all assumptions of Lemma 8 hold and there exist constants a*,
b*, d* such that0 < a* < b* < I/:—(l)d*. In addition, f (t, w1, uy) satisfies the following conditions:
(i) f(&u,up) < wp(dT*)for all (t,u1,us) € [0,1] x [0,d*] x [-d*,d*];
(i) f(t, uy,u) > (pp(%)for all (t,uy, uy) € [0,1] x [b*,d*] x [-d*,d*];
(iti) f(¢,up,up) < (pp(%)for all (t,u1,u) € [0,1] x [0,a*] x [-d*,d*].
Then the fractional differential equation (2) has at least three distinct positive solutions u,
Uy, Uz such that

lle;|| <d* fori=1,2,3, b* < inf 1w, a* < sup uy,
te(0,1] t[0,1]

inf uy <b* with sup us<a®.
te[0,1] te[0,1]
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Proof of Theorem 12 1t suffices to show that all conditions of Lemma 5 hold with respect
to the completely continuous operator A.

For arbitrary u € P;, we have A(#) < ¢(u) and |lu| = ¢(u). This implies that the inequality
(3) of Lemma 5 is satisfied.

In the following, we show that A : Py (¢, d*) — Pi(¢, d*).

For any u € Pi(¢,d*), from ¢(u) = ||u|| < d* and the assumption (i), we have

k() mgy A 1 i) /T )
A 1-7)° u,u')ds | d
I u||sk0_k1mO_mlr(a_l)/o( (| Flowu)ds)de

_f ko my Al(q)
N L k()—leIo—ml F(O(+q—1)
=d*.

It remains to show that assumptions (i)-(iii) of Lemma 5 are fulfilled with respect to the
operator A.

Let u = kb*, where k = % It is obvious that k > 1, u = kb* > b* and B(u) = kb*. We see
that b* < I,i—éd* that ¢(u) = kb* < d*. So we have

{u € P1(¢,ﬁ,)\,b*,/<b*,d*) (A (x) > b*} #0.

For any u € Pi(¢, B, A, b*, kb*,d*), we get b* <u <d* and -d* <u' <d* forall t € [0,1]. It
follows from the assumption (ii) that

AMAu) = (Au)' (0)
b* kl my A 1 )
> — 1-1)%*td
_Nko—klmo—mlr(a—l)/(;( T) rar
bk mg AT (q)
" Nbko—kymy—m T(a+qg-1)
= b*,

which implies that assumption (i) of Lemma 5 is satisfied.
For any u € Py(¢, A, b*, d*) with 8(Au) > kb*, we have b* < u < d* and -d* < u' < d* for
t € [0,1]. So we have

MAu) > b*.

This implies that assumption (ii) of Lemma 5 is fulfilled.
Since ¢(0) = 0 < a*, we have 0 ¢ R(¢, ¢, a*,d*). If

u ER(¢;§0,Q*’d*) with go(u) = sup u=a,
te(0,1]

it reduces to

O0<u<a* and -d*<u/ <d* forallte]0,1].
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Hence, we have

_ Mo A ! -2 i /
A(Au)—mmfo(l—r) wq(/o f(s,u,u)ds)dt

* A 1
< a—&;/ 1-1)"2rdr
MWIO—WIIF((X—I) 0

=a*.

All assumptions of Lemma 5 are satisfied. Consequently, we complete the proof. 0

Corollary 4 Assume that all assumptions of Lemma 8 hold and the condition (i) in Theo-
rem 12 is replaced by ('), then the conclusion of Theorem 12 also holds.

Similar to the proof of Theorem 9 by mathematical induction, we have the following.

Theorem 13 Assume that all assumptions of Lemma 8 hold and there exist constants a,
b}, df such that

ki
ko

ky

* *
O<aj<by<
ko

o * * % * *
di <ay<by<—dy<az;<---<a,, neN,

where i =1,2,...,n. In addition, f satisfies the following conditions:
(1) f(t’ Ui, uZ) = wp(dfi)for all (t’ Ui, u2) € [0>1] S [Ordl*] X [_d*,d;k];

L

(11) f(t: ui, MZ) > QOP(?V—?)fOV all (t’ ux, MZ) € [0)1] X [b;k; d;k] X [_d*’d;k]’

(lll) f(t’ Ui, l/lz) < (pp(%)for all (tr u, MZ) € [01 1] X [Orﬂ:k] X [_dl*’d;k]
Then the fractional differential equation (2) has at least 2n — 1 positive solutions.

6 Examples
In this section, we present two simple examples to illustrate our theoretical results. In

Example 1, it shows the difference between two cases in Section 4.

Example 1 Consider

©DSue) =f6ue),u(©), te (1),
kou(0) — kiu(1) = 0,

mou(0) — myu(l) =0,

x"(0) = 0.

(39)

Case 1: when f (¢, u, u') takes the form as
f(t, u, u/) =u+u for (t, u, u/) € [0,1] x [0,00) x (—00, +00).

It is easy to see that

)

/f(s,u,z/)ds:f (u+u’)ds=t(u+u’)§2tmax’u/(t)
0 0

te[0,1]
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then a;(t) = 0 and a,(¢) = 2t. Moreover, we see that

1 ko — ki mg —m
/ 2sds=1< 2 1TO07T
0 ko mo

It follows from Theorem 1 that the fractional differential equation (39) has at least one pos-
itive solution. However, it is difficult for us to obtain the existence of at least one positive
solution to the fractional differential equation (39) by using theorems of the super-linearity
and sub-linearity in our paper.

Case 2: when f (¢, u, u') takes the form as

-’ foru € (-o00,-1),
ftuu')={us for u’ € [-1,1],

el foru €(1,+00).

By using the continuity of f, we obtain that the operator A is completely continuous. It
is easy to check that fy = 0 and f, = 00. According to Theorem 3, we see that fractional
differential equation (39) has at least one positive solution. But it is difficult for us to know
the existence of positive solution to the fractional differential equation (39) if we use The-

orem 1.

Example 2 Consider

CD3u®)CD3u®))) =f(tul®),u'®), te(0,1),
4u(0) —u(1) =0,
3u(0) —u(1) =0,

(40)

x"(0) =0,
where
2
2 FZ(?) for u € [0,1],
fltuu)= rrjg)) (57u—55) forue (1,2),
2
59 lf:((g’)) for u € [2, +00).
2

Sincep=3,gq= %, o= %, ko =4,k =1,mg =3,m; =1, A =1, astraightforward calculation

gives
N Mo ki Mg 1rG3)
my—my kog—k Tl@+q-1) 2T(3)
and
I ko mo AT(q) :2F(%)

“ko-kimo-mTDla+qg-1) T(3)
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Takinga=1,b=2,d =4 and ¢ =20, we see that 0 <a < b <d < 1cand

for (t, u, u') € [0,1] x [0,1] x [-1,1],

a>:4r%$
L

f(t,u,u/)<<p3(— F2(%)

b 2
f(t, u, u/) > ¢3<ﬁ> =16 11:2((; for (t, u, u’) € [0,1] x [2,4] x [-20,20],

f“ﬂth)<¢3(£)::L600F%§) for (t,u,u’) € [0,1] x [0,20] x [-20,20].
L r2(3)

By means of Theorem 7, we obtain that the fractional differential equation (40) has at
least three distinct positive solutions uy, u,, us such that

0<|lm] <1, 2 < inf u,, l<us with inf u3<2.
te[0,1] te[0,1]
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