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Abstract
In the present paper, we deal with the fractional neutral differential equations
involving nonlocal initial conditions. The existence of mild solutions are established.
The results are obtained by using the fractional power of operators and the
Sadovskii’s fixed point theorem. An application to a fractional partial differential
equation with nonlocal initial condition is also considered.
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1 Introduction
The nonlocal condition, which is a generalization of the classical condition, wasmotivated
by physical problems. The pioneering work on nonlocal conditions is due to Byszewski
(see [–]). Existence results for semilinear evolution equations with nonlocal conditions
were investigated in [–]. Neutral differential equations arises in many areas of applied
mathematics and such equations have received much attention in recent years. A good
guide to the literature for neutral functional differential equations is the Hale book [].
Fractional differential equations describe many practical dynamical phenomena arising

in engineering, physics, economy and science. In particular, we can find numerous ap-
plications in viscoelasticity, electrochemistry, control, electromagnetic, seepage flow in
porous media and in fluid dynamic traffic models (see [–]). The result obtained is a
generalization and a continuation of some results reported in [–].
The main purpose of this paper is to study the existence of mild solutions of semilinear

neutral fractional differential equations with nonlocal conditions in the following form

cDα
[
x(t) + F

(
t,x(t),x

(
b(t)

)
, . . . ,x

(
bm(t)

))]
+Ax(t)

=G
(
t,x(t),x

(
a(t)

)
, . . . ,x

(
an(t)

))
, t ∈ J = [,b],

x() + g(x) = x, (.)

where –A is the infinitesimal generator of an analytic semigroup and the functions F , G
and g are given functions to be defined later. The fractional derivative cDα ,  < α <  is
understood in the Caputo sense.
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2 Preliminaries
Throughout this paper, X will be a Banach space with the norm ‖ · ‖ and –A : D(A) → X
is the infinitesimal generator of an analytic compact semigroup of uniformly bounded
linear operators {S(t), t ≥ }. This means that there exists a M ≥  such that ‖ S(t) ‖≤ M.
We assume without loss of generality that  ∈ ρ(A). This allows us to define the fractional
power Aγ , for  < γ ≤ , as a closed linear operator on its domainD(Aγ ) with inverse A–γ .
We will introduce the following basic properties of Aγ .

Theorem . (see [])
() Xγ =D(Aγ ) is a Banach space with the norm ‖ x ‖γ=‖ Aγ x ‖, x ∈ Xγ .
() S(t) : X → Xγ for each t >  and Aγ S(t)x = S(t)Aγ x for each x ∈ Xγ and t ≥ .
() For every t > , Aγ S(t) is bounded on X and there exists a positive constant Cγ such

that

∥∥Aγ S(t)
∥∥ ≤ Cγ

tγ
. (.)

() If  < β < γ ≤ , then D(Aγ ) ↪→D(Aβ ) and the embedding is compact whenever the
resolvent operator of A is compact.

Let us recall the following known definitions.

Definition . (see [–]) The fractional integral of order α >  with the lower limit
zero for a function f can be defined as

Iαf (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds, t > 

provided the right-hand side is pointwise defined on [,∞), where �(·) is the Gamma
function.

Definition . (see [–]) The Caputo derivative of order α with the lower limit zero
for a function f can be written as

cDαf (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α+–n

ds = In–αf (n)(t), t > , ≤ n –  < α < n.

If f is an abstract function with values in X, then the integrals appearing in the above
definitions are taken in Bochner’s sense.

We list the following basic assumptions of this paper.
(H) F : J ×Xm+ → X is a continuous function, and there exists a constant β ∈ (, ) and

M,M >  such that the function AβF satisfies the Lipschitz condition:

∥∥AβF(s,x,x, . . . ,xm) –AβF(s, y, y, . . . , ym)
∥∥ ≤ M

(
|s – s| + max

i=,,...,m
‖xi – yi‖

)
,

for  ≤ s, s ≤ b, xi, yi ∈ X, i = , , . . . ,m and the inequality

∥∥AβF(t,x,x, . . . ,xm)
∥∥ ≤ M

(
max

i=,,...,m
‖xi‖ + 

)
, (.)

holds for (t,x,x, . . . ,xm) ∈ J ×Xm+.
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(H) The function G : J ×Xn+ → X satisfies the following conditions:
(i) for each t ∈ J , the function G(t, ·) : Xn+ → X is continuous and for each

(x,x, . . . ,xn) ∈ Xn+ the function G(·,x,x, . . . ,xn) : J → X is strongly measurable;
(ii) for each positive number q ∈ N , there is a positive function hq(·) : [,b]→ R+ such

that

sup
‖x‖,...,‖xn‖≤q

∥∥G(t,x,x, . . . ,xn)∥∥ ≤ hq(t),

the function s → (t – s)–αhq(s) ∈ L([, t],R+) and there exists a � >  such that

lim
q→∞ inf

∫ t
 (t – s)–αhq(s)ds

q
= � < ∞, t ∈ [,b],

(H) ai,bj ∈ C(J , J), i = , , . . . ,n, j = , , . . . ,m. g ∈ C(E,X), here and hereafter E =
C(J ,X), and g satisfies that:

(i) There exist positive constantsM andM such that ‖g(x)‖ ≤ M‖x‖ +M for all
x ∈ E;

(ii) g is a completely continuous map.
At the end of this section, we recall the fixed-point theorem of Sadoviskii [], which is

used to establish the existence of the mild solution of the nonlocal Cauchy problem (.).

Theorem . (Sadovskii’s fixed-point theorem) Let 	 be a condensing operator on a Ba-
nach space X, that is, 	 is continuous and takes bounded sets into bounded sets, and
μ(	(B)) ≤ μ(B) for every bounded set B of X with μ(B) > . If 	(ϒ) ⊂ ϒ for a convex,
closed and bounded set ϒ of X, then 	 has a fixed point in X (where μ(·) denotes Kura-
towski’s measure of noncompactness).

3 Main result
In this section, we study the existence of mild solutions for the neutral fractional differen-
tial equations with nonlocal conditions (.), so we introduce the concept of a mild solu-
tion.

Definition . (see [, ]) A continuous function x(·) : J → X is said to be a mild solu-
tion of the nonlocal Cauchy problem (.) if the function (t–s)α–ATα(t–s)F(s,x(s),x(b(s)),
. . . ,x(bm(s))), s ∈ [,b) is integrable on [,b) and the following integral equation is verified:

x(t) = Sα(t)
[
x + F

(
,x(),x

(
b()

)
, . . . ,x

(
bm()

))
– g(x)

]
– F

(
t,x(t),x

(
b(t)

)
, . . . ,x

(
bm(t)

))

–
∫ t


(t – s)α–ATα(t – s)F

(
s,x(s),x

(
b(s)

)
, . . . ,x

(
bm(s)

))
ds

+
∫ t


(t – s)α–Tα(t – s)G

(
s,x(s),x

(
a(s)

)
, . . . ,x

(
an(s)

))
ds,  ≤ t ≤ b, (.)

where

Sα(t)x =
∫ ∞


ηα(θ )S

(
tαθ

)
xdθ , Tα(t)x = α

∫ ∞


θηα(θ )S

(
tαθ

)
xdθ
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with ηα is a probability density function defined on (,∞), that is ηα(θ ) ≥ , θ ∈ (,∞)
and

∫ ∞
 ηα(θ )dθ = .

Remark
∫ ∞
 θηα(θ )dθ = 

�(+α) .

Lemma . (see []) The operators Sα(t) and Tα(t) have the following properties:
(I) for any fixed x ∈ X , ‖Sα(t)x‖ ≤ M‖x‖, ‖Tα(t)x‖ ≤ αM

�(α+)‖x‖;
(II) {Sα(t), t ≥ } and {Tα(t), t ≥ } are strongly continuous;
(III) for every t > , Sα(t) and Tα(t) are also compact operators;
(IV) for any x ∈ X , β ∈ (, ) and δ ∈ (, ), we have ATα(t)x = A–βTα(t)Aβx and

‖AδTα(t)‖ ≤ αCδ�(–δ)
tαδ�(+α(–δ)) , t ∈ (,b].

Theorem . If the assumptions (H)-(H) are satisfied and x ∈ X, then the nonlocal
Cauchy problem (.) has a mild solution provided that

L =M

[
(M + )M +

C–β�( + β)bαβ

β�( + αβ)

]
<  (.)

and

M
[
MM +M +

α�

�(α + )

]
+MM +

C–β�( + β)bαβM

β�( + αβ)
< , (.)

where M = ‖A–β‖.

Proof For the sake of brevity, we rewrite that

(
t,x(t),x

(
b(t)

)
, . . . ,x

(
bm(t)

))
=

(
t, v(t)

)
and

(
t,x(t),x

(
a(t)

)
, . . . ,x

(
an(t)

))
=

(
t,u(t)

)
.

Define the operator 	 on E by

(	x)(t) = Sα(t)
[
x + F

(
, v()

)
– g(x)

]
– F

(
t, v(t)

)
–

∫ t


(t – s)α–ATα(t – s)F

(
s, v(s)

)
ds

+
∫ t


(t – s)α–Tα(t – s)G

(
s,u(s)

)
ds, t ∈ J .

For each positive integer q, let Bq = {x ∈ E : ‖x(t)‖ ≤ q,  ≤ t ≤ b}.
Then for each q, Bq is clearly a bounded closed convex set in E.
From Lemma . and (.) yield

∥∥∥∥
∫ t


(t – s)α–ATα(t – s)F

(
s, v(s)

)
ds

∥∥∥∥
≤

∫ t



∥∥(t – s)α–A–βTα(t – s)AβF
(
s, v(s)

)∥∥ds

≤ αC–β�( + β)
�( + αβ)

∫ t


(t – s)αβ–∥∥AβF

(
s, v(s)

)∥∥ds
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≤ C–β�( + β)bαβ

β�( + αβ)
M

(
max

i=,,...,m
‖xi‖ + 

)

≤ C–β�( + β)bαβ

β�( + αβ)
M(q + ) (.)

it follows that (t – s)α–ATα(t – s)F(s, v(s)) is integrable on J , by Bochner’s theorem [] so
	 is well defined on Bq. Similarly, from (H)(ii), we obtain

∥∥∥∥
∫ t


(t – s)α–Tα(t – s)G

(
s,u(s)

)
ds

∥∥∥∥ ≤
∫ t



∥∥(t – s)α–Tα(t – s)G
(
s,u(s)

)∥∥ds

≤ αM
�(α + )

∫ t


(t – s)α–

∥∥G(
s,u(s)

)∥∥ds

≤ αM
�(α + )

∫ t


(t – s)α–hq(s)ds. (.)

We claim that there exists a positive number q such that 	Bq ⊆ Bq. If it is not true, then
for each positive number q, there is a function xq(·) ∈ Bq, but 	xq /∈ Bq, but ‖	xq(t)‖ > q
for some t(q) ∈ J , where t(q) denotes that t is dependent of q. However, from equations
(.), (.) and (.) and (H)(i), we have

q ≤ ∥∥(	xq)(t)
∥∥

≤M
[‖x‖ +MM(q + ) + (Mq +M)

]
+MM(q + )

+
C–β�( + β)bαβ

β�( + αβ)
M(q + ) +

αM
�(α + )

∫ t


(t – s)α–hq(s)ds. (.)

Dividing both sides of (.) by q and taking the lower limit as q → +∞, we get

M
[
MM +M +

α�

�(α + )

]
+MM +

C–β�( + β)bαβM

β�( + αβ)
≥ .

This contradicts (.). Hence, for positive q, 	Bq ⊆ Bq.
Next, we will show that the operator 	 has a fixed point on Bq, which implies that equa-

tion (.) has a mild solution. We decompose 	 as 	 = 	 + 	, where the operators 	

and 	 are defined on Bq, respectively, by

(	x)(t) = Sα(t)F
(
, v()

)
– F

(
t, v(t)

)
–

∫ t


(t – s)α–ATα(t – s)F

(
s, v(s)

)
ds

and

(	x)(t) = Sα(t)
[
x – g(x)

]
+

∫ t


(t – s)α–Tα(t – s)G

(
s,u(s)

)
ds,

for t ∈ J . We will show that 	 verifies a contraction condition while 	 is a compact
operator.
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To prove that 	 satisfies a contraction condition, we take x,x ∈ Bq, then for each t ∈ J
and by condition (H) and (.), we have

∥∥(	x)(t) – (	x)(t)
∥∥

≤ ∥∥Sα(t)
[
F
(
, v()

)
– F

(
, v()

)]∥∥ +
∥∥F(

t, v(t)
)
– F

(
t, v(t)

)∥∥
+

∥∥∥∥
∫ t


(t – s)α–ATα(t – s)

[
F
(
s, v(s)

)
– F

(
s, v(s)

)]
ds

∥∥∥∥
≤ (M + )MM sup

≤s≤b

∥∥x(s) – x(s)
∥∥ +

C–β�( + β)Mbαβ

β�( + αβ)
sup
≤s≤b

∥∥x(s) – x(s)
∥∥.

Hence,

∥∥(	x)(t) – (	x)(t)
∥∥ ≤ M

[
(M + )M +

C–β�( + β)bαβ

β�( + αβ)

]
sup
≤s≤b

∥∥x(s) – x(s)
∥∥

= L sup
≤s≤b

∥∥x(s) – x(s)
∥∥.

Thus,

∥∥(	x)(t) – (	x)(t)
∥∥ ≤ L sup

≤s≤b

∥∥x(s) – x(s)
∥∥,

and by assumption  < L < , we see that 	 is a contraction.
To prove that 	 is compact, firstly we prove that 	 is continuous on Bq.
Let {xn} ⊆ Bq with xn → x in Bq, then for each s ∈ J , un(s) → u(s), and by (H)(i), we have

G(s,un(s))→G(s,u(s)), as n→ ∞.
By the dominated convergence theorem, we have

‖	xn –	x‖

= sup
≤t≤b

∥∥∥∥Sα(t)
[
g(x) – g(xn)

]

+
∫ t


(t – s)α–Tα(t – s)

[
G

(
s,un(s)

)
–G

(
s,u(s)

)]
ds

∥∥∥∥ → ,

as n→ ∞, that is continuous.
Next, we prove that the family {	x : x ∈ Bq} is a family equicontinuous functions. To

do this, let ε >  small,  < t < t, then

∥∥(	x)(t) – (	x)(t)
∥∥

≤ ∥∥Sα(t) – Sα(t)
∥∥∥∥x – g(x)

∥∥
+

∫ t–ε



∥∥(t – s)α–Tα(t – s) – (t – s)α–Tα(t – s)
∥∥∥∥G(

s,u(s)
)∥∥ds

+
∫ t

t–ε

∥∥(t – s)α–Tα(t – s) – (t – s)α–Tα(t – s)
∥∥∥∥G(

s,u(s)
)∥∥ds

+
∫ t

t

∥∥(t – s)α–Tα(t – s)
∥∥∥∥G(

s,u(s)
)∥∥ds.
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We see that ‖(	x)(t)– (	x)(t)‖ tends to zero independently of x ∈ Bq as t → t, with ε

sufficiently small since the compactness of Sα(t) for t >  (see []) implies the continuity
of Sα(t) for t >  in t in the uniform operator topology. Similarly, using the compactness
of the set g(Bq) we can prove that the function 	x, x ∈ Bq are equicontinuous at t = .
Hence, 	 maps Bq into a family of equicontinuous functions.
It remains to prove that V (t) = {(	x)(t) : x ∈ Bq} is relatively compact in X. Obviously,

by condition (H), V () is relatively compact in X.
Let  < t ≤ b be fixed,  < ε < t, arbitrary δ > , for x ∈ Bq, we define

(
	

ε,δ
 x

)
(t) =

∫ ∞

δ

ηα(θ )S
(
tαθ

)[
x – g(x)

]
dθ

+ α

∫ t–ε



∫ ∞

δ

θ (t – s)α–ηα(θ )S
(
(t – s)αθ

)
G

(
s,u(s)

)
dθ ds

= S
(
εαδ

)∫ ∞

δ

ηα(θ )S
(
tαθ – εαδ

)[
x – g(x)

]
dθ

+ αS
(
εαδ

)∫ t–ε



∫ ∞

δ

θ (t – s)α–ηα(θ )S
(
(t – s)αθ – εαδ

)
G

(
s,u(s)

)
dθ ds.

Since S(εαδ), εαδ >  is a compact operator, then the set V ε,δ(t) = {(	ε,δ
 x)(t) : x ∈ Bq} is

relatively compact in X for every ε,  < ε < t and for all δ > .
Moreover, for every x ∈ Bq, we have

∥∥(	x)(t) –
(
	

ε,δ
 x

)
(t)

∥∥ ≤
∥∥∥∥
∫ δ


ηα(θ )S

(
tαθ

)[
x – g(x)

]
dθ

∥∥∥∥
+ α

∥∥∥∥
∫ t



∫ δ


θ (t – s)α–ηα(θ )S

(
(t – s)αθ

)
G

(
s,u(s)

)
dθ ds

∥∥∥∥
+ α

∥∥∥∥
∫ t



∫ ∞

δ

θ (t – s)α–ηα(θ )S
(
(t – s)αθ

)
G

(
s,u(s)

)
dθ ds

–
∫ t–ε



∫ ∞

δ

θ (t – s)α–ηα(θ )S
(
(t – s)αθ

)
G

(
s,u(s)

)
dθ ds

∥∥∥∥
≤

∥∥∥∥
∫ δ


ηα(θ )S

(
tαθ

)[
x – g(x)

]
dθ

∥∥∥∥
+ α

∥∥∥∥
∫ t



∫ δ


θ (t – s)α–ηα(θ )S

(
(t – s)αθ

)
G

(
s,u(s)

)
dθ ds

∥∥∥∥
+ α

∥∥∥∥
∫ t

t–ε

∫ ∞

δ

θ (t – s)α–ηα(θ )S
(
(t – s)αθ

)
G

(
s,u(s)

)
dθ ds

∥∥∥∥
≤ M

[‖x‖ +M‖x‖ +M
] ∫ δ


ηα(θ )dθ

+ αM
(∫ t


(t – s)α–hq(s)ds

)∫ δ


θηα(θ )dθ

+ αM
(∫ t

t–ε

(t – s)α–hq(s)ds
)∫ ∞


θηα(θ )dθ

≤ M
[‖x‖ +M‖x‖ +M

] ∫ δ


ηα(θ )dθ
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+ αM
(∫ t


(t – s)α–hq(s)ds

)∫ δ


θηα(θ )dθ

+
αM

�( + α)

∫ t

t–ε

(t – s)α–hq(s)ds.

Therefore, there are relative compact sets arbitrary close to the set V (t), t > . Hence, the
set V (t), t >  is also relatively compact in X.
Thus, by Arzela-Ascoli theorem 	 is a compact operator. Those arguments enable us

to conclude that 	 = 	 +	 is a condensing map on Bq, and by the fixed-point theorem
of Sadovskii there exists a fixed point x(·) for 	 on Bq. Therefore, the nonlocal Cauchy
problem (.) has a mild solution, and the proof is completed. �

4 Example
Let X = L([,π ],R), we consider the following fractional neutral partial differential equa-
tions

c∂α
t

[
u(t, z) +

∫ π


a(z, y)u(t, y)dy

]
= ∂

z u(t, z) + ∂zh
(
t,u(t, z)

)
,  ≤ t ≤ b,  ≤ z ≤ π ,

u(t, ) = u(t,π ) = ,  ≤ t ≤ b,

u(, z) +
p∑
i=

∫ π


k(z, y)u(ti, y)dy = u(z),  ≤ z ≤ π , (.)

where c∂α
t is a Caputo fractional partial derivative of order  < α < , b > , z ∈ [,π ], p is

a positive integer,  < t < t < · · · < tp < b.

u(z) ∈ X = L
(
[,π ],R

)
, k(z, y) ∈ L

(
[,π ]× [,π ],R

)
.

We define an operator A by Af = –f ′′ with the domain

D(A) =
{
f (·) ∈ X : f , f ′absolutely continuous, f ′′ ∈ X, f () = f (π ) = 

}
.

Then –A generates a strongly continuous semigroup {S(t)}t≥ which is compact, analytic,
and self-adjoint. Furthermore, –A has a discrete spectrum, the eigenvalues are –n, n ∈N ,
with the corresponding normalized eigenvectors un(z) = (/π )/ sin(nz). We also use the
following properties:

(a) If f ∈ D(A), then Af =
∑∞

n= n〈f ,un〉un.
(b) For each f ∈ X , A–/f =

∑∞
n=


n 〈f ,un〉un. In particular, ‖A–/‖ = .

(c) The operator A/ is given by

A/f =
∞∑
n=

n〈f ,un〉un

on the space D(A/) = {f (·) ∈ X,
∑∞

n= n〈f ,un〉un ∈ X}.
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The system (.) can be reformulated as the following nonlocal Cauchy problem in X:

cDα
[
x(t) + F

(
t,x(t),x

(
b(t)

)
, . . . ,x

(
bm(t)

))]
+Ax(t)

=G
(
t,x(t),x

(
a(t)

)
, . . . ,x

(
an(t)

))
, t ∈ J = [,b],

x() + g(x) = x,

where x(t) = u(t, ·) that is (x(t))(z) = u(t, z), t ∈ [,b], z ∈ [,π ].
The function F : [,b]×X → X is given by

(
F(t,ϕ)

)
(z) =

∫ π


a(z, y)ϕ(y)dy

holds for (ϕ, t) ∈ [,b]×X → X and z ∈ [,π ].
The function G : [,b]×X → X is given by

(
G(t,ϕ)

)
(z) = ∂zh

(
t,u(t, z)

)

holds for (ϕ, t) ∈ [,b]×X → X and z ∈ [,π ], and the function g : E → X is given by

g(x) =
p∑
i=

Kgx(ti),

where Kg(u)(z) =
∫ π

 k(z, y)u(y)dy, for z ∈ [,π ].
We can take α = 

 andG(t,x) =


t/ sinx, then (H) is satisfied. Furthermore, assume that
M =M = (p + )[

∫ π


∫ π

 k(z, y)dydz]/. Then (H) is satisfied (noting that Kg : X → X is
completely continuous).
Moreover, we assume the following conditions hold:
(i) The function a(z, y), z, y ∈ [,π ] is measurable and

∫ π



∫ π


a(z, y)dydz < ∞.

(ii) The function ∂za(z, y) is measurable, a(, y) = a(π , y) = , and let

N =
[∫ π



∫ π



(
∂za(z, y)

) dydz
]/

< ∞.

Therefore, the conditions (H)-(H) are all satisfied. Hence, according to Theorem .,
system (.) has a mild solution provided that (.) and (.) hold.
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