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1 Introduction

Let A denote the class of functions of the form
fl@)=z+ Zanz” (1.1)
n=2

which are analytic in the open unit disk U = {z € C: |z| < 1}. Denote by S the class of all
functions in A which are univalent in U.
A function f € A is said to be in the class R!(A, B) if

flz)-1
tA—-B)-B(f'(z)-1)

<1 (-1<B<A<LteC\{0}zel), (12)

Clearly, a function f belongs to R’(A, B) if and only if there exists a function w regular in
U satisfying w(0) = 0 and |w(z)| < 1 (z € U) such that

1, ., _1+Aw(z)
1+ ;(f (Z) —1) = m (Z (S [U) (13)

The class R*(A, B) was introduced by Dixit and Pal [1]. By giving specific values to ¢, A
and B in (1.2), we obtain the following subclasses studied by various researchers in earlier

works:
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(i) For t = e cosn (|n| <m/2),A=1-20 (0 <« <1) and B = —1, we obtain the class of

functions f satisfying the condition:

e"(f'(z) - 1)

2(1 - a)cosn +en(f'(z) — 1) <l (zel). (1.4)

In this case, the class R*(A, B) is equivalent to the class R, («) which is studied by Pon-
nusamy and Renning [2]. Here, R, («) is the class of functions f € A satisfying the condi-

tion:
Re(e"(f'(z) — ) > 0 (Inl<7/2;0 <a<L;zel).

(i) For ¢ = €™ cos (|| < 7 /2), we obtain the class of functions f € A satisfying the con-

dition

e"(f'(z) -1)

- 1 U),
Bef'(z) — (Acosn + iBsinn) <l (zel)

which was studied by Dashrath [3].
(iii) Fort =1, A= B and B= -8 (0 < B <1), we obtain the class of functions f satisfying

the condition:

f(2) -1
f'(z) +1

‘<,B (0<B <Lz,

which was studied by Caplinger and Cauchy [4] and Padmanabhan [5].

Let S"(a) and C(c) denote the subclasses of A consisting of starlike and convex functions
of order o (0 < o < 1) in U, respectively. It is well known that S (@) c §'(0)=S", C(a) C
C(0)=C and K(x) € S* () € S. For A > 0, define

zf'(2)
f(2)

Siz{feA: —1‘<A,ZEU}

and

C={feA:zf'(r) €S, }.
It is a known fact that a sufficient condition for f € A of the form (1.1) to belong to the
class " is that ) .-, na, < 1. A simple extension of this result is the following [6]:

Y (n+r-Dia, < = feS,. (15)

n=2

For A = 1/2, this was previously proved by Schild [2]. Since f € C; if and only if zf(z) € S,
we have a corresponding results for C,,

[e¢]

Y onn+r-Dla, < = feC. (1.6)

n=2
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Now we introduce the class UST (resp., UCV) of uniformly starlike (resp., convex)
functions. We say [7, 8] that f € A is in UST (resp., UCV) if for each & € U and each
circular arc y in U with center 5, the image arc f(y) is starlike with respect to f(£) (resp.,
is a convex curve).

In this paper, we consider the Gaussian hypergeometric function F(a, b; ¢; z) defined by

> n b n "
Fla,b;c;z) = Z (a)(c§ ) %

n=0

(a,beC;c#0,-1,-2,...;z€ ),

where (v), is the Pochhammer symbol (or the shifted factorial) defined (in terms of the
Gamma function) by

(), = Fv+n) |1 if n=0and v € C\{0},
" T  |vw+1)---(wv+n-1) ifneNandveC.

We note that F(a, b; c;z) = F(b,a; c;z) and

Fla,bici1) = I'lc—a-b)'(c)

Te—are_p Relc-a-b>0). (17)

We also recall (see [4]) that the function F(a, b;c;z) is bounded if Re{c — a — b} > 0, and
has a pole at z = 1 if Re{c — a — b} < 0. Moreover, univalence, starlikeness and convexity
properties of zF(a, b; ¢; z) have been studied extensively in Ponnusamy and Vuorinen [9]
and Ruscheweyh and Singh [10].

For f € A, we define the operator I, f by

Ia,b;qf(z) = ZF(“: b; G Z) *f(z): (18)

where * denotes the usual Hadamard product (or convolution) of power series. If f equals
to the convex function z/(1 — z), then the operator I,;.f(z) becomes zF(a, b; c; z). For a
survey of special cases of this operator and also more general operators, we can refer to
the article by Srivastava [11-13] and Swaminathan [14], where also a long list of other
references can be found. Thus, the operator I, ;,.f and hence the Gaussian hypergeometric
function is a natural object for studying inclusion properties related to the convolution
product. In the present paper, we find a condition for univalency of the operator I, ;,.f. We
also investigate conditions such that 1,,.f € R*(4,B) UST,UCV, S, and C;), whenever
f € RYA,B).

2 Aset of lemmas
Now we introduce several lemmas which are needed for the proof of our main results.

Lemma 2.1 [1] Let a function f of the form (1.1) be in R*(A, B). Then

A - B)|t
|an|§w~

n

The result is sharp for the function

z n—1
f<z>=/0 (l+w)dz (n>2zel),

1+ Bz}
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Lemma 2.2 [1] Let a function f of the form (1.1) be in A. If

> (1+Bl)nlas <(A-B)|t|] (-1<B<A<1;teC)
n=2

then f € RY(A, B). The result is sharp for the function

(A-B)t

fle)=z+ (1 Bl Z" (n>2;ze).

Lemma 2.3 [15] Let w(z) be regular in the unit disk U with w(0) = 0. Then, if |w(z)| attains
a maximum value on the circle |z| = r (0 < r < 1) at a point z, we can write

aw'(z1) = mw(zy),
where m is real and m > 1.

Lemma 2.4 [2] (i) For a,b € C\{0,1} and ¢ € C\{1} with ¢ > max{0,a + b -1},

. (@)u(b), ~ 1 F(c+l-a-b)(c)
nizo: (C)n(l)n+1 N (ﬂ - 1)(b - 1) ( F(C— ﬂ)F(C— b) - (C - 1)>,

(i) For a,b € C\{O} witha >0 and b>0andc>a+ b +1,

o (1 + 1)(@)u(b)n ab \Lle=a-br)
; (©)n()n _<C—ﬂ—b—1+ )F(c—a)]"(c_b)'

Lemma 2.5 [16] A function f of the form (1.1) is in UCV if

[e¢]

Z n2n—1))a,| <1.

n=2

Lemma 2.6 [16] A function f of the form (1.1) is in UST if

[e¢]

D _Bn=2)la,l <1.

n=2

3 Main results
Theorem 3.1 Letf € A. If

1

<3F (B=0), 3.1

e @) |
(Iu,b;cf(z)),

[

|(Tapef (2)) 1

then 1, f is univalent in U.

Proof We note that

= b)n 1 2"
Ia,b;c(f) =z+ Z 1)
=2 n— 1
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in A. Define w by

w(2) = (Lopef (2) -1

for z € U. Then it follows that w is analytic in U with w(0) = 0. By (3.1),

1-8 zw'(2) P
|w(z)| T+ w(@ o)
— |W(Z)| ZW/(Z) 1 ¢ < i .
N w(z) 1+ w(z) 28"

Suppose that there exists a point z; € U such that

max ’w(z)| = |w(z1)| =1
|z1<|z1|

Then, by Lemma 2.3, we can put

AW&QZMZL
w(z1)

Therefore, we obtain

zw(z1) 1

’W(Zl)}

AN
>=) >—,
—\2 — 2P

which contradicts the condition (3.2). This shows that

w(z1) 1+ w(z)

’W(Z)’ = ’(Iu,b;qf(Z))/ — 1’ <1,

which implies that Re(l,,.f(z))’ > O for z € U. Therefore, by the Noshiro-Warschawski
theorem [17], I ;.f is univalent in U. O

Theorem 3.2 Let a,b € C\{0} and ¢ > |a| + |b|. Suppose that f € R'(A, B) and satisfy the
condition

M(e—lal - 1B)T() _ 1
F(c=laDl(c= b)) ~ 1+1B]

+1. (3.3)

Then the operator 1,;,.f maps R'(A, B) into R*(A, B).

Proof Leta,b € C\{0}, ¢ > |a| +|b| and suppose thatf(z) =z+ > .-, a,z" € R'(A,B). Then,
by Lemma 2.2, it suffices to show that

Ti=) (1+1B)nlA,| < (A-B)ltl, (3.4)

n=2
where

@B
! (C)n—l(l)n—l

ne
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From Lemma 2.1 and the fact that |(a),| < (|4|),, we have

(laD)n-1(161)n-1

T <Y (A-B)t(1+]B]) 1D

n=2
s (|a)a(16])n
x (A-B)|t|(1+|B| —7 7 _1).
( )<ZO (€)1 )

Using the formula (1.7) and the assumption, we find that

Ty <(A-B)t|(1+ |B|)<F(c— jal = BT () 1)

I'(c—apT(c—|bl)
<(A-Blt,

which implies that the operator 1,;..f maps R (A4, B) into R*(A, B).
If, in the proof of Theorem 3.2, we take b = a, then we have the following theorem under

a weaker condition on the parameter c. d

Theorem 3.3 Let a € C\{0} and ¢ > 2Re{a}. Suppose that f € R'(A, B) and satisfy the

condition

I'(c-2Rea)T(c) _ 1

Fe—alc—a) ~1+18 "

Then the operator 1, ;,.(f) maps R*(A, B) into R*(A, B).

Proof The proof of Theorem 3.3 follows in the similar lines on the proof of Theorem 3.2

and so we omit the details. O

Theorem 3.4 Leta,b € C\{0} and X € (0,1]. Suppose that f € R*(A,B), |a| #1, |b| #1 and
¢ #1 such that ¢ > |a| + |b| and satisfy the condition

['(c—lal - 16T (c) (1 s (*=1)(c—lal - Ib|)>

T(c—lal)T(c - |bl) (lal - 1)(1b] - 1)
1 A-1(c-1)
: A<l ' (A—B)|t|> T lal =Dk - 1) (3.5)

Then the operator 1,,.f maps R'(A, B) into S, .

Proof Let a,b € C\{0} and ¢ > |a| + |b| with |a| #1, |b] #1 and ¢ # 1. Suppose that f(z) =
z+ Yy o0y anz" € RY(A, B). Then, by (1.5), it is sufficient to show that

(61 n l(b)n 1
()11 1

T2_Z(n A —1) |t

Page60of 11
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By using Lemma 2.1 and (i) of Lemma 2.4, we observe that

(Ia])n-1(161)s-1 (A - B)|¢|
(@)1 n

[e¢]
T, < Z(n+k -1)
n=2

o ([])u(|B]) 2. (|a)n(1B])s
=(A-B)t ST (-1 Y
|:; (C)”(l)" ; (C)n(l)n+1 i|

& _B)|t|[(l"(c— la| — |b))T (c) _1)

(e la)T(c— b))

1 I'(c+1-|a|-|b|)T(c)
+“‘”me4mw—n< D(c—la)T (e [b]) ‘“‘”)‘4]
rw—mwumn00+u—nwwm—w»

D= lahTe—1oh) \"* ~ (al- Db =

(h=Dc-1)
(m«—num—l>_k]fk’

=(A-B)|t] [
by (3.5), which completes the proof of Theorem 3.4. d
Taking A =1 and b = a in Theorem 3.4, we have the following result.

Corollary3.1 Leta € C\{0}and ¢ > max{0,2Re{a}}. Suppose that f € R*(A, B) and satisfy

the condition

['(c-2Re{a})T(c) - 1
Fe-al(c-a —  A-B

Then I,z f € S,.

By using the same method as in the proof of Theorem 3.4, we have the following result.

Theorem 3.5 Let a,b € C\{0} and ¢ > 1+ |a| + |b|, > € (0,1] and f € R(A, B). Suppose
that

Fe~lal - ) ( jab] **)<AO+ 1 ) 656
['(c—la)T(c—1b)) \c—lal-|b] -1 N (A -B)lt|
Then the operator L,,.f maps R*(A, B) into C;.

Proof Let a,b € C\{0} and ¢ > |a| + |b| + 1. Suppose f(z) =z + Y ., asz" € R'(A,B). To
show that the operator I, f belongs to C,, from (1.6), it is enough to show that

o0

T3:=Zn(n+)\—1)

n=2

(a)n—l (b)n—l a
(©)n1(1) 1 §

Page 7 of 11
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From Lemma 2.1 and (1.7), we find that

(aDbDs = (alubl),
=A-a )"[Z EHO Z (©, (D, }

~ [ Jabl S (al + 1,061+ 1), < (1D (b),
=AD" T m, e o, ]
i Clab| T~ lal - b~ DT(c+1) _ T(c—lal - [B)F(@
=B T R e e (e b ”r(c—mnr(c—wn}

"Tc - lal - [B)I(0) \ab|
=A=BI) ST e e = B) (c— @l - 161 ”) _A}

=X
by (3.6) and the conclusion follows. a
Similarly, taking A =1 and b = g in Theorem 3.5, we have the following result.

Corollary 3.2 Let a € C\{0}, ¢ >max{0,1 + 2Re{a}} and A € (0,1]. Suppose that

F(c—ZRe{a})F(c)( |a|? )
- +1) <1+ —mF.
I'(c-a)l(c—a) \c—1-2Re{a} (A -B)|t|

Then I, ;.f € Cy.
By using Lemma 2.5 and Lemma 2.6, we have the following theorem for YCV and UST .

Theorem 3.6 Let a,b € C\{0}, ¢ > |a| + |b| + 1 and f € R*(A, B). Suppose that

L(c—lal - [B)T(0) (_ 2lab]
“ _B)'t'[r(c— lal)T"(c ~12]) <c— jal ~16] ~1 ”) _1] = 7

Then the operator L, .f maps R*(A, B) into UCV.

Proof Leta,b € C\{0} and ¢ > |a| + |b| + 1. Suppose that f(z) =z + Y .., a,2" € R'(A, B).
By Lemma 2.5, we need only to show that

[e¢]

b=

(“)n 1(B)n1

(@)1 =t

n

Then, from (1.7) and (|a|),, = |a|(|a|),-1, we have

[ > (1a)n(1B])n
Ty < (A- B _;(2” * DW}

(aDa(1bls 2 (DD,
= A4-D Z (@D Z @D ‘}
2lallb Dle-lal - 16l - DU+ D) (c—|a|—|b|)r(c)}
¢ ['(c—lahI'(c-1bl) ['(c—la)l(c~b])

= (A-B)|t]
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_ ['(c—la| - 1b))T(c) 2|ab|
i (A_B)'t'[r(c— ZNCET) (c— jal— bl -1 “> ‘1}

<1

’

by (3.7), and so we have Theorem 3.6. O

Theorem 3.7 Let a,b € C\{0}, ¢ > |a| + |b| with |a| #1, |b| #1, and ¢ #1 and f € R*(A, B).
Suppose that

(A—B)|t|[r(c_ lal — b)) (c) (3_ (2(c— la| - |b|))> . - 2c—1)

L(c—lal)T (c - |bl) la| - 1)(|b| - —1)(|b|—1)_1] <L (38)

Then the operator 1, ,.f maps R*(A,B) into UST .

Proof Let a,b € C\{0} and c > |a| + |b| with |a| #1, |b| #1 and ¢ # 1. Suppose that f(z) =
z+ Y oo, a,2" € RY(A, B). By Lemma 2.6, it suffices to show that

(ﬂ n-1(D)n1

O | =t

Ts:= 2(3

n

Then, from (1.7) and (|a|),, = |a|(|a]|),.-1, we have
o (@D (Bt o (1a)na (161
T=U-BI|3) o T2 G, ]

o (laD)u(15])s (= 1)(lal = 1),(1b] - 1),
=(A-B 3 -1 —25
(4= B) ( C©@©u), ) — <|a|—1)(|b|—1)(c—1>n(1)n}

M

n=0

Ca [ (T(c—lal-1b])T(c)

- B)'t'_3< M laDT (e 15D 1)
c-1 (F(c— la| - 16l + DI (c-1)  (la| - 1)(|b] -1) _1)}

(lal =1)(16] - 1) ['(c~lal)T(c~1bl) c-1

I'(c—lal-1b))I"(c) 2(c~lal - 1b]) 2(c-1)

=(A-B — _

=1 ety (O ) * G

Sl)

by (3.8), which completes the proof of Theorem 3.7. d

Next, we give the condition on the parameters 4, b and ¢ that the convolution of the odd
function zF(a, b; c;z*) and f € R*(A, B) belongs to R¥(A, B).

Theorem 3.8 Let a,b € C\{0}, ¢ > |a| + |b| with |a| #1 and |b| #1 and f € R*(A, B). Sup-
pose that

T(c-lal - [b)T(0) c—lal - || (c-1)
s 'B')[F(c— lal)T(c - |b1) (2_ (lal = 1)(1b] - 1)> " (lal - 1)(b[ - D) _1] =169

Then the operator zF(a, b; c;2*) * f (z) € R'(A, B).
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Proof Let a,b € C\{0} and ¢ > |a| + |b| with |a| # 1, |b| # 1. Suppose that f(z) = z +
Yoo, anz" € RYA, B). We note that

o ("Z)nlb)nl 2,,1
Hlabiaz Z O

By Lemma 2.2, it is enough to show that

[e¢]

)nl
Toi= ) (1+1Bl) 2 _1)‘()n Do ™"

n=2 1

= (A-B).

Then, by a similar proof as Theorem 3.7, we get

Ts < (A-B)t](1+BI) [22 D) 1(|bl>n1_z(|al>n 116D 1}
n=2

(©)n-1(1)n-1 (©)n-1(1)n

[(c—lal - 1bD)I (c) (2 __c—lal-|b| )
I(c—lal)T(c - 1bl) (lal =1)(16] - 1)

=(A-B)t|(1+ |B|)[
(c-1) 1}
+ _—— —
(lal =1)(16] - 1)
<(A-B)tl,
by (3.9), and hence we have the result. a

Finally, we establish the condition on the parameters 4, b and ¢ that the function
zF(a, b; c; z) belongs to the class RY(A, B).

Theorem 3.9 Let a,b € C\{0} and c¢ > |a| + |b| + 1. Suppose that

I'(c—|a| - Ibl)F(c)< |ab| ) (A-B)lt|
+1)-1< ——. 3.10
['(c—lal)T(c~1b]) \c~lal - |b] -1 ~ 1+|B] (310
Then the function zF (a, b; c; z) € R'(A, B).
Proof By Lemma 2.2, it is sufficient to show that
- ( )n l(b)n 1
Ty = B|)n| 0L L < (A= B)Jt].
= (B, “
Then, by (ii) of Lemma 2.1, we observe that
> al)u—1(|b
Z - 1B (lal) 1(|1 D1
o2 (-1
F(c—|a|—|b|)F(c)( |ab| ) ]
=(1+ 1Bl [ +1)-1
( ) [(c—lal)T(c~1b]) \c~l|al-|b] -1
< (A-B)lt,

by (3.10). This completes the proof of Theorem 3.9. d
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