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Abstract

In this study, we consider a biological resource management predator-prey model
with impulsive releasing and harvesting at different moments. First, we prove that all
solutions of the investigated system are uniformly ultimately bounded. Second, the
conditions of the globally asymptotic stability predator-extinction boundary periodic
solution are obtained. Third, the permanence condition of the investigated system is
also obtained. Finally, the numerical simulation verifies our results. These results
provide reliable tactic basis for the biological resource management in practice.
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1 Introduction
Biological resources are renewable resources. Economic and biological aspects of

renewable resources management have been considered by Clark [1]. In recent years,

the optimal management of renewable resources, which has direct relationship to sus-

tainable development, has been studied extensively by many authors [2-4]. Especially,

the predator-prey models with harvesting (or dispersal and competition) are investi-

gated by many articles [5-8]. In general, the exploitation of population should be deter-

mined by the economic and biological value of the population. It is the purpose of this

article to analyze the exploitation of the predator-prey model with impulsive releasing

and harvesting at different moments.

Impulsive delay differential equations are suitable for the mathematical simulation

of the evolutionary process. The application of impulsive delay differential equations

to population dynamics is an interesting topic since it is reasonable and correct in

modelling the evolution of population, such as pest management [9]. Moreover,

impulsive delay differential equations are used in various fields of applied sciences

too, for example physics, ecology, pest control and so on. According to the nature

of biological resource management, Jiao et al. [10] introduced the stocking on prey

at fixed moments, and considering the following impulsive delay differential equa-

tion
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = x1(t)(a − bx1(t)) − βx1(t)

1 + cx1(t)
x3(t),

x′
2(t) = rx3(t) − re−wτ1x3(t − τ1) − wx2(t),

x′
3(t) = re−wτ1x3(t − τ1) +

kβx1(t)
1 + cx1(t)

x3(t) − d3x3(t) − Ex3(t) − d4x23(t),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
t �= nτ ,

�x1(t) = μ,

�x2(t) = 0,

�x3(t) = 0,

⎫⎪⎬⎪⎭ t = nτ , n = 1, 2, ...

(ϕ1(ζ ),ϕ2(ζ ),ϕ3(ζ )) ∈ C+ = C
(
[−τ1, 0],R3

+

)
, ϕi(0) > 0, i = 1, 2, 3.

(1:1)

The biological meanings of the parameters in (1.1) can be seen in [10]. Jiao and

Chen [10] consider the mature predator population is harvested continuously. In fact,

the population with economic value are harvested discontinuously. It will be arisen at

fixed moments or state-dependent moments, that is to say, the releasing population

and harvesting population should be occurred at differential moments in [10]. In this

article, in order to model the fact of the biological resource management, we investi-

gate a differential equation with two impulses for the biological resource management.

2 The model
It is well known that the basic Lotka-Volterra predator-prey model can be written as⎧⎪⎪⎨⎪⎪⎩

dx1(t)
dt

= x1(t)(r − ax1 − bx2(t)),

dx2(t)
dt

= x2(t)(−d + cx1(t)),
(2:1)

where x1(t) and x2(t) are densities of the prey population and the predator popula-

tion, respectively, r >0 is the intrinsic growth rate of prey, a >0 is the coefficient of

intraspecific competition, b >0 is the per-capita rate of predation of the predator, d >0

is the death rate of predator, c >0 denotes the product of the per-capita rate of preda-

tion and the rate of conversing prey into predator. If rc < ad is satisfied, the predator

x2(t) will go extinct and the prey will tend to r/a, that is to say, system (2.1) has

boundary equilibrium r/a, 0). If rc > ad is satisfied, system (2.1) has globally asymptoti-

cally stable unique positive equilibrium (d/c, rc - ad/cb).

System (2.1) is an organic growth model, that is to say, there is no intervention manage-

ment on system (2.1). Obviously, the dynamical behaviors of system (2.1) is very simple.

As a matter of fact, the mankind more and more devote themselves to investigate and

empolder the ecosystem with the development of society. Bases on the ideology, we

develop (2.1) by introducing releasing the prey and harvesting the predator and prey at dif-

ferent fixed moments, that is, we consider the following impulsive differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= x(t)(a − bx(t)) − βx(t)y(t),

dy(t)
dt

= kβx(t)y(t) − dy(t),

⎫⎪⎪⎬⎪⎪⎭ t �= (n + l)τ , t �= (n + 1)τ ,

�x(t) = −μ1x(t),

�y(t) = −μ2y(t),

}
t = (n + l)τ , n = 1, 2, ...

�x(t) = μ,

�y(t) = 0,

}
t = (n + 1)τ , n = 1, 2, ...

(2:2)

Jiao et al. Advances in Difference Equations 2012, 2012:9
http://www.advancesindifferenceequations.com/content/2012/1/9

Page 2 of 15



where x(t) denotes the density of the predator population at time t. y(t) denotes the

density of the prey population Y at time t. a >0 denotes the intrinsic growth rate of

the prey population X. b >0 denotes the coefficient of the intraspecific competition in

prey population X. b >0 denotes the per-capita rate predation of the predator popula-

tion Y. k >0 denotes product of the per-capita rate and the rate of conversing prey

population X into predator population Y. d >0 denotes the death rate of the predator

population Y. 0 < μ1 <1 denotes the harvesting rate of prey population X at t = (n +

l)τ, n Î Z+. 0 < μ2 <1 denotes the harvesting rate of predator population Y at t = (n +

l)τ, n Î Z+. μ >0 denotes the released amount of prey population X at t = (n + 1)τ, n

Î Z+. Δx(t) = x(t+) - x(t), where x(t+) represents the density of prey population X

immediately after the impulsive releasing (or harvesting) at time t, while x(t) represents

the density of prey population X before the impulsive releasing (or harvesting) at time

t. Δy(t) = y(t+) - y(t), where y(t+) represents the density of predator population Y

immediately after the impulsive harvesting at time t, while y(t) represents the density

of predator population Y before the impulsive harvesting at time t. 0 < l <1, and τ

denotes the period of impulsive effect.

3 The lemmas
Before discussing main results, we will give some definitions, notations and lemmas.

Let R+ = [0, ∞), R2
+ = {z ∈ R2 : z > 0}. Denote f = (f1, f2) the map defined by the right

hand of system (2.2). Let V : R+ × R2
+ → R+, then V is said to belong to class V0, if

(i) V is continuous in (nτ , (n + l)τ ] × R2
+ and ((n + l)τ , (n + 1)τ ] × R2

+, for each

lim(t,y)→(nτ+,z)V(t, z) = V(nτ +, z), lim(t,y)→(nτ+,z)V(t, z) = V(nτ +, z) and

lim(t,z)→((n+l)τ+,z)V(t, z) = V((n + l)τ +, z) exists.

(ii) V is locally Lipschitzian in z.

Definition 3.1. V Î V0, then for (t, z) ∈ (nτ , (n + l)τ ] × R2
+ and

((n + l)τ , (n + 1)τ ] × R2
+, the upper right derivative of V(t, z) with respect to the impul-

sive differential system (2.2) is defined as

D+V (t, z) = lim
h→0

sup
1
h
[V(t + h, z + hf (t, z)) − V(t, z)].

The solution of system (2.2), denote by z(t) = (x(t), y(t))T, is a piecewise continuous

function z : R+ → R2
+, z(t) is continuous on (nτ , (n + l)τ ] × R2

+ and

((n + l)τ , (n + 1)τ ] × R2
+(n ∈ Z+, 0 ≤ l ≤ 1). Obviously, the global existence and unique-

ness of solutions of (2.2) is guaranteed by the smoothness properties of f, which

denotes the mapping defined by right-side of system (2.2) (see Lakshmikantham [4]).

Before we have the main results. We need give some lemmas which will be used in

the next. Since (dx(t)/dt = 0) whenever x(t) = 0, dy(t)/dt = 0 whenever y(t) = 0, t = nτ,

x(nτ+) = (1 - μ1)x(nτ), y(nτ
+) = (1 - μ2)y(nτ), and t = (n + l)τ, x((n + l)τ+) = x((n + l)τ) +

μ, μ ≥ 0. We can easily have

Lemma 3.2. Suppose z(t) is a solution of system (2.2) with z(0+) ≥ 0, then z(t) ≥ 0 for

t ≥ 0. and further z(t) >0 t ≥ 0 for z(0+) >0.

Now, we show that all solutions of (2.3) are uniformly ultimately bounded.

Lemma 3.3. There exists a constant M >0 such that x(t) ≤ M, y(t) ≤ M for each

solution (x(t), y(t)) of (2.2) with all t large enough.
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Proof. Define V(t) = kx(t) + y(t). When t ≠ nτ and t ≠ (n + l)τ, we have

D+V(t) + dV(t) = k[(a + d)x(t) − bx2(t)]

≤ −kb [x(t) − k(a + d)
2b

]2 +
k(a + d)

4b

2

≤ M0,

where M0 = k(a + d)2/4b. When t = nτ, V(nτ+) = kx(nτ+) + y(nτ+) = (1 - μ1)kx(nτ) +

(1-μ2)y(nτ) ≤ kx(nτ) + y(nτ) = V(nτ). When t = (n + l)τ, V((n + l)τ+) = kx((n + l)τ+) + y

((n + l)τ+) = kx((n + l)τ)+μ + y((n + l)τ) = V((n + l)τ) + μ. From ([[6], Lemma 2.2, p.

23]), for t Î (nτ, (n + l)τ] and ((n + l)τ, (n + 1)τ], we have

V(t) ≤ V(0+)e−dt +
M0

d
(1 − e−dτ ) + μ

e−d(t−τ)

1 − edτ
+ μ

e−dτ

edτ − 1

→ M0

d
+ μ

edτ

edτ − 1
, as t → ∞.

So V(t) is uniformly ultimately bounded. Hence, by the definition of V(t), there exists

a constant M >0 such that x(t) ≤ M, y(t) ≤ M for t large enough. The proof is

complete.

If y(t) = 0, we obtain the subsystem of system (2.2)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx(t)
dt

= x(t)(a − bx(t)), t �= (n + l)τ , t �= (n + 1)τ ,

�x(t+) = −μ1x(t), t = (n + l)τ , n ∈ Z+,

�x(t+) = μ, t = (n + 1)τ , n ∈ Z+,

x(0+) = x(0) > 0.

(3:1)

It is easy to solve the first equation of system (3.1) between pulses

x(t) =

⎧⎪⎪⎨⎪⎪⎩
aea(t−nτ)x(nτ +)

a + b [ea(t−nτ) − 1] x(nτ +)
, t ∈ (nτ , (n + l)τ ],

aea(t−(n+l)τ)x((n + l)τ +)
a + b [ea(t−(n+l)τ) − 1] x ((n + l)τ +)

, t ∈ ((n + l)τ , (n + 1)τ ].
(3:2)

By considering the last two equations of system (3.1), we obtain the following strobo-

scopic map of system (3.1):

x((n + 1)τ +) =
(1 − μ1)aeaτ x(nτ +)

a + bealτ [1 + (1 − μ1)(ea(1−l)τ − 1)] x(nτ +)
+ μ. (3:3)

Taking A = (1 - μ1)ae
aτ >0 and B = bealτ [1 + (1 - μ1) (e

a(1-l)τ - 1)] >0, we can rewrite

(3.3) as

x ((n + 1)τ + ) =
Ax (nτ +)

a + Bx (nτ +)
+ μ. (3:4)

Referring to [11], we can easily prove that (3.4) has unique positive fixed point

x∗ =
(A + μB − a) +

√
(A + μB − a)2 + 4μaB

2B
, (3:5)

which can be easily proved to be globally asymptotically stable.

Then, we can derive the following lemma:

Jiao et al. Advances in Difference Equations 2012, 2012:9
http://www.advancesindifferenceequations.com/content/2012/1/9

Page 4 of 15



Lemma 3.4. System (3.1) has a positive periodic solution x̃(t). For every solution x(t)

of system (3.1), we have x(t) ® x̃(t) as t ® ∞, where

x̃(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aea(t−nτ)x∗

a + b [ea(t−nτ) − 1] x∗ , t ∈ (nτ , (n + l)τ ],

(1 − μ1)aea(t−nτ)x∗

a + b [(ealτ − 1) + (1 − μ1) (ea(t−nτ) − ealτ )] x∗ , t ∈ ((n + l)τ , (n + 1)τ ].

(3:6)

4 The dynamics
In this article, we will prove that the predator-extinction periodic solution is globally

asymptotically stable and system (2.2) is permanent.

4.1 The extinction

From above discussion, we know that (2.2) has a predator-extinction periodic solution

(x̃(t), 0). Then we have following theorem.

Theorem 4.1. If

ln
1

1 − μ1
> aτ − 2

[
ln

(
1 +

b(ealτ − 1)x∗

a

)
+ ln

(
1 +

b(1 − μ1)(eaτ − ealτ )x∗

a + b(ealτ − 1)

)]
, (4:1)

and

ln
1

1 − μ2
>

kβ
b

[
ln

(
1 +

b(ealτ − 1)x∗

a

)
+ ln

(
1 +

b(1 − μ1)(eaτ − ealτ )x∗

a + b(ealτ − 1)

)]
− dτ , (4:2)

hold, then predator-extinction periodic solution (x̃(t), 0) of (2.2) is globally asympto-

tically stable. Where x* is defined as (3.5):

Proof. First, we prove the local stability. Define x1(t) = x(t) − x̃(t), y(t) = y(t), we

have the following linearly similar system of system (2.2):⎛⎜⎝ dx1(t)
dt

dy(t)
dt

⎞⎟⎠ =
(
a − 2bx̃(t) −β x̃(t)

0 −d

)(
x1(t)
y(t)

)
.

It is easy to obtain the fundamental solution matrix

�(t) =
(
exp(∫t

0(a − 2bx̃(s))ds) ∗
0 exp(−dt)

)
.

There is no need to calculate the exact form of (*) as it is not required in the follow-

ing analysis. The linearization of the third and fourth equations of (2.2) is(
x1((n + l)τ +)
y((n + l)τ +)

)
=

(
1 − μ1 0

0 1 − μ2

)(
x1((n + l)τ )
y((n + l)τ )

)
.

The linearization of the fifth and sixth equations of (2.2) is(
x1((n + 1)τ +)
y((n + 1)τ +)

)
=

(
1 0
0 1

)(
x1((n + 1)τ )
y((n + 1)τ )

)
.

Jiao et al. Advances in Difference Equations 2012, 2012:9
http://www.advancesindifferenceequations.com/content/2012/1/9

Page 5 of 15



The stability of the periodic solution (x̃(t), 0) is determined by the eigenvalues of

M =
(
1 − μ1 0

0 1 − μ2

)(
1 0
0 1

)
�(τ ),

which are

λ1 = (1 − μ2) exp(−dτ ) < 1,λ2 = (1 − μ1) exp
(∫ τ

0
(a − 2bx̃(s))ds

)
,

According to the Floquet theory [6], if | l2 |<1, i.e. (4.1) holds, then (x̃(t), 0) is

locally stable.

The following study is to prove the global attraction, choose ε >0 such that

ρ = (1 − μ2) exp

⎛⎝ τ∫
0

[
kβ(x̃(t) + ε) − d

]
dt

⎞⎠ < 1, (4:3)

From the first equation of (2.2), we notice that dx(t)/dt ≤ x(t)(a - bx(t)), so we con-

sider following impulsive differential equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dz(t)
dt

= z(t)(a − bz(t)), t �= (n + l)τ , t �= (n + 1)τ ,

�z(t) = −μ1z(t), t = (n + l)τ ,

�z(t) = μ, t = (n + 1)τ ,

z(0+) = z(0+),

(4:4)

From Lemma 3.4 and comparison theorem of impulsive equation (see [[6], Theorem

3.1.1]), we have x(t) ≤ z(t) and z(t) → z̃(t) as t ® ∞, that is

x(t) ≤ z(t) ≤ x̃(t) + ε, (4:5)

for all t large enough, for convenience, we may assume (4.2) hold for all t ≥ 0. From

(2.2) and (4.5), we get.⎧⎪⎪⎪⎨⎪⎪⎪⎩
dy(t)
dt

≤ (kβ(x̃(t) + ε) − d)y(t), t �= (n + l)τ , t �= (n + 1)τ ,

�y(t+) = −μ2y(t), t = (n + l)τ , n = 1, 2, ...

�y(t+) = 0, t = (n + 1)τ , n = 1, 2, ...

(4:6)

So y((n + l + 1)τ+) ≤ y((n + l)τ+)(1 - μ2) exp
[
∫(n+l+1)τ
(n+l)τ (kβ(x̃(s) + ε) − d)ds

]
, hence y((n

+ l)τ+) ≤ y(lτ+) rn and y((n + l)τ+) ® 0 as n ® ∞. Since 0 < y(t) ≤ y((n + l)τ+)(1 - μ1)

e
aealτ x∗

a+b(ealτ−1)x∗ lτ+
a(1−μ2)eaτ x∗

a+b[(ealτ −1)+eaτ −ealτ )]x∗ (1−l)τ for (n + l)τ < t ≤ (n + l + 1)τ, therefore y(t) ® 0

as t ® ∞.

Next we prove that x(t) → x̃(t) as t ® ∞. For ε >0, there must exist a t0 >0 such

that 0 < y(t) < ε for all t ≥ t0. Without loss of generality, we assume that 0 < y(t) < ε

for all t ≥ 0, then, for the first equation of system (2.2), we have

x(t)[(a − βε) − bx(t)] ≤ dx(t)
dt

≤ x(t)(a − bx(t)), (4:7)
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then, we have z1(t) ≤ x(t) ≤ z2(t), and z1(t) → x̃(t), z2(t) → x̃(t), as t ® ∞. While z1

(t) and z2(t) are the solutions of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dz1(t)
dt

= z1(t)[(a − βε) − bz1(t)], t �= (n + l)τ , t �= (n + 1)τ ,

�z1(t+) = −μ1z1(t), t = (n + l)τ ,

�z1(t+) = μ, t = (n + 1)τ ,

z1(0+) = x(0+),

(4:8)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dz2(t)
dt

= z2(t)[a − bz2(t)], t �= (n + l)τ , t �= (n + 1)τ ,

�z2(t+) = −μ2z2(t), t = (n + l)τ ,

�z2(t+) = μ, t = (n + 1)τ ,

z2(0+) = I(0+),

(4:9)

respectively. And

z̃1(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a − βε)e(a−βε)(t−nτ)z∗1

(a − βε) + b [e(a−βε)(t−nτ) − 1] z∗1
, t ∈ (nτ , (n + l)τ ],

(1 − μ1)(a − βε)e(a−βε)(t−nτ)
z∗1

(a − βε) + b [(e(a−βε)lτ − 1) + (1 − μ1) (e(a−βε)(t−nτ) − e(a−βε)lτ )] z∗1
, t ∈ ((n + l)τ , (n + 1)τ ].

(4:10)

where

z∗1 =
(A1 + μB1 − (a − βε)) +

√
(A1 + μB1 − (a − βε))2 + 4μ(a − βε)B1

2B1
, (4:11)

and A1 = (1-μ1)(a - bε)e(a-bε)τ >0 and B1 = be(a - bε)lτ [1 + (1 - μ1)(e
(a - bε)(1-l)τ - 1)] >0.

Therefore, for any ε1 >0. there exists a t1, t > t1 such that

z̃1(t) − ε1 < x(t) < z̃2(t) + ε,

Let ε ® 0, so we have

x̃(t) − ε1 < x(t) < x̃(t) + ε1,

for t large enough, which implies x(t) → x̃(t) as t ® ∞. This completes the proof.

4.2 The permanence

The following study is to investigate the permanence of system (2.2). Before starting

this study, we should give the following definition.

Definition 4.2. System (2.2) is said to be permanent if there are constants m, M >0

(independent of initial value) and a finite time T0 such that for all solutions (x(t), y(t))

with all initial values x(0+) >0, y(0+) >0, m ≤ x(t) ≤ M, m ≤ y(t) ≤ M holds for all t ≥

T0. Here T0 may depends on the initial values (x(0+), (y(0+)).

Jiao et al. Advances in Difference Equations 2012, 2012:9
http://www.advancesindifferenceequations.com/content/2012/1/9

Page 7 of 15



Theorem 4.3. If

ln
1

1 − μ2

<
kβ

b

[
ln

(
1 +

b(ealτ − 1)x∗

a

)
+ ln

(
1 +

b(1 − μ1)(eaτ − ealτ )x∗

a + b(ealτ − 1)

)]
− dτ ,

(4:12)

holds, then, system (2.2) is permanent. Where x* is defined as (3.5).

Proof. Let (x(t), y(t)) be a solution of (2.2) with x(0) >0, y(0) >0. By Lemma 3.3, we

have proved there exists a constant M >0 (bM < a) such that x(t) ≤ M, y(t) ≤ M for t

large enough. We may assume x(t) ≤ M, y(t) ≤ M for t ≥ 0.

In this view, for the first equation of system (2.2), we have

dx(t)
dt

> x(t)[(a − βM) − bx(t)], (4:13)

then, we obtain the following comparative impulsive differential equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dn(t)
dt

= n(t) [(a − βM) − bn(t)], t �= (n + l)τ , t �= (n + 1)τ ,

�n(t+) = −μ1n(t), t = (n + l)τ ,

�n(t+) = μ, t = (n + 1)τ ,

n(0+) = x(0+).

(4:14)

Analyzing (4.14) with similarity as (4.8), we have n(t) → ñ(t), and

ñ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a − βM)e(a−βM)(t−nτ)n∗

(a − βM) + b [e(a−βM)(t−nτ) − 1]n∗ , t ∈ (nτ , (n + l)τ ],

(1 − μ1)(a − βM)e(a−βM)(t−nτ)
n∗

(a − βM) + b [(e(a−βM)lτ − 1) + (1 − μ1) (e(a−βM)(t−nτ) − e(a−βM)lτ )]n∗ , t ∈ ((n + l)τ , (n + 1)τ ],

(4:15)

where

n∗ =
(A2 + μB2 − (a − βM)) +

√
(A2 + μB2 − (a − βM))2 + 4μ(a − βM)B2

2B2
,(4:16)

and A2 = (1 - μ1)(a - bM)e(a - bM)τ >0 and B2 = be(a-bM)lτ [1 + (1 - μ1)(e
(a - bM)(1-l)τ -

1)] >0. Following comparative theory of impulsive differential equation [6], we know

there exists a ε2 such that x(t) > ñ(t) - ε2 for all t large enough, and ε2 >0. So x(t) >[n*

+ (1 - μ1)(a - bM)e(a-bM)lτ /(a - bM) + b(e(a - bM)lτ - 1)] - ε2 = m2 for t large enough.

Thus, we only need to find m1 >0 such that y(t) ≥ m1 for t large enough. We will do it

in the following two steps.

(1) By the condition of Theorem 2, we can select m3 > 0, ε1 > 0 small enough such

that 0 < m3 < a
β, and

σ =
kβ
b

[
ln

(
1 +

b
(
e(a−βm3)lτ − 1

)
z∗

a − βm3

)
+ ln

(
1 +

b (1 − μ1)
(
e(a−βm3)τ − e(a−βm3)lτ

)
z∗

a − βm3 + b(ealτ − 1)

)]
−kβε1τ−dτ > 0.

where z* is defined as (4.20). We will prove that y(t) < m3 cannot hold for t ≥ 0.
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Otherwise,⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx(t)
dt

≥ x(t) [(a − βm3) − bx(t)], t �= (n + l)τ , t �= (n + 1)τ ,

�x(t) = −μ1x(t), t = (n + l)τ ,

�x(t) = x(t) + μ, t = (n + 1)τ ,

(4:17)

By Lemma 3.4, we have x(t) ≥ z(t) and z(t) → z(t), t ® ∞, where z(t) is the solution

of ⎧⎪⎪⎪⎨⎪⎪⎪⎩
dz(t)
dt

≥ z(t) [(a − βm3) − bz(t)], t �= (n + l)τ , t �= (n + 1)τ ,

�z(t) = −μ1z(t), t = (n + l)τ ,

�z(t) = z(t) + μ, t = (n + 1)τ ,

(4:18)

and

z(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a − βM)e(a−βm3)(t−nτ)n∗

(a − βm3) + b [e(a−βm3)(t−nτ) − 1] z∗
, t ∈ (nτ , (n + l)τ ],

(1 − μ1)(a − βm3)e(a−βm3)(t−nτ)
z∗

(a − βm3) + b [(e(a−βm3)lτ − 1) + (1 − μ1) (e(a−βm3)(t−nτ) − e(a−βm3)lτ )]z∗
, t ∈ ((n + l)τ , (n + 1)τ ],

(4:19)

where

z∗ =
(A3 + μB3 − (a − βm3)) +

√
(A3 + μB3 − (a − βm3))

2 + 4μ(a − βm3)B3

2B3
, (4:20)

and A3 = (1 − μ1)(a − βm3)e(a−βm3)τ > 0 and

B3 = be(a−βm3)lτ
[
1 + (1 − μ1)

(
e(a−βm3)(1−l)τ − 1

)]
> 0.

Therefore, there exists a T1 >0 such that

x(t) ≥ z(t) ≥ z(t) − ε1,

and ⎧⎨⎩
dy(t)
dt

≥ y(t)[kβ(z(t) − ε1) − d], t �= (n + l)τ ,

�y(t) = −μ2y(t), t = (n + l)τ , n = 1, 2, ...
(4:21)

for t ≥ T1. Let N1 Î N and N1τ > T1, integrating (4.21) on ((n + l - 1)τ, (n + l)τ), n ≥

N1, we have

y((n+l)τ ) ≥ (1−μ2)y((n+l−1)τ ) exp

⎛⎜⎝ (n+l)τ∫
(n+l−1)τ

[
kβ(z(t) − ε1) − d

]
dt

⎞⎟⎠ = (1−μ2)y((n+l−1)τ )eσ ,

then, y((N1 + k + l)τ) ≥ (1 - μ2)
ky((N1 + l)τ)eks ® ∞, as k ® ∞, which is a contradic-

tion to the boundedness of y(t). Hence there exists a t1 >0 such that y(t) ≥ m3.

(2) If y(t) ≥ m3 for t ≥ t1, then our aim is obtained. Hence, we only need to consider

those solutions which leave region R = {(x(t), y(t)) ∈ R2
+ : y(t) < m3} and reenter it

again. Let t∗ = inft≥t1{y(t) < m3}, there are two possible cases for t*.

Case 1. t* = (n + l - 1)τ, n1 Î Z+, then x(t) ≥ m3 for t Î [t1, t*) and y(t*) = m3, and y

(t*+) = y(t*) ≤ m3. Select n2, n3 Î N, such that
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(n2 − 1)τ > T2 =
ln

(
ε1
M

)
kβm3 − d

,

(1 − μ2)n2en3σ en2σ1τ > (1 − μ2)n2en3σ e(n2+1)σ1τ > 1,

where s1 = kbm2 - d <0, Let T = n1τ + n2τ. We claim that there must be a t2 Î [t*,

t* + T] such that y(t2) > m3, otherwise, consider (4.21) with z(t*+) = y(t*+). We have

z(t) = z(n+1)e
(kβm3−d)t + z(t), t ∈ ((n − 1)τ , (n + l − 1)τ ], (4:22)

and n1 + 1 ≤ n ≤ n2 + n3, then

|z(t) − z(t)| < Me(kβm3−d)(t−n1τ) < ε1,

and y(t) ≤ z(t) ≤ z(t) + ε1, (n1 + n2 - 1)τ ≤ t ≤ t* + T, which implies (4.22) holds for

t* + n2τ ≤ t ≤ t* + T. As in step 1, we have

y(t∗ + T) ≥ y(t* + n2)τ )en3σ ,

The second equation of system (2.1) gives⎧⎨⎩
dy(t)
dt

≥ y(t)(kβm2 − d) = σ1y(t), t �= (n + l − 1)τ ,

�y(t) = −μ2y(t), t = (n + l − 1)τ ,
(4:23)

Integrating (4.23) on [t*, t* + n2τ], we have

y(t∗ + n2τ ) ≥ (1 − μ2)n2m3e
σ1n2τ ,

thus we have

y(t∗ + T) ≥ (1 − μ2)n2m3e
σ1n2τ en3σ > m3,

which is a contradiction. Let t̄ = inft≥t∗{y(t) ≥ m3}, thus y(t̄) ≥ m3 for t ∈ [t∗, t̄], we

have y(t) ≥ y(t∗)eσ1(t−t∗) ≥ (1 − μ2)n2+n3m3eσ1(n2+n3) = m1 for t ≥ t̄. So we have y(t) ≥

m1. The same arguments can be continued since y(t̄) ≥ m3. Hence y(t) ≥ m1 for all

t ≥ t̄.

Case 2. t ≠ (n + l - 1)τ, n Î Z+, then y(t) ≥ m3 for t Î [t1, t*), and y(t*) = m3. Sup-

pose t∗ ∈ ((n′
1 + l − 1)τ , (n′

1 + l)τ ), (t ∈ Z+), then there are two possible cases for

t ∈ (t∗, (n′
1 + l)τ ).

Case 2(a). y(t) ≤ m3 for all t ∈ (t∗, (n′
1)τ ). Similar to case 1., we can prove that there

must be a t′2 ∈ [(n′
1 + l)τ , (n′

1 + l)τ + T] such that y(t′2) > m3. Here we omit it.

Let t̄ = inft>t∗ {y(t) > m3}, then y(t) ≤ m3 for t ∈ (t∗, t̄) and y(t̄) = m3. For t ∈ (t∗, t̄),
we have

y(t) ≥ (1 − p1)n2+n3m3e
(n2 + n3+1)σ1τ .

Let m1 = (1 − μ2)n2+n3m3e(n2+n3+1)σ1τ < m′
1, so y(t) ≥ m1 for t ∈ (t∗, t̄). For t > t̄, the

same arguments can be continued since y(t) ≥ m1.

Case 2(b). There exists a t ∈ (t∗, (n′
1)τ ) such that y(t) > m3. Let t̂ = inft>t∗ {y(t) > m3},

then y(t) ≤ m3 for t ∈ (t∗, t̂) and y(t̂) = m3. For t ∈ (t∗, t̂), (4.23) holds true, integrating
(4.23) on (t∗, t̂), we derive

y(t) ≥ y(t∗)eσ1(̂t−t∗) ≥ m3e
σ1τ > m1,
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Since y(t̂) ≥ m3 for t > t̂, the same arguments can be continued. Hence y(t) ≥ m3 for

t ≥ t1. This completes the proof.

5 Discussion
In this article, according to the fact of biological resource management, we proposed

and investigated a predator-prey model with impulsive releasing prey population and

impulsive harvesting predator population and prey population at different fixed

moment. We analyze that the predator-extinction periodic solution of this system is

globally asymptotic stability. If it is assumed that x(0) = 2, y(0) = 2, a = 2, b = 1, d = 1,

b = 0.6, k = 0.9, μ1 = 0.2, μ2 = 0.6, μ = 3, l = 0.25, τ = 1, obviously, the condition of

predator-extinction are satisfied, then the predator-extinction periodic solution of sys-

tem (2.1) is globally asymptotically stable (the numerical simulation can be seen in Fig-

ures 1, 2, and 3). We also obtain the condition of the permanence of system (2.2). If it

is assumed that x(0) = 2, y(0) = 2, a = 2, b = 1, d = 1, b = 0.6, k = 0.9, μ1 = 0.2, μ2 =

0.4, μ = 3, l = 0.25, τ = 1, obviously, the permanent condition of system (2.2) is satis-

fied, then, system (2.1) is permanent (the numerical simulation can also be seen in Fig-

ures 4, 5, and 6). From results of the numerical simulation, we know that there exists

an impulsive harvesting predator population threshold μ∗∗
2 , which satisfies

0.4 < μ∗∗
2 < 0.6. If μ2 > μ∗∗

2 , the predator-extinction periodic solution (x̃(t), 0) of sys-

tem (2.2) is globally asymptotically stable. If μ2 < μ∗∗
2 , system (2.2) is permanent.

From Theorems 4.1 and 4.3, we can easily guess that there must exist an impulsive

harvesting predator population threshold μ∗
2. If μ2 > μ∗

2, the predator-extinction peri-

odic solution (x̃(t), 0) of system (2.2) is globally asymptotically stable. If μ2 > μ∗
2,
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Figure 1 Time-series of x(t) of globally asymptotic stability predator-extinction periodic solution of
system (2.2) with x(0) = 2, y(0) = 2, a = 2, b = 1, d = 1, b = 0.6, k = 0.9, μ1 = 0.2, μ2 = 0.6, μ = 3, l
= 0.25, τ = 1.
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Figure 2 Time-series of y(t) of globally asymptotic stability predator-extinction periodic solution of
system (2.2) with x(0) = 2, y(0) = 2, a = 2, b = 1, d = 1, b = 0.6, k = 0.9, μ1 = 0.2, μ2 = 0.6, μ = 3, l
= 0.25, τ = 1.
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Figure 3 Phase diagram of globally asymptotic stability predator-extinction periodic solution of
system (2.2) with x(0) = 2, y(0) = 2, a = 2, b = 1, d = 1, b = 0.6, k = 0.9, μ1 = 0.2, μ2 = 0.6, μ = 3, l
= 0.25, τ = 1.
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Figure 4 Time-series of x(t) of permanence of system (2.2) with x(0) = 2, y(0) = 2, a = 2, b = 1, d =
1, b = 0.6, k = 0.9, μ1 = 0.2, μ2 = 0.4, μ = 3, l = 0.25, τ = 1.
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Figure 5 Time-series of y(t) of permanence of system (2.2) with x(0) = 2, y(0) = 2, a = 2, b = 1, d =
1, b = 0.6, k = 0.9, μ1 = 0.2, μ2 = 0.4, μ = 3, l = 0.25, τ = 1.
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system (2.2) is permanent. The same discussion can be applied to parameters μ1 and τ.

These results show that the impulsive effect plays an important role for the perma-

nence of system (2.2). Our results provide reliable tactic basis for the practically biolo-

gical resource management.
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