
Zhang Advances in Difference Equations 2012, 2012:94
http://www.advancesindifferenceequations.com/content/2012/1/94

RESEARCH Open Access

Homoclinic solutions for a forced generalized
Liénard system
Yongxin Zhang*

*Correspondence:
zyxzrbnu@163.com
Department of Mathematics and
Information Science, Leshan Normal
University, Leshan, 614004, People’s
Republic of China

Abstract
In this article, we find a special class of homoclinic solutions which tend to 0 as
t → ±∞, for a forced generalized Liénard system ẍ + f1(x)ẋ + f2(x)ẋ2 + g(x) = p(t). Since
it is not a small perturbation of a Hamiltonian system, we cannot employ the
well-known Melnikov method to determine the existence of homoclinic solutions.
We use a sequence of periodically forced systems to approximate the considered
system, and find their periodic solutions. We prove that the sequence of those
periodic solutions has an accumulation which gives a homoclinic solution of the
forced Liénard type system.
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1 Introduction
As a special bounded solution, homoclinic solution is one of important subject in the study
of qualitative theory of differential equations. In recent decades, many works (see e.g.,
[–]) contributed to homoclinic solutions and heteroclinic solutions for small perturba-
tion of integrable systems, where either the Melnikov method or the Liapunov-Schmidt
reduction was used.
As indicated in [, ], an orbit is referred to as a heteroclinic orbits if it connects two

different equilibria. It is called a homoclinic orbit if the two equilibria coincide. For au-
tonomous Hamiltonian systems homoclinic (heteroclinic) orbits can be found from the
invariant surfaces (curves) of identical energy containing saddles. In , Rabinowitz []
considered a nonautonomous Hamiltonian system

q̈ +Vq(t,q) = , ()

where t ∈ R, q : R → Rn and V : R × Rn → R is a differentiable function such that
V (t, ) ≡ , and gave the existence of its homoclinic solutions. His strategy is to construct
a sequence of periodic auxiliary systems to approximate the Hamiltonian system (), and
apply the variational method (see e.g., [, ]) to obtain periodic solutions for those aux-
iliary equations, and prove that the desired homoclinic solution is just an accumulation
of those periodic solutions. Later, several different types of Hamiltonian system were also
studied for homoclinic orbits (see e.g., [, ]). Based on these works, some efforts were
made to find homoclinic orbits for nonlinear systems with a time-dependent force. Izy-
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dorek and Janczewska [] considered () with a bounded time-dependent force f (t), i.e.,

q̈ +Vq(t,q) = f (t), ()

where t ∈ R, q : R → Rn and V : R × Rn → R and f : R → Rn, and found a solution q(t)
which satisfies

(
q(t), q̇(t)

) → (, ) as t → ±∞. ()

In addition, they also found in [] such a kind of special solutions for a similar equation
to (). As pointed in [], the limit (, ) is not a solution of the system, they called the so-
lution in () is homoclinic to zero. Later, some authors studied the existence of this special
solution of some Hamiltonian systems (see e.g., [–]).
To deal with some non-Hamiltonian systems with a time-dependent force, which is in-

dependent of the state variable but cannot be regarded as a small perturbation, the topo-
logical degree theory [, ] and the fixed point theory [, ] are also applied to give the
existence of periodic solutions and almost periodic solutions. Applying the Rabinowitz’s
strategy and the fixed point theory, Zhang [] considered the existence of homoclinic
solutions to the equation

ẍ + f (x)ẋ + g(x) = p(t),

by studying the convergence of a series of periodic solutions to the auxiliary periodic sys-
tems, he got a homoclinic solution which is an accumulation of the series of periodic so-
lutions.
In this article, we consider the existence of homoclinic solutions of the forced general-

ized Liénard type system

ẍ + f(x)ẋ + f(x)ẋ + g(x) = p(t), ()

where f, f and g are continuous functions on R and p is a bounded continuous function
on R. This generalized equation is frequently encountered as a mathematical model of
most dynamics processes in electromechanical systems of physics and engineering [].
When f(x)≡ , the equation becomes the equation in [].
Equation () is equivalent to the system

ẋ = y,

ẏ = –
[
f(x) + f(x)y

]
y – g(x) + p(t),

()

or

ẋ =


a(x)
[
y – b(x)

]
,

ẏ = –a(x)
[
g(x) – p(t)

]
,

()

where

a(x) = exp

(∫ x


f(s)ds

)
, b(x) =

∫ x


a(τ )f(τ )dτ .
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There are some results of boundedness and the oscillation of the solutions to Equation ()
[–]. In , Hesaaraki and Moradifam [] studied the global asymptotic and oscil-
lation and existence of periodic solution to a type of generalized Liénard system

ẋ =


a(x(t))
[
h
(
y(t)

)
– b

(
x(t)

)]
,

ẏ = –a
(
x(t)

)
g
(
x(t)

)
.

In , by using the theory of topological degree, Zhou et al. [] got the uniqueness of
periodic solution to the system

ẋ =


a(x(t))
[
h
(
y(t)

)
– b

(
x(t)

)]
,

ẏ = –a
(
x(t)

)[
g
(
x(t)

)
– e(t)

]
.

To study the existence of homoclinic solutions to Equation (), we still use a sequence
of periodic forced systems to approximate Equation (), and find their periodic solutions.
Because our system and those approximating systems are not Hamiltonian, we use the
fixed point theory and Massera’s theorem (see []) instead of the variational method in
finding those periodic solutions. We prove that the sequence of those periodic solutions
has an accumulationwhich gives an homoclinic solution of the forced Liénard type system.
We need the following hypotheses:

(H) p is nonzero and continuous bounded function on R and ‖p‖ := supt∈R |p(t)| = b > ,
where b ≤ a, ≤ a := supt∈R a(x) < +∞, such that k ∈ Z, p(–k) = p(k).

(H) For each x, y ∈ R, there exists a constant r >  such that |fi(x)– fi(y)| ≤ r|x– y| (i = , )
and f(x) – |f(x)|(M + aM

 ) ≥ a, whereM =max{M, ,b},M = g–(b).
(H) g ∈ C(R,R), g() = , g(±∞) = ±∞ and  < g ′(x)≤ a

M for each x ∈ R.

Our main result will be given as follows.

Theorem . Suppose that conditions (H)-(H) hold. Then system () has a nontrivial
homoclinic solution x(t), which satisfies that (x(t), ẋ(t))→ (, ) as t → ±∞.

When f(x) ≡ , the conditions of Theorem . are not equivalent to the conditions of
the results in []. Obviously, let

f(x)≡ , f(x) = e–|x|,

and

g(x) =


x, p(t) = cosπ t.

Then we get

a = e, b = , M = ,

and the conditions (H)-(H) hold.
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2 Proof of theorem
Lemma . Suppose that the conditions (H)-(H) hold, there is a region D surrounded by
a Jordan curve, such that every solution of () which starts from the point of D is bounded
uniformly.

Proof Let D be the closure of the region surrounded by the closed curve

� := AB∪ BC ∪CD∪DA′ ∪A′B′ ∪ B′C′ ∪C′D′ ∪D′A

as shown in Figure , where

AB =
{
(x, y) ∈ R

∣∣∣y = –
a

(x +M) –M,x ∈ [–M, ], y ∈

[
–M –

a

M, –M

]}
,

BC =
{
(x, y) ∈ R

∣∣∣y = –a(x +M) –M,x ∈
[
–M –

a

M, –M

]
,

y ∈ [–M, ]
}
,

CD =
{
(x, y) ∈ R

∣∣∣x = –M –
M
a
, y ∈

[
,M +

a

M

]}
,

DA′ =
{
(x, y) ∈ R

∣∣∣y =M +
a

M,x ∈

[
–M –

M
a
, 

]}
,

A′B′ =
{
(x, y) ∈ R

∣∣∣y = –
a

(x –M) +M,x ∈ [,M], y ∈

[
M,M +

a

M

]}
,

B′C′ =
{
(x, y) ∈ R

∣∣∣y = –a(x –M) +M,x ∈
[
M,M +

a

M

]
, y ∈ [,M]

}
,

C′D′ =
{
(x, y) ∈ R

∣∣∣x =M +
M
a
, y ∈

[
–M –

a

M, 

]}
,

DA′ =
{
(x, y) ∈ R

∣∣∣y = –M –
a

M,x ∈

[
,M +

M
a

]}
.

Let � := {(x, y, t)|(x, y) ∈D, t ∈ R}. For every t ∈ R, (x, y) ∈ �, we claim that qk(t, t,x,
y) ∈ � for all t > t. We only need to prove this claim for every solution starting with the
cylindrical surface � ×R.

Figure 1 Region D.
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If (x, y) ∈ AB, by (H), we have

ẋ = y < ,
dy
dx

= –f(x) – f(x)y –
g(x)
y

+
p(t)
y

≤ –f(x) – f(x)y +
p(t)
y

≤ –f(x) +
∣∣f(x)∣∣

(
M +

a

M

)
+

b
M

≤ –a +
b
M

≤ –a +
a
M

≤ –
a

.

Then the curve cannot leave � from AB×R for t > t.
If (x, y) ∈ BC, since x≤ M, by (H), we have |g(x)| ≥ b. Then

ẋ = y < ,
dy
dx

= –f(x) – f(x)y –
g(x)
y

+
p(t)
y

≤ –f(x) +
∣∣f(x)∣∣M

≤ –f(x) +
∣∣f(x)∣∣

(
M +

a

M

)

≤ –a.

Then the curve cannot leave � from BC ×R for t > t.
If (x, y) ∈ CD, from ẋ = y > , so the curve cannot leave � from CD×R for t > t.
If (x, y) ∈DA′, by (H),(H), we have

ẏ = –f(x)y – f(x)y – g(x) + p(t)

=
(
M +

a

M

)[
–f(x) – f(x)

(
M +

a

M

)]
– g(x) + p(t)

≤
(
M +

a

M

)[
–f(x) +

∣∣f(x)∣∣
(
M +

a

M

)]
– g(x) + p(t)

≤ –a
(
M +

a

M

)
– g

(
–M –

M
a

)
+ a

≤ –a
(
M +

a

M

)
+

a
M

(
M +

M
a

)
+ a

≤ –a
(
M +

a

M

)
+ a + 

≤ –a(M – ) –
aM


+ 

≤ .

Then the curve cannot leave � from DA′ ×R for t > t.
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Since the region D is symmetrical, we can prove that the curve cannot leave � from
A′B′ ∪ B′C′ ∪C′D′ ∪D′A×R for t > t. Then we complete the proof of the claim and this
lemma. �

From the combination of Lemma . and the Massera’s theorem (see []), we have the
following lemma.

Lemma . Suppose that (H)-(H) hold, and p is a T-periodic function. Then () has a
T-periodic solution x(t) satisfying |x(t)| + |ẋ(t)| ≤ B, where B depends on D.

Remark . From the construction of D, we can take ( + 
a + a

 )M as a value of B in
Lemma ..

Now we consider the following two periodic equations

ẍ + f(x)ẋ + f(x)ẋ + g(x) = p(t), ()

and

ẍ + f(x)ẋ + f(x)ẋ + g(x) = φ(t), ()

where p is ω-periodic function and φ is ω-periodic function. Suppose that all conditions
in Theorem . hold and

sup
t∈R

∣∣p(t)∣∣ ≤ sup
t∈R

∣∣φ(t)∣∣ < +∞.

Then, we obtain two periodic solutions (x(t), ẋ(t)) of () and (x(t), ẋ(t)) of (), from the
construction of D in Theorem ., we can obtain two Jordan domains Dp of () and Dφ of
() such that Dp ⊂Dφ . The trajectory of (x(t), ẋ(t)) is contained in Dp and the trajectory
of (x(t), ẋ(t)) is contained in Dφ . Hence, we can find a region D which is independent
of Dp and contains both the two trajectories.
For each k ∈ N, let pk : R → R be a k-periodic function such that pk(t) = p(t) for all

t ∈ [–k,k]. Since p(–k) = p(k) as indicated in (H), we see that pk is continuous on the
whole R. Now, we consider a series of periodic equations

ẍ + f(x)ẋ + f(x)ẋ + g(x) = pk(t),

or periodic systems

ẋ = y,

ẏ = –
[
f(x) + f(x)y

]
y – g(x) + pk(t).

()

Noting that supt∈R |pk(t)| ≤ supt∈R |p(t)| < +∞ for every k ∈ N, and from the discussion
above we can get results as follows.

Lemma . Suppose that conditions (H)-(H) hold. Then system () possesses a k-
periodic solution qk for every k ∈ N. Moreover, there exists a constant B independent of
k such that |qk| :=maxt∈[–k,k]{|xk(t)|, |yk(t)|} ≤ B.

http://www.advancesindifferenceequations.com/content/2012/1/94
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Now, for the sequence of periodic solutions {qk}k∈N determined in Lemma., we obtain
the following lemma by using the Ascoli-Arzela theorem.

Lemma . There exist a subsequence {qi}i∈N of {qk}k∈N and continuous functions q :
R→ R and q̃ : R → R such that qi → q, q̇i → q̃, as i→ +∞, in Cb(R,R).

Proof For each t, t ∈ R, t ≥ t, by Lemma ., there exists a constant B >  such that
| – f(xk(s))yk(s) – f(x(s))yk(s) – g(xk(s))| ≤ B. We note that

∣∣xk(t) – xk(t)
∣∣ =

∣∣∣∣
∫ t

t

dxk(t)
dt

dt
∣∣∣∣

≤
∫ t

t

∣∣yk(s)∣∣ds≤ B|t – t|,

∣∣yk(t) – yk(t)
∣∣ ≤

∫ t

t

∣∣–f(xk(s))yk(s) – f
(
x(s)

)
yk(s) – g

(
xk(s)

)∣∣dt

+
∫ t

t

∣∣pk(s)∣∣ds
≤ (B + b)|t – t|,

and

∣∣ẋk(t) – ẋk(t)
∣∣ = ∣∣yk(t) – yk(t)

∣∣ ≤ (B + b)|t – t|,∣∣ẏk(t) – ẏk(t)
∣∣ = ∣∣f(xk(t))yk(t) + f

(
x(t)

)
yk(t) + g

(
xk(t)

)
– pk(t)

– f
(
xk(t)

)
yk(t) – f

(
x(t)

)
yk(t) – g

(
xk(t)

)
+ pk(t)

∣∣
≤ ∣∣f(xk(t))yk(t) – f

(
xk(t)

)
yk(t)

∣∣ + ∣∣f(x(t))yk(t)
– f

(
x(t)

)
yk(t)

∣∣ + ∣∣g(xk(t)) – g
(
xk(t)

)∣∣ + ∣∣pk(t) – pk(t)
∣∣.

For |ẏk(t) – ẏk(t)|, since xk(t) is bounded, we can define

max
∣∣f (xk(t))∣∣ := r ≥ .

By the conditions (H), we can get the estimation as follows.

∣∣f(xk(t))yk(t) – f
(
xk(t)

)
yk(t)

∣∣
=

∣∣f(xk(t))yk(t) – f
(
xk(t)

)
yk(t) + f

(
xk(t)

)
yk(t) – f

(
xk(t)

)
yk(t)

∣∣
≤ ∣∣f(xk(t))yk(t) – f

(
xk(t)

)
yk(t)

∣∣ + ∣∣f(xk(t))yk(t) – f
(
xk(t)

)
yk(t)

∣∣
≤ ∣∣f(xk(t))∣∣∣∣yk(t) – yk(t)

∣∣ + ∣∣yk(t)∣∣∣∣f(x) – f
(
xk(t)

)∣∣
≤ r

∣∣yk(t) – yk(t)
∣∣ + Br

∣∣xk(t) – xk(t)
∣∣

≤ [
r(B + b) + Br

]|t – t|.

Let

max
∣∣f(xk(t))(yk(t) + yk(t)

)∣∣ := r ≥ ,

http://www.advancesindifferenceequations.com/content/2012/1/94
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we have

∣∣f(xk(t))yk(t) – f
(
xk(t)

)
yk(t)

∣∣
=

∣∣f(xk(t))yk(t) – f
(
xk(t)

)
yk(t) + f

(
xk(t)

)
yk(t) – f

(
xk(t)

)
yk(t)

∣∣
≤ ∣∣f(xk(t))yk(t) – f

(
xk(t)

)
yk(t)

∣∣ + ∣∣f(xk(t))yk(t) – f
(
xk(t)

)
yk(t)

∣∣
≤ ∣∣f(xk(t))(yk(t) + yk(t)

)∣∣∣∣yk(t) – yk(t)
∣∣ + ∣∣yk(t)∣∣∣∣f(x) – f

(
xk(t)

)∣∣
≤ r

∣∣yk(t) – yk(t)
∣∣ + Br

∣∣xk(t) – xk(t)
∣∣

≤ [
r(B + b) + Br

]|t – t|.

Moreover, by (H), we have

∣∣g(xk(t)) – g
(
xk(t)

)∣∣ ≤ a
M

∣∣xk(t) – xk(t)
∣∣ ≤ B

a
M

|t – t|.

Since p is continuous and bounded, there is a constant r >  such that

∣∣pk(t) – pk(t)
∣∣ ≤ r|t – t|.

Hence, we obtain

∣∣ẏk(t) – ẏk(t)
∣∣ ≤

{[
r(B + b) + Br

]
+

[
r(B + b) + Br

]
+ B

a
M

+ r
}
|t – t|.

So {qk}k∈N and {q̇k}k∈N are both equicontinuous. On the other hand, from Lemma .,
{qk}k∈N is bounded uniformly, and so does {q̇k}k∈N. Hencewe obtain the existence of a sub-
sequence {qi}i∈N convergent to a certain q := (x(t), y(t)) in Cb(R,R) by Ascoli-Arzela
theorem. �

Remark . We cannot conclude that the convergence of the subsequence {qi}i∈N is uni-
form for t ∈ R. However, for every a,b ∈ R, a < b, the uniform convergence holds on [a,b].

To be convenient, we still represent {qi}i∈N by {qk}. For each k ∈ N, let Ek ⊂ Cb(R,R),
denote the Banach space of continuous k-periodic functions on Rwith values in R under
the norm

‖x‖Ek =
(∫ k

–k

∣∣x(t)∣∣ dt
) 


.

Now, we prove the main result that q is the desired homoclinic solution of ().

Lemma . The function q determined by Lemma . is a nontrivial homoclinic solution
of ().

Proof The proof will be divided into three steps.
Step . We show that q is a solution of (). For every k ∈N and t ∈ R we have

ẋk = yk ,

ẏk = –
[
f(xk) + f(xk)yk

]
yk – g(xk) + pk(t).

()

http://www.advancesindifferenceequations.com/content/2012/1/94
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For each fixed a,b ∈ R, a < b, since qk → q and pk → p on [a,b] uniformly, we have

q̇k =
(
dxk(t)
dt

,
dyk(t)
dt

)
→ w

:=
(
y(t), –

[
f
(
x(t)

)
+ f

(
x(t)

)
y(t)

]
y(t) – g

(
x(t)

)
+ p(t)

)
()

on [a,b] uniformly. Hence there exists a constant k ∈N such that () can be transformed
into

ẋk = yk ,

ẏk = –
[
f(xk) + f(xk)yk

]
yk – g(xk) + p(t)

for each k ≥ k and t ∈ [a,b]. So q̇k is continuous on [a,b] for k ≥ k. Note the fact that
q̇k is a derivative of qk in [a,b] for every k ≥ k and q̇k converges to q̃ uniformly in [a,b]
by Lemma .. Since () holds and qk → q uniformly on [a,b], we have w = q̇ in (a,b).
Because a and b are arbitrary, we conclude that w = q̇ in R and q satisfies (). Moreover,
we have actually proved that {qk} converges to q in Cb(R,R).
Step . We prove that x(t)→ , as t → ±∞. We note that

ẋk ẍk = –g(xk)ẋk – f(xk)(ẋk) – f(xk)(ẋk) + pk(t)ẋk , ()

by Lemmas . and ., we have

ẋk ≤ M +
aM


,

from (H), we obtain

f(xk) + f(xk)ẋk ≥ f(xk) –
∣∣f(xk)∣∣

(
M +

aM


)
≥ a.

Integrating () from –k to k, we have

∫ k

–k

(
f(xk) + f(xk)(ẋk)

)
(ẋk) dt =

∫ k

–k
pk(t)ẋk dt.

So

a‖ẋk‖Ek ≤
∣∣∣∣
∫ k

–k

(
f(xk) + f(xk)(ẋk)

)
(ẋk) dt

∣∣∣∣
≤ ‖pk‖Ek‖ẋk‖Ek .

Hence, by (H), there is a constant d >  independent of k such that

‖ẋk‖Ek = ‖yk‖Ek ≤ d. ()

On the other hand, we have

xkẍk = –g(xk)xk – f(xk)ẋkxk – f(xk)(ẋk)xk + pk(t)xk . ()

http://www.advancesindifferenceequations.com/content/2012/1/94
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From Lemmas . and ., there exists a constantm >  independent of k such that

∣∣f(xk)(ẋk)∣∣ ≤ m.

Let m = min(x,ẋ)∈D g ′(x), since g ′(x) > , we have m >  and |g(xk)| ≥ m|xk|. Integrating
() from –k to k, we have

d
 = ‖ẋk‖Ek =

∫ k

–k
(ẋk) dt ≥ m‖xk‖Ek – (m + b)‖xk‖.

Then there exists a constant d >  independent of k such that

‖xk‖Ek ≤ d. ()

We note that

‖x‖L = lim
i→+∞

∫ i

–i

∣∣x(t)∣∣ dt = lim
i→+∞ lim

k→+∞

∫ i

–i

∣∣xk(t)∣∣ dt.

Obviously,

∫ i

–i

∣∣xk(t)∣∣ dt ≤
∫ k

–k

∣∣xk(t)∣∣ dt = ‖xk‖Ek ≤ d


holds for every i ∈N and k ∈N, k ≥ i. Since xk → x on [–i, i] uniformly. Let k → +∞, we
obtain

∫ i

–i

∣∣x(t)∣∣ dt ≤ d
,

and let i→ +∞, we have
∫ +∞

–∞

∣∣x(t)∣∣ dt ≤ d
.

Hence,

lim
r→∞

∫
|t|≥r

∣∣x(t)∣∣ dt = . ()

This implies that x(t)→  as t → ±∞. Similarly, y(t) →  as t → ±∞.
Step . p(t) �≡  implies that q is nontrivial.
We complete this lemma. �

Finally, Theorem . is proved by summarizing the results in Lemmas . and ..
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