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Abstract

In this article, we consider the impulsive stabilization of delay difference equations.
By employing the Lyapunov function and Razumikhin technique, we establish the
criteria of exponential stability for impulsive delay difference equations. As an
application, by using the results we obtained, we deal with the exponential stability
of discrete impulsive delay Nicholson’s blowflies model. At last, an example is given
to illustrate the efficiency of our results.
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Introduction
Discrete systems exist in the word widely and most of them are described by the dif-

ference equations. The properties of difference equations, especially the stability and

stabilization, were studied by many researchers, see [1-6] and the references therein.

As well known, in the practice, many systems are subject to short-term disturbances,

these disturbances are often described by impulses in the modeling process, therefore

the impulsive systems arise in many scientific fields and there are many works were

reported on impulsive systems [7-16]. In those works, the stability study for the impul-

sive system is one of the research focuses, see [11-16].

In the study of stability, the Lyapunov function and Razumikhin method were used by

many authors, see, for example, [6,17]. In [6], the Razumikhin technique was extended

to the discrete systems. Although the stability of impulsive delay difference equations

has been studied in some articles, for example, see [18], there are few article concerning

on impulsive stabilization of delay difference equations. From the article [19], we know

that the continuity is crucial in the proof of the stabilization theorem under the continu-

ous situation. However, under the discrete situation, there is no continuity to be utilized.

The loss of continuity puts difficulties in the way to get the stabilization theorem. The

main aim of this article is to establish the criteria of impulsive stabilization for delay dif-

ference equations, using the Lyapunov function and Razumikhin method.

Biological models were studied by many authors, see [20-25] and the references

therein. The stability of the positive equilibrium is a hot topic to be studied. In this
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article, we also study the stabilization of an impulsive delay difference Nicholson’s

blowflies model. We take an unstable difference Nicholson’s blowflies equation without

impulses, then the impulsive effects are adopted and the criterion of stability is estab-

lished for the impulsive Nicholson’s blowflies model.

The rest of this article is organized as follows. In Section 2, we introduce our nota-

tions and definitions. Then in Section 3, we present a theorem of impulsive stabiliza-

tion for delay difference equations. In Section 4, by using our result, we deal with the

discrete impulsive delay Nicholson’s blowflies equation. In Section 5, an example is

given to illustrate the efficiency of our results.

Preliminaries
Let ℝ denote the field of real numbers and ℝn denote the n-dimensional Euclidean

space. N and ℤ represent the natural numbers and the integer numbers respectively.

For some positive integer m, N-m = {-m, ..., -1, 0}. Given a positive integer m, for any

function �: N-m ® ℝn, we define ‖ϕ‖m = maxθ∈N−m{|ϕ(θ)|} , where | · | presents the

Euclidean norm.

We consider the following impulsive delay difference system:
{
x(n + 1) = f (n, x(n − m), x(n − m + 1), . . . , x(n)), n �= ηk − 1,
x(ηk) = βkx(ηk − 1),

(1)

where x(n) Î ℝn,
f : N × Rn × · · · × Rn︸ ︷︷ ︸

m+1

→ Rn
. bk is a constant for any k Î N. The

impulsive moments {ηk}∞1 are natural numbers and satisfy 0 = h0 <h1 < ··· <hk < ···, hk

® ∞ as k ® ∞.

The following initial values are imposed on system (1):

x(s) = ϕ(s), s ∈ N−m, (2)

where �: [-m, 0] ® ℝn satisfies || � ||m < ∞.

We assume f(n, 0, 0, ..., 0) ≡ 0, then systems (1) admits the trivial solution. We also

assume that for any initial values x(s) = �(s), s Î N-m, system (1) has a unique solution,

denoted by x(n, �).

Definition 1. [6] The trivial solution of (1) is said to be globally exponentially stable,

if for any solution x(n, �) with the initial data x(n) = �(n), n Î N-m, there exist con-

stants g > 0 and M > 0 such that

|x(n,ϕ)| ≤ M‖ϕ‖me−γn, ∀n ∈ N−m ∪ N. (3)

Impulsive stabilization of delay difference equations
In this section, we present the stabilization theorem of impulsive delay difference equa-

tions. By using the Razumikhin technique, we obtain the sufficient conditions to guar-

antee the exponential stability of system (1). Moreover, another criterion of

exponential stability for system (1) is given, which does not depend on the Lyapunov

function but just depends on the system function f, impulsive moments {hk} and the

impulsive gain {bk}. Some techniques we used in the proof of the stabilization theorem

are motivated by [19].
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Theorem 2. Assume there exist a positive function V (n, x) and positive constants c1,

c2, p, l, a, a > 1, such that

C1: c1|x|
p ≤ V (n, x) ≤ c2 |x|

p, for all n Î N-m ∪ N and x Î ℝn.

C2: If n ≠ hk - 1, for any function �: N-m ∪ N ® ℝn, the following inequality holds

V(n + 1, f (n, ϕ)) ≤ (1 + λ)V(n, ϕ(n))

whenever qV (n + 1, �(n + 1)) ≥ V (n + s, �(n + s)) for all s Î N-m, where q ≥ e2la.

C3: V (hk, bk(�(hk - 1))) ≤ dkV (hk - 1, �(hk - 1)), where dk > 0.

C4: hk+1 - hk ≤ a, ln dk + al <-l(hk+1 - hk).
Then, for any initial data x(n) = �(n), n Î N-m, there exists a positive constant C,

such that

|x(n, ϕ)| ≤ C‖ϕ‖me−
λ
p n,

that is, the trivial solution of system (1) is exponentially stable.

Proof. For the sake of simplicity, we write V (n) = V (n, x(n)).

Choose M > 1, such that

(1 + λ)c2 ‖ϕ‖pm ≤ M ‖ϕ‖pm e−λη1e−αλ < M ‖ϕ‖pm e−λη1 ≤ qc2 ‖ϕ‖pm . (4)

We claim that for any n Î [hk, hk+1), k Î N,

V(n) ≤ M ‖ϕ‖pm e−ληk+1 . (5)

First, we will show, when n Î [0, h1),

V(n) ≤ M ‖ϕ‖pm e−λη1 . (6)

Obviously, when n Î N-m, V(n) ≤ M ‖ϕ‖pm e−λη1 .

If (6) is not true, then there must be an n̄ ∈ [0, η1 − 1) and an n* ≥ 0 such that

V(n̄ + 1) > M ‖ϕ‖pm e−λη1 , V(n) ≤ M ‖ϕ‖pm e−λη1 , n ≤ n̄,

and

V(n∗) ≤ c2 ‖ϕ‖pm , c2 ‖ϕ‖pm < V(n) ≤ M ‖ϕ‖pm e−λη1 , n∗ < n ≤ n̄. (7)

It should be pointed out there may be a case n∗ = n̄ , that is, there no n satisfies the

second segment of (7). If it is true, then for any n ≤ n̄ , we have

V(n) ≤ c2 ‖ϕ‖pm . (8)

Obviously, for any s Î N-m,

qV(n̄ + 1) > qM ‖ϕ‖pm e−λη1 > qc2 ‖ϕ‖pm ≥ V(n̄ + s).

From C2 we get

V(n̄ + 1) ≤ (1 + λ)V(n̄),

that is

V(n̄) ≥ 1
1 + λ

V(n̄ + 1) >
1

1 + λ
M ‖ϕ‖pm e−λη1

=
eαλ

1 + λ
M ‖ϕ‖pm e−λη1e−αλ

> M ‖ϕ‖pm e−λη1e−αλ ≥ c2 ‖ϕ‖pm ,
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which contradicts with (8), then there must be an n such that the second segment of

(7) holds.

When n ∈ [n∗ + 1, n̄] , from (7),

V(n + s) ≤ M ‖ϕ‖pm e−λη1 < qc2 ‖ϕ‖pm < qV(n).

By virtue of condition C2, when n ∈ [n∗ + 1, n̄] ,

V(n) ≤ (1 + λ)V(n − 1). (9)

From the definitions of n̄ and n*, we have V(n̄ + 1) ≥ V(n̄ + s) and V (n* + 1) ≥ V

(n* + s), then we get

qV(n̄ + 1) ≥ V(n̄ + s), s ∈ N−m,

and

qV(n∗ + 1) ≥ V(n∗ + s), s ∈ N−m.

Using condition C2 and inequality (9), we obtain

V(n̄ + 1) ≤ (1 + λ)V(n̄) ≤ (1 + λ)n̄−n∗
V(n∗ + 1)

≤ (1 + λ)αV(n∗) < eαλc2 ‖ϕ‖pm .

Since V(n̄ + 1) > M ‖ϕ‖pm e−λη1 , we get

M ‖ϕ‖pm e−λη1 < eαλc2 ‖ϕ‖pm ,

which is in contradiction with (4), then (6) holds, that is (5) holds for k = 1.

Now we assume (5) holds for k = 1, 2, ..., h - 1, i.e. when n Î [hk-1, hk), k = 1, 2, ...,

h,

V(n) ≤ M ‖ϕ‖pm e−ληk . (10)

From condition C3 and condition C4,

V(ηh) ≤ dhV(ηh − 1) ≤ dhM ‖ϕ‖pm e−ληh

≤ M ‖ϕ‖pm e−ληh+1e−αλ ≤ M ‖ϕ‖pm e−ληh+1 .
(11)

Now we will show, when n Î [hh, hh+1),

V(n) ≤ M ‖ϕ‖pm e−ληh+1 . (12)

If (12) doesn’t hold, there must be an n̄ ∈ (ηh, ηh+1 − 1) and an n∗ ∈ [ηh, n̄] , such

that

V(n̄ + 1) > M ‖ϕ‖pm e−ληh+1 , V(n) ≤ M ‖ϕ‖pm e−ληh+1 , n ∈ [ηh, n̄],

and

V(n∗) ≤ M ‖ϕ‖pm e−ληh+1e−αλ, V(n) > M ‖ϕ‖pm e−ληh+1e−αλ, n∗ < n ≤ n̄. (13)

Now we claim n∗ < n̄ . If it is not true, then n∗ = n̄ . Since qV(n̄ + 1) ≥ V(n̄ + s) , s Î

N-m, from condition C2, we get V(n̄ + 1) ≤ (1 + λ)V(n̄) , that is
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V(n∗) = V(n̄) ≥ 1
1 + λ

V(n̄ + 1) ≥ eλα

1 + λ
M ‖ϕ‖pm e−ληh+1e−αλ > M ‖ϕ‖pm e−ληh+1e−αλ,

which is in conflict with (13).

For n ∈ [n∗ + 1, n̄] and s Î N-m,

V(n+s) ≤ M ‖ϕ‖pm e−ληh = eλ(ηh+1−ηh)M ‖ϕ‖pm e−ληh+1 ≤ e2λαM ‖ϕ‖pm e−ληh+1e−αλ ≤ qV(n).

Using condition C2, we have

V(n) ≤ (1 + λ)V(n − 1), n ∈ [n∗ + 1, n̄],

and, obviously,

qV(n̄ + 1) ≥ V(n̄),

then by virtue of condition C2, we obtain

V(n̄ + 1) ≤ (1 + λ)V(n̄). (14)

Using the definition of V (n*), we can easily get

qV(n∗ + 1) > V(n∗ + s), s ∈ N−m.

Then, by virtue of condition C2 we have

V(n∗ + 1) ≤ (1 + λ)V(n∗). (15)

Consequently,

V(n̄ + 1) ≤ (1 + λ)V(n̄) ≤ (1 + λ)n̄−n∗
V(n∗ + 1)

≤ (1 + λ)n̄−n∗+1V(n∗) ≤ (1 + λ)αV(n∗)

< eαλM ‖ϕ‖pm e−ληh+1e−αλ

= M ‖ϕ‖pm e−ληh+1 < V(n̄ + 1),

which is a contradiction. Then (5) holds for k = h + 1.

By induction, we know (5) holds for any n Î [hk, hk+1), k Î N.

From condition C1, for any n Î [hk, hk+1), k Î N

c1
∣∣x(n, ϕ)

∣∣p ≤ V(n) ≤ M ‖ϕ‖pm e−ληh+1 ≤ M ‖ϕ‖pm e−λn,

that is

|x(n, ϕ)| ≤
(
M
c1

)1/p

‖ϕ‖me−
λ
p n,

which is the assertion. □
Now we are on the position to state a corollary, which is another criterion of expo-

nential stability for system (1). This criterion does not dependent on the Lyapunov

function but just dependents on the system function, impulsive moments and impul-

sive gain.

Corollary 3. Assume that system (1) satisfies
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(1) for any n Î N, there exist positive constants u(n) and aj (n), j = 0, 1, ..., m, such

that

|f (n, x(n − m), x(n − m + 1), . . . , x(n))| ≤ u(n)|x(n)| +
m∑
j=0

aj(n)|x(n − j)|

and μ0 = sup
n∈N

{u(n)} , μ = sup
n∈N

{∑m

j=0
aj(n)

}
are finite numbers.

(2) there exist positive constant l, integer a > 1 and constant q, satisfying q ≥ e2la,

such that μq(μ0 + μ) <1 and

0 <
μ2
0 + μ0μ

1 − qμ(μ0 + μ)
− 1 ≤ λ.

(3) hk+1 - hk ≤ a and ln dk + l(hk+1 - hk) ≤ -la where dk = β2
k , k Î N.

Then, for any initial data �(s), s Î N-m, the solution x(n, �) of system (1) satisfies

|x(n, ϕ)| ≤ ‖ϕ‖me−
λ
2 n,

that is, the trivial solution of (1) is globally exponentially stable.

Proof. Let c1 = c2 = 1, p = 2, V (n) = |x(n)|2 in Theorem 2. Under this situation, it is

sufficient to verify the condition C2 of Theorem 2. Using condition (1), Hölder inequal-

ity and the assumption |xn+j|
2 ≤ q|xn+1|

2, for j Î N-m, if n ≠ hk - 1, we can obtain

∣∣x(n + 1)
∣∣2 = |f (n, x(n − m), x(n − m + 1), . . . , x(n))|2

≤
⎛
⎝u(n)|x(n)| +

m∑
j=0

aj(n)|x(n − j)|
⎞
⎠

2

= u2(n)
∣∣x(n)∣∣2 + 2u(n)|x(n)|

⎛
⎝ m∑

j=0

aj(n)|x(n − j)|
⎞
⎠ +

⎛
⎝ m∑

j=0

aj(n)|x(n − j)|
⎞
⎠

2

≤ u2(n)
∣∣x(n)∣∣2 + u(n)

m∑
j=0

aj(n)(
∣∣x(n − j)

∣∣2 + ∣∣x(n)∣∣2)

+

⎛
⎝ m∑

j=0

(aj(n))
1
2 (aj(n))

1
2

∣∣x(n − j)
∣∣
⎞
⎠

2

≤ u2(n)
∣∣x(n)∣∣2 + u(n)

m∑
j=0

aj(n)(q
∣∣x(n + 1)

∣∣2 + ∣∣x(n)∣∣2)

+

⎛
⎝ m∑

j=0

aj(n)

⎞
⎠

⎛
⎝ m∑

j=0

aj(n)q
∣∣x(n + 1)

∣∣2
⎞
⎠

≤ u(n)

⎛
⎝u(n) +

m∑
j=0

aj(n)

⎞
⎠∣∣x(n)∣∣2 + q

⎛
⎝ m∑

j=0

aj(n)

⎞
⎠ (u(n) + a(n))

∣∣x(n + 1)
∣∣2

≤ μ0(μ0 + μ)
∣∣x(n)∣∣2 + qμ(μ0 + μ)

∣∣x(n + 1)
∣∣2.
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From condition (2) we have qμ(μ0 + μ) <1, this yields

∣∣x(n + 1)
∣∣2 − ∣∣x(n)∣∣2 ≤

(
(μ0 + μ)μ0

1 − qμ(μ0 + μ)
− 1

) ∣∣x(n)∣∣2 ≤ λ
∣∣x(n)∣∣2.

That is,

V(n + 1) − V(n) ≤ λV(n).

This completes the proof. □

Application to discrete impulsive delay Nicholson’s blowflies model
Consider the discrete Nicholson’s blowflies model with delay (see [24,25]):

x(n + 1) − x(n) = −cx(n) + ax(n − m)e−bx(n−m), n = 0, 1, . . . , (16)

where c Î (0, 1), a, b Î (0; +∞) and m Î N, together with the initial values

x(n) = ϕ(n), n ∈ N−m,

where �(n) >0, n Î N-m.

In view of the application of system (16) in practice, we only take an interest in the

positive value of (16). When c < a, there is a unique positive equilibrium

u∗ =
1
b
ln

a
c
.

In [24,25], the authors studied the fold bifurcation and Neimark-Sacker bifurcation.

For the convenience, we present the result in [25] as follows:

Lemma 4. Suppose that c <a is satisfied and denotes

a∗ = c exp

⎛
⎝1 +

((1 − c)2 + 1 − 2(1 − c) cos θ)
1
2

c

⎞
⎠ ,

where θ is the solution of sin(mθ)
sin((m+1)θ) =

1
c , and θ ∈ (0, π

m+1) ,

(1) If a < a*, then u* is asymptotically stable.

(2) If a > a*, then u* is unstable.

Here, we assume that a > a* and consider a discrete impulsive Nicholson’s blowflies

model with delay:
⎧⎨
⎩
x(n + 1) − x(n) = −cx(n) + ax(n − m)e−bx(n−m), n �= ηk − 1,
x(ηk) = u∗ + βk(x(ηk − 1) − u∗),
x(n) = ϕ(n), n ∈ N−m

(17)

where bk Î ℝ, hk, k = 1, 2, ..., are the instances of impulse effect, satisfying 0 <h1 <h2
< ... <hk < ..., and hk ® ∞ as k ® +∞. We suppose there exists a positive constant a
such that hk+1 - hk ≤ a.
Substituting yn = xn - u* into (17) yields

⎧⎨
⎩
y(n + 1) = (1 − c)y(n) + c(y(n − m) + u∗)e−by(n−m) − cu∗, n �= ηk − 1,
y(ηk) = βky(ηk − 1),
y(n) = ϕ(n) − u∗, n ∈ N−m.

(18)
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Definition 5. We call the equilibrium u* of system (17) is exponentially stable, if the

trivial solution of system (18) is exponentially stable.

It is easy to get that (-u*, +∞) is an invariant set of system (18). For {y(n)} ⊂ (-u*,

+∞),

|f (n, y(n), . . . , y(n − m))|
= |(1 − c)y(n) + c(y(n − m) + u∗)e−by(n−m) − cu∗|
≤ (1 − c)|y(n)| + c|(y(n − m) + u∗)e−by(n−m) − cu∗|
= (1 − c)|y(n)| + c|e−bξ (1 − b(ξ + u))||y(n − m)|
≤ (1 − c)|y(n)| + cebu

∗ |y(n − m)|
= (1 − c)|y(n)| + a|y(n − m)|,

(19)

Where ξ Î (-u*, y(n - m)].

By using Corollary 3, inequality (19) and noting hk+1 - hk ≤ a, we can get the follow-

ing corollary:

Corollary 6. Assume there exist constants l > 0, integer a > 1 and q ≥ e2la, such that

the following inequalities hold

(1) aq(1 - c + a) <1 and 0 <
(1−c)2+a(1−c)
1−aq(1−c+a) − 1 ≤ λ .

(2) ln β2
k + λ(ηk+1 − ηk) ≤ −λα .

Then, the positive equilibrium u* of (17) is exponentially stable.

Corollary 7. Suppose that 0 < a(1 - c + a) < 1 in system (17). Given a positive con-

stant l and an integer a > 1 satisfying λ < − 1
2α

ln(a(1 − c + a)) , hk+1 - hk <a, k = 1,

2, ..., and

0 <
(1 − c)2 + a(1 − c)
1 − ae2αλ(1 − c + a)

− 1 ≤ λ.

If there exist constants {βk}∞k=1 , such that

ln β2
k < −2λα,

then, the positive equilibrium u* of (17) is exponentially stable.

Proof. Taking q = e2la, noting hk+1 - hk ≤ a and by virtue of Corollary 6, we get the

assertion directly. □
Remark 8. Corollary 7 tells us, for any positive constant l satisfying

λ < − 1
2α

ln(a(1 − c + a)) , we can take an impulsive strategy {ηk}∞k=1 and {βk}∞k=1 , such
that the equilibrium u* is exponentially stable, the exponential rate is less than − λ

2 .

Numerical experiments
We take a = 0.03, b = 0.5, c = 0.001, m = 1000 in the system of (16), the equilibrium

of Equation (16) is u* = 6.8024 and it is unstable [24,25] (see Figure 1), where the

initial values are �(n) ≡ 6.

We adopt the impulsive control as follows:

Choose hk = 3k, and then choose bk = e -0.3, take l = 0.1 and q = 2.

The conditions of Corollary 6 are satisfied, then the positive equilibrium point of

(16) is exponentially stable (see Figure 2), where the initial values are also �(n) ≡ 6.
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Figure 1 Instability of the equilibrium u* = 6.8024 (no impulses).

Figure 2 Stability of the equilibrium u* = 6.8024 (with impulsive effect).
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Conclusion
In this article, we established some global exponential stability criteria for impulsive

delay difference systems by employing the Lyapunov function and Razumikhin techni-

que. Using our result, we dealt with the discrete impulsive Nicholson’s blowflies

model. We obtained the sufficient conditions of exponential stability for the positive

equilibrium of this model. At last, we presented an example to illustrated the e ciency

of our results.
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