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Abstract

In this article, we solve the open problem 24.5.6 given in the study of Ismail, which
consists of extending the action of g-translation operators introduced by Ismail to
some measurable functions by means of basic Fourier theory. Also, we prove that
the g-exponential function is the only solution of the g-analogue of the Cauchy
functional equation. As application we give an inversion formula for the g-Gauss
Weierstrass transform.
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Introduction
The concept of the g-translation operators EZ introduced by Ismail [1] was defined in

polynomials through their action on the continuous g-Hermite polynomials H,, (x | g)

as follows
n .
E'H x|q) = (q’q)n Hy (x| B (mzfnz)/4, 1
v Ha(x1q) ,Zé( G, FnEsn()d (1)
where

2n(cos(0)) = 7141 + e¥)e M (=2 ¥ ; )01
In others words

e j+(m?+(n—-m—2j)*)/4 H,, Hy—m—2
T - Y ¢ (x19)H 2 (19)

(4:9), 0<mjm+2j<n (@% %) (@ D) (@ @) s

’

where the polynomials H,, (x | ¢q) are defined by (see [2,3])

- (4 9), i(n—2k)0
H,(cos@|q) = e . 2
(€080 = 2 (4,440 ®

It was shown in [1] that the g-translation operators EZ commute with the Askey-

Wilson operator Dy on the space of all polynomials and by the use of the following

expansion [3]
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7" Hy (x19). 3)

@?; 4 oo ) = o
(90?; 4 )ooq(x @) g(q:q)n

In ([1], (2.21)), the author proved the following product formula for the g-exponen-
tial function

EZEq(x;oe) = Eq(x a)Eq(y; ). (4)
Furthermore, if y and z are two complex variables, then we have [1]

EE; = E3E,

Eyf (x) = Egf ().

In [3] problem 24.5.6, Ismail proposed the extension of the action of E; to measur-

able functions and proving that the only measurable functional solution of the g-analo-
gue of the Cauchy functional equation

Eyf (x) = f(x)f (7)

is the g-exponential function. & (x;a). The purpose of this paper is to define a new
g-translation operator T related to Askey-Wilson operator acting in some measurable
functions by means of the basic Fourier series. We show that the new g-Translation
coincides with Eg on the set of continuous g-Hermite polynomials. In the same con-

text, we establish many properties satisfied by the g-translation operator and generaliz-
ing the classical ones.
In the first section, we recall some results of basic Fourier series given in [4]. In Sec-

tion “Preliminaries”, we define and study the g-translation operator Tj. Also we solve

the following problem

{Dq,xu(x, 7) = Dyyu(x, y) (5)
u(x, 0) = f(x), f € H,.

As a consequence of (5) we solve the basic analogue of the Cauchy functional equa-

tion
fx®y) =Tf (y) = fF(f () (6)

where the function fis in the same subspace of L*(w (x) dx). In addition, we prove
the g-translation invariance of the measure w (x) dx over (-1, 1). Some g-analogous of
the Gauss Weierstrass transforms are studied in Section “q-Gauss Weierstrass

transform”.

Preliminaries
Let 0 <g < 1 and a € C, the g-shift factorial is defined by (see [2])

(@ q)o =1,
. _ n—1 . A _
(afq)n—]_[k:() (1-aq*), n=1,2,...,00.

Given a function f (x) with x = cos 6, f (x) can be viewed as a function of .
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Let
f(eie) = f(cos8).
The Askey-Wilson-divided difference operator Dy is defined by
-1 -1
flq2e") = f(q 2€")
1 1 :
(g% —q?)isin®

(Daf)(x) =

The g-exponential function is given by [5]
£,(cos6, cos ;) = (@ 0o i(_ei(ewb)q(lfn)/z _ei0-0)g1-m12, )
L N T o ' o
x (aeii(ﬁ)n n?/4

(4 9),

The g-exponential function £;(cos 6, cos ¢; ) is a solution of the g-difference equa-

tion of first-order [3]
2aq'/*
DyEy(cos b, cosp;a) = 1 —4q &4(cos b, cosg;a).
Put
Ei(xa) = Ex, O;a),
then, we have (see [3])
Eq(x, yia) = & @)Eq(y; @),
and
lim &(x; (1 - q)a) = exp(2ax).
Ismail and Zhang [5,3] defined the g-cosine and g-sine functions through their g-
exponential function as in the standard way, i.e.,
&g iw) = Cy(x; @) +iS4(x; ),

and used transformation formulas to continue them analytically to entire functions in
the variable w. Bustoz and Suslov [4] have established the following orthogonality rela-

tions
1
/ Eq(%; iewn) Eq(x; iwm )w(x)dx = 2k(wn)8pm, (8)
-1
where
2i0 ,—2if.
w(cos @) = (e e ")

(q1/2ezi6, q1/2e—2i(9; q)oo’
@03 (%) 5~ q7

He)=x (@)% (—40% )y = 1+ 0?q"
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wy = 0, w; <wy < ..., are zeros of the g-sine function Sq,((ql/4 + gV*/2); w) and for n
=1,2,...,0,=-0,

From [4], we have the following asymptotic estimates as n — oo
(_q; qz)oo (9)
(=% D)%
and for 0 < e <1/2 and |¢| < 1 < (¢° + ¢)/2, we have

(_q1/4—5 |wn|; ql/z)oo
(9,G%, 9" 7%, 4) o (—qw}; 4°) o

wn ~ g4, andk(w,) ~ 27

1E4(x; icwn)] < ~Cq ", (10)

where C = 1/(-¢"7, ¢; )¢’ 7° ¢")...

g-Translation

We define the g-Fourier transform Fy as

Fq(f)(n) = /_1 E(x; —icwn)f (V)w(x)dx, n € Z.

Put

[e.¢]

P(k(wn)) = {(zn)nezs Y

n=—00

1
2k(wn)

2
|2n|* < oo}.

Theorem 1. The transform Fyis an isomorphism from L*((-1, 1), w(x)dx) into I* (k
(w,,)) and its inverse is given by

o]

1= Yy FOE i00)

n=—00

Proof. The result follows from the fact that the family {&;(x;iwn)}52_ is complete
and orthogonal in L* (-1, 1), w(x)dx) (see [4], [6]). O
Next, we use the g-Fourier series to define the g-translation operators T;. Let denote

by H,, (¢ > 0), the space of functions in L*((~1, 1), w(x)dx) such that
o q74£|n|

n=—00 2ke(cwn) |]:(f)(11)|2 < 00.

Definition 1. Let 0 < ¢ <1/2 and fin H,, we put

o0

n;m 2k(1wn).7'—q(f)(n)5q(x; iwn)E,(y; iwp),

Tof (x)

(o]

1 .
= X () TN OEs prion)

The operators T, are called g—translation operators associated to the Askey-Wilson

operator.
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Remark 1. (1) The g-translation operators are characterized by the formula
Fo(Taf)(n) = E4(y; iwn) Fy(f)(n), n € Z.
(2) The Askey-Wilson operator introduced in (7) can be defined on the space H;
via
1/4
i
— q .

PIW =" 1T B ODE s ion)

Proposition 2. For 0 < ¢ <1/2, we have
(1) Tf; =id

(2) Ty&q(xiwn) = Eq4(x; iwn)Eq(y; iewn)
(3) Tof (x) = Tyf (v)

(4) DyTyf = TyDof f € Hy,

where id denotes the identity operator.
Proof. The properties (1)-(3) are evident. To prove property (4), let

F) = Y Fy(f)(n)Ey(x: iwn) € Hi.

n=—0oQ

From (9) and (10) we have

o 1

2" , ,
_ m q q\Xr tWn JC g A, 1y
Y 1 eomFA ) ion) g o)

n=—0oQ

TiDyf .

DyTyf

0O

Theorem 3. For 0 <¢ < 1/2 and f in H,, the function
u(x, y) = Tyf (x),
is the unique solution of the system

{Dq,xu(x' Y) = qu)’u(x’ y)' (11)
u(x, 0) = f(x).
Proof. 1t is clear that the function T)f(x) is a solution of the system (11). Applying
the g-Fourier transform to each member of the system (11), we obtain for n € 7,

. 1/4
Doy () = T onFiu (),

Fq (u (. 0))(n) = F4(f)(n).
Hence

Fq ( (5 y))(n) = Fg(f)(n)Eq(ys iwon)-
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So that

u(x, ) = > FylN)(n)Ey(y: iwn)Ey(x; icon)

- Tf (x).

]

Proposition 4. Let 0 < ¢ <1/4, we have

&y (x; it) € H,.

Proof. From the integral (3.13) in [7], we get

1
F (& (i) (n) = [1 Eq( x; it) Eq(x; —iown)w(x)dx
= Sing,(t, n),
where

(@' @)10(—q07; 4%) LM ((it, —iwn; 4'/7) )

Si t, = .
MGl M= 2 ) (0 + 08 Im((it =i 672

By (9), we have the asymptotic estimates as n —

1/2—2n.

(=407 0" )0 ~ (=4 $G%)oo
~ (_)nq7n2+1/2n(_q1/2;qZ)n(_q3/2;qz)oo,
and similarly
Im(it, —iwn; "/*)oo ~ (—1)"q " Im(it, ig"*;4")oc.

Then from (9) and relation ((3.15), [7]), we obtain as n — oo

243 s 1/4. 412
(9, 47)ooIm(it, 16775 47 o s (12)

Singy(t, n) ~ 2qY4(q, 9)2. (4732, 42, q; ¢*) o,

and

(4. 4*)3Im(=it, ig""* '), 5

13
2q"%(q,9)%, (732, 4"2, q, qz)ooq 43

Sincy(t, —n) ~

So that

q74|n|

2ke(wy) |F (& (i) (n))* ~ Cqli—4em!,

Then the following series

x —4e|n
q In|

. o) FEGINO

n=—

converges iff ¢ < 1/4.
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This show for 0 <¢ < 1/4 we have

& (x; it) € H,

and
O
o0
Eg(xit) = Y Sincy(t, n)Ey(x; ieon). (14)
n=—00
Proposition 5. For t = —iq'm'”, n=0,=+1,+2,...we have

ThEq(x; it) = E4(x; it) E4 (v it).

Proof. From Proposition 2, we see that the following two functions
(6 y) = &(xit)Eq (v i),

and
(x,y) = Th&q(x; it),

are solutions of the system

{ Dyxti(x,y) = Dgyu(x,y),
u(x,0) = &(x; ).

The result follows by Theorem 3. O

In the following proposition, we find the invariance of the measure w(x)dx over (-1,
1) by the g-translation operators.

Proposition 6. Let 0 < ¢ <1/2 and fe H,. Then

1 1
/ Tgf(x)w(x)dx=[ f(x)w(x)dx.
-1 -1
Proof. We have
lTy d—lool]-" Eq(xiwn)Eq(ys i d
[ 1 M (x)w(x)dx = [ 1 Z;)o () (F) (1) E4(x; iwn) Eq(y; in)w(x)dx.

Then, we get after interchangement of integral and sum

1 1
| T 7)) - [ s 5
-1 -1
To justify the interchangement of integral and summation, we put
3 [y FOWECs 008 r ol =3 16
22 [ (e n)Eq(X; iwn ) Eq(ys iwy) lw(x)dx = 2 Cn. (16)
Let 0 < 1 <1/4 and J > O such that 27 + J <1/2, by (9) and (10), we have
~ 1 —4nn|
1 gy FOIT

~ 1 —2(2n+8)|n| 425|n|
2he(ey) IF(F)(n)lq g
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o0

The convergence of the series )

fact that fe H,.
o

¢y follows from the Cauchy inequality and the

In the following proposition, we show that the g-translation are self-adjoint
operators.
Proposition 7. Let f and g € H, where 0 < ¢ <1/2. Then

[ Trenstmemar = [ oty

Ismail [1] proved that the g-exponential function &(x; @) is the only solution of the

functional equation

flx@y) =f(f (). (17)

where f (x) has the expansion f(x) =) Jn
n0 (4;4),

&n(x), which converges uniformly on

compact subsets of a domain Q.
For fe L* ((-1, 1), w(x)dx), we put

R 1
70 - [ et —io(s.
-1
Proposition 8. Let fe L*((-1, 1) w(x)dx), then the function
F(t) = (=q8% 0" )oef (1),

is an entire function such that

lim In(M(r, F)) < 1 .
r—00 In?r Ing—-1

Furthermore, the function F is of order 0 and has infinitely many zeros.
Proof. The function fis in L*((~1, 1) w(x)dx), then

/_1 If (%) |w(x)dx < oo.

From (2) we have the following estimate
IHn(xlq)| < Ha(1lq), for |x| <1,

and by (3) we can write for all te C
1
FO1 = [ (it )y (1 1),
-1
On the other hand

ad Oln 2
(=t ") oolq(1 1)) = ) @ FHa(11q).
n=0 !

I

The result follows by a similar proof as in Lemma 14.1.4 and Corollary 14.1.5 in [3].
O
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Proposition 9. We have
Tof (1) = &4y if (1).

Proof. It is easy to see that the function w(x) is even and the g-exponential &;(x; it)

satisfies
& (—x; it) = &( x; —it).

Then from Propositions 4 and 7, we get
— 1
THf (1) = /;1 Thf (x)E(—x; it)w(x)dx
1
=/ F()ThE(—x; it)w(x)dx
-1

1
= &E;(yiit) /_lf(x)é'q(—x; it)w(x)dx

= & i)f (1).
o
In the following Proposition, we show that the g-translation operator Ty coincides

with the g-Translation Ej defined by Ismail on the set of g-Hermite polynomials (2).

Proposition 10. For n =0, 1, 2, . . ., we have

TyHa(ylq) = EjHn(ylq). (18)
Proof. By Proposition 5, we get

(=at% ") TyE (i it) = (=417 4° )€ (x; i) E (y; i8).
Then the formula ([3, 14.6.7]) and (3) lead to

o0 c A\ n2/4 [e¢] o0 N m2/4
> U i) = 3 ) o 32 OO O )
n=0 rn n=0 \1""9Jn m=0 rY)m

Hence,

(4 9),

Hm X| n—m (m27n2)/4-
D@ Dy (xl4)gn-n()a

Twmm=2w
m=0 ‘7’

[m]

Theorem 11. Let f be a function in L*((-1, 1), w(x)dx) satisfying the following func-
tional equation

Tof (x) = f(f (),
and we denote by Zy the set of zeros of
F(1) = (=41 °)oc] (1)

Then f is a function of two variables x and t equal to the q-exponential function
Eq(x;it), for |x| < land te C - Zf
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Proof. Let fbe a function in L* ((~1, 1), w(x)dx) satisfying
Tof (x) = f)f ()

By Proposition 9, we have
Eq(x i (1) = ().

Then for all complex numbers ¢ such that f(t) # 0, we have
f) =f(x 1) = &(x it),

and fis a function of two variables x and ¢. O

g-Gauss Weierstrass transform
We conclude this study by an application of the g-translation operators. We consider
the g-analogue of the Gauss Weierstrass transform by (see [3]).

ru0) = "0 [ iwas 19
where
W(.X') - (eZié)’ e_Zie;q)oo-

In [1], the author proved that (19) can be inverted by the Askey-Wilson operator
1
0= (4770 - D) B 20
(o]

where fis a polynomial.
In the following theorem we prove that the inversion formula (20) is still valid in the
space

Hy = ﬂHS.

e>0

Theorem 12. The q-Gauss Weierstrass transform has the inversion formula
1
100 = (4070 - 0 Djsa?) B, f < .
o0

Proof. Let fe H., then by the formula

1 (g

Do [T o (o
@2%@) 27 /(;gq(x,t)W(x)dx,

we have

. o 1
P = 0% Y FOE i) [ & o) Weas

" 2 2kn) (g, O
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So that

1
(3020 -07P3) Ful)

= Z zk(la)n) ]:q(f)(n)gq()’, la)n)

n=—00

f)

[m]

Another g-analogue of Gauss Weierstrass transform can be defined by

I G2 7 ) Y
F}’(Y) - 27_[()/, 6])/2, q)oo 1 qu(‘x)w(x|y’ q)dx’

where

(621'9’ e—zie; q)
w(cosBly, q) = (ye2i# ye—zie.qO; :
! ! o0

In a similar way as in Theorem 12, we can prove the following inversion formula for
the transform F,.
Theorem 13. The transform F, has the inversion formula

f) =9, (iq”z(l - q)2D§> F, (). f € Hoo,

where

1

or () = 0p1(—:qy; q; qya?)’
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