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Abstract

In this article, we solve the open problem 24.5.6 given in the study of Ismail, which
consists of extending the action of q-translation operators introduced by Ismail to
some measurable functions by means of basic Fourier theory. Also, we prove that
the q-exponential function is the only solution of the q-analogue of the Cauchy
functional equation. As application we give an inversion formula for the q-Gauss
Weierstrass transform.
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Introduction

The concept of the q-translation operators Eyq introduced by Ismail [1] was defined in

polynomials through their action on the continuous q-Hermite polynomials Hm (x | q)

as follows

EyqHn(x|q) =
n∑

m=0

(q; q)n
(q; q)m(q; q)n−m

Hm(x|q)gn−m(y)q(m
2−n2)/4, (1)

where

gn(cos(θ)) = qn
2/4(1 + e2iθ )e−inθ (−q2−ne2iθ ; q2)n−1.

In others words

qn
2/4

(q; q)n
EyqHn(x|q) =

∑
0≤m,j,m+2j≤n

qj+(m
2+(n−m−2j)2)/4

(q2; q2)j

Hm(x|q)Hn−m−2j(y|q)
(q; q)m(q; q)n−m−2j

,

where the polynomials Hn (x | q) are defined by (see [2,3])

Hn(cos θ |q) =
n∑

k=0

(q; q)n
(q; q)n−k(q; q)k

ei(n−2k)θ . (2)

It was shown in [1] that the q-translation operators Eyq commute with the Askey-

Wilson operator Dq on the space of all polynomials and by the use of the following

expansion [3]
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(qα2; q2)∞Eq(x;α) =
∞∑
n=0

αn

(q; q)n
qn

2/4Hn(x|q). (3)

In ([1], (2.21)), the author proved the following product formula for the q-exponen-

tial function

EyqEq(x;α) = Eq(x;α)Eq(y;α). (4)

Furthermore, if y and z are two complex variables, then we have [1]

EyqE
z
q = EzqE

y
q,

Eyqf (x) = Exqf (y).

In [3] problem 24.5.6, Ismail proposed the extension of the action of Eyq to measur-

able functions and proving that the only measurable functional solution of the q-analo-

gue of the Cauchy functional equation

Eyqf (x) = f (x)f (y)

is the q-exponential function. Eq(x;α) . The purpose of this paper is to define a new

q-translation operator Tx
q related to Askey-Wilson operator acting in some measurable

functions by means of the basic Fourier series. We show that the new q-Translation

coincides with Eyq on the set of continuous q-Hermite polynomials. In the same con-

text, we establish many properties satisfied by the q-translation operator and generaliz-

ing the classical ones.

In the first section, we recall some results of basic Fourier series given in [4]. In Sec-

tion “Preliminaries”, we define and study the q-translation operator Tx
q . Also we solve

the following problem{Dq,xu(x, y) = Dq,yu(x, y)
u(x, 0) = f (x), f ∈ Hε .

(5)

As a consequence of (5) we solve the basic analogue of the Cauchy functional equa-

tion

f (x ⊕ y) := Tx
qf (y) = f (x)f (y), (6)

where the function f is in the same subspace of L2(w (x) dx). In addition, we prove

the q-translation invariance of the measure w (x) dx over (−1, 1). Some q-analogous of

the Gauss Weierstrass transforms are studied in Section “q-Gauss Weierstrass

transform”.

Preliminaries
Let 0 <q < 1 and a Î C , the q-shift factorial is defined by (see [2])

(a; q)0 = 1,

(a; q)n =
∏n−1

k=0
(1 − aqk), n = 1, 2, . . . ,∞.

Given a function f (x) with x = cos θ, f (x) can be viewed as a function of eiθ.
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Let

�

f (eiθ ) := f (cos θ).

The Askey-Wilson-divided difference operator Dq is defined by

(Dqf )(x) =

�

f (q
1
2 eiθ) − �

f (q−1
2 eiθ )

(q
1
2 − q−

1
2 )i sin θ

. (7)

The q-exponential function is given by [5]

Eq(cos θ , cos φ;α) =
(α2; q2)∞
(qα2; q2)∞

∞∑
n=0

(−ei(θ+φ)q(1−n)/2, −ei(θ−φ)q(1−n)/2; q)n

× (αe−iφ)
n

(q; q)n
qn

2/4.

The q-exponential function Eq(cos θ , cos φ;α) is a solution of the q-difference equa-

tion of first-order [3]

DqEq(cos θ , cos φ;α) =
2αq1/4

1 − q
Eq(cos θ , cosφ;α).

Put

Eq(x;α) = Eq(x, 0;α),

then, we have (see [3])

Eq(x, y;α) = Eq(x;α)Eq(y;α),

and

lim
q→1

Eq(x; (1 − q)α) = exp(2αx).

Ismail and Zhang [5,3] defined the q-cosine and q-sine functions through their q-

exponential function as in the standard way, i.e.,

Eq(x; iω) = Cq(x;ω) + iSq(x;ω),

and used transformation formulas to continue them analytically to entire functions in

the variable ω. Bustoz and Suslov [4] have established the following orthogonality rela-

tions ∫ 1

−1
Eq(x; iωn)Eq(x; iωm)w(x)dx = 2k(ωn)δn,m, (8)

where

w(cos θ) =
(e2iθ , e−2iθ ; q)∞

(q1/2e2iθ , q1/2e−2iθ ; q)∞
,

k(ω) = π
(q1/2; q)2∞
(q; q)2∞

(−ω2; q2)∞
(−qω2; q2)∞

∞∑
k=0

qk/2

1 + ω2qk
,
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ω0 = 0, ω1 <ω2 < ..., are zeros of the q-sine function Sq((q
1/4 + q-1/4)/2); ω) and for n

= 1, 2, . . . , ω-n = −ωn.

From [4], we have the following asymptotic estimates as n ® ∞

ωn ∼ q1/4−n, and k(ωn) ∼ 2π
(−q; q2)∞
(−q1/2; q)2∞

, (9)

and for 0 < ε <1/2 and |x| ≤ 1 < (qε + q-ε)/2, we have

|Eq(x; iωn)| <
(−q1/4−ε|ωn|; q1/2)∞

(q, q2ε , q1−2ε ; q)∞(−qω2
n ; q2)∞

∼Cq−2εn, (10)

where C = 1/(−q1/2, q; q)∞(q
ε, q1/2-ε; q1/2)∞.

q-Translation

We define the q-Fourier transform Fq as

Fq(f )(n) =
∫ 1

−1
Eq(x;−iωn)f (x)w(x)dx, n ∈ Z.

Put

l2(k(ωn)) = {(zn)n∈Z;
∞∑

n=−∞

1
2k(ωn)

|zn|2 < ∞}.

Theorem 1. The transform Fq is an isomorphism from L2((−1, 1), w(x)dx) into l2 (k

(ωn)) and its inverse is given by

f (x) =
∞∑

n=−∞

1
2k(ωn)

Fq(f )(n)Eq(x; iωn).

Proof. The result follows from the fact that the family {Eq(x; iωn)}∞n=−∞ is complete

and orthogonal in L2 ((−1, 1), w(x)dx) (see [4], [6]). □

Next, we use the q-Fourier series to define the q-translation operators Tx
q . Let denote

by Hε, (ε > 0), the space of functions in L2((−1, 1), w(x)dx) such that

∞∑
n=−∞

q−4ε|n|

2k(ωn)
|F(f )(n)|2 < ∞.

Definition 1. Let 0 < ε <1/2 and f in Hε, we put

Ty
qf (x) =

∞∑
n=−∞

1
2k(ωn)

Fq(f )(n)Eq(x; iωn)Eq(y; iωn),

=
∞∑

n=−∞

1
2k(ωn)

Fq(f )(n)Eq(x, y; iωn).

The operators Ty
q , are called q−translation operators associated to the Askey-Wilson

operator.
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Remark 1. (1) The q-translation operators are characterized by the formula

Fq(T
y
qf )(n) = Eq(y; iωn)Fq(f )(n), n ∈ Z.

(2) The Askey-Wilson operator introduced in (7) can be defined on the space H1/2

via

Dqf (x) =
q1/4

1 − q
i

∞∑
n=−∞

1
k(ωn)

ωnFq(f )(n)Eq(x; iωn).

Proposition 2. For 0 < ε <1/2, we have

(1) T0
q = id

(2) Ty
qEq(x; iωn) = Eq(x; iωn)Eq(y; iωn)

(3) Ty
qf (x) = Tx

qf (y)

(4) DqT
y
qf = Ty

qDqf , f ∈ H1 ,

where id denotes the identity operator.

Proof. The properties (1)-(3) are evident. To prove property (4), let

f (x) =
∞∑

n=−∞
Fq(f )(n)Eq(x; iωn) ∈ H1.

From (9) and (10) we have

DqT
y
qf =

∞∑
n=−∞

2q1/4

1 − q
iωmFq(f )(n)Eq(x; iωn)Eq(x; iωn)

= Ty
qDqf .

□
Theorem 3. For 0 <ε < 1/2 and f in Hε, the function

u(x, y) = Ty
qf (x),

is the unique solution of the system{Dq,xu(x, y) = Dq,yu(x, y),
u(x, 0) = f (x).

(11)

Proof. It is clear that the function Ty
qf (x) is a solution of the system (11). Applying

the q-Fourier transform to each member of the system (11), we obtain for n ∈ Z ,⎧⎨
⎩Dq,yFq (u (.; y))(n) =

2iq1/4

1 − q
ωnFq(u (.; y)),

Fq (u (.; 0))(n) = Fq(f )(n).

Hence

Fq (u (.; y))(n) = Fq(f )(n)Eq(y; iωn).
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So that

u(x, y) =
∞∑

n=−∞
Fq(f )(n)Eq(y; iωn)Eq(x; iωn)

= Ty
qf (x).

□
Proposition 4. Let 0 < ε <1/4, we have

Eq (x; it) ∈ Hε.

Proof. From the integral (3.13) in [7], we get

F ( Eq (.; it)) (n) =
∫ 1

−1
Eq( x; it) Eq(x;−iωn)w(x)dx

= Sincq(t,n),

where

Sincq(t, n) =
(q1/2; q)1/2(−qω2

n ; q
2)∞Im((it,−iωn; q1/2)∞)

(−qt2; q2)∞(ωn + t) ∂
∂ t Im((it,−iωn; q1/2)∞)|t=−ωn

.

By (9), we have the asymptotic estimates as n ® ∞

(−qω2
n ; q

2)∞ ∼ (−q1/2−2n; q2)∞

∼ (−)nq−n2+1/2n(−q1/2; q2)n(−q3/2; q2)∞,

and similarly

Im(it, −iωn; q1/2)∞ ∼ (−1)nq−n2 Im(it, iq1/4; q1/2)∞.

Then from (9) and relation ((3.15), [7]), we obtain as n ® ∞

Sincq(t,n) ∼ (q, q2)3∞Im(it, iq1/4; q1/2)∞
2q1/4(q, q)2∞(q−3/2, q1/2, q; q2)∞

qn/2, (12)

and

Sincq(t, −n) ∼ (q, q2)3∞Im(−it, iq1/4; q1/2)∞
2q1/4(q, q)2∞(q−3/2, q1/2, q, q2)∞

qn/2. (13)

So that

q−4|n|

2k(ωn)
|F(Eq(.; it))(n)|2 ∼ Cq(1−4ε)|n|.

Then the following series

∞∑
n=−∞

q−4ε|n|

2k(ωn)
|F(Eq(.; it))(n)|2,

converges iff ε < 1/4.
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This show for 0 <ε < 1/4 we have

Eq (x; it) ∈ Hε,

and

□

Eq(x; it) =
∞∑

n=−∞
Sincq(t,n)Eq(x; iωn). (14)

Proposition 5. For t ≠ −iq-1/2-n, n = 0, ±1, ±2, . . . we have

Ty
qEq(x; it) = Eq(x; it)Eq(y; it).

Proof. From Proposition 2, we see that the following two functions

(x, y) → Eq(x; it)Eq(y; it),

and

(x, y) → Ty
qEq(x; it),

are solutions of the system{Dq,xu(x, y) = Dq,yu(x, y),
u(x, 0) = Eq(x;α).

The result follows by Theorem 3. □
In the following proposition, we find the invariance of the measure w(x)dx over (−1,

1) by the q-translation operators.

Proposition 6. Let 0 < ε <1/2 and f Î Hε. Then∫ 1

−1
Ty
qf (x)w(x)dx =

∫ 1

−1
f (x)w(x)dx.

Proof. We have

∫ 1

−1
Ty
qf (x)w(x)dx =

∫ 1

−1

∞∑
n=−∞

1
2k(ωn)

F(f )(n)Eq(x; iωn)Eq(y; iωn)w(x)dx.

Then, we get after interchangement of integral and sum∫ 1

−1
Ty
qf (x)w(x)dx = F(f )(0) =

∫ 1

−1
f (x)w(x)dx. (15)

To justify the interchangement of integral and summation, we put

∞∑
n=−∞

∫ 1

−1
| 1
2k(ωn)

F(f )(n)Eq(x; iωn)Eq(y; iωn)|w(x)dx =
∞∑

−∞
cn. (16)

Let 0 < h <1/4 and δ > 0 such that 2h + δ <1/2, by (9) and (10), we have

cn ∼ 1
2k(ωn)

|F(f )(n)|q−4η|n|,

∼ 1
2k(ωn)

|F(f )(n)|q−2(2η+δ)|n|q2δ|n|.
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The convergence of the series
∑∞

−∞ cn follows from the Cauchy inequality and the

fact that f Î Hε.

□
In the following proposition, we show that the q-translation are self-adjoint

operators.

Proposition 7. Let f and g Î Hε where 0 < ε <1/2. Then∫ 1

−1
Tx
qf (−y)g(y)w(y)dy =

∫ 1

−1
f (y)Tx

qg(−y)w(y)dy.

Ismail [1] proved that the q-exponential function Eq(x; α) is the only solution of the

functional equation

f (x ⊕ y) = f (x)f (y), (17)

where f (x) has the expansion f (x) =
∞∑
n=0

fn
(q; q)n

gn(x) , which converges uniformly on

compact subsets of a domain Ω.

For f Î L2 ((−1, 1), w(x)dx), we put

f̂ (t) =
∫ 1

−1
f (x)Eq(x;−it)w(x)dx.

Proposition 8. Let f Î L2((−1, 1) w(x)dx), then the function

F(t) = (−qt2; q2)∞̂f (t),

is an entire function such that

lim
r→∞

ln(M(r, F))

ln2r
≤ 1

ln q − 1
.

Furthermore, the function F is of order 0 and has infinitely many zeros.

Proof. The function f is in L2((−1, 1) w(x)dx), then∫ 1

−1
|f (x)|w(x)dx < ∞.

From (2) we have the following estimate

|Hn(x|q)| ≤ Hn(1|q), for |x| < 1,

and by (3) we can write for all t Î C

|F(t)| ≤
∫ 1

−1
|f (x)|w(x)dx(−q|t|2; q2)∞Eq(1; |t|).

On the other hand

(−q|t|2; q2)∞Eq(1; |t|) =
∞∑
n=0

αn

(q; q)n
qn

2/4Hn(1|q).

The result follows by a similar proof as in Lemma 14.1.4 and Corollary 14.1.5 in [3].

□
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Proposition 9. We have

T̂y
qf (t) = Eq(y; it)̂f (t).

Proof. It is easy to see that the function w(x) is even and the q-exponential Eq(x; it)
satisfies

Eq (−x; it ) = Eq( x;−it).

Then from Propositions 4 and 7, we get

T̂y
qf (t) =

∫ 1

−1
Ty
qf (x)Eq(−x; it)w(x)dx

=
∫ 1

−1
f (x)Ty

qEq(−x; it)w(x)dx

= Eq(y; it)
∫ 1

−1
f (x)Eq(−x; it)w(x)dx

= Eq(y; it)̂f (t).

□
In the following Proposition, we show that the q-translation operator Tx

q coincides

with the q-Translation Exq defined by Ismail on the set of q-Hermite polynomials (2).

Proposition 10. For n = 0, 1, 2, . . . , we have

Tx
qHn(y|q) = ExqHn(y|q). (18)

Proof. By Proposition 5, we get

(−qt2; q2)∞Tx
qE(y; it) = (−qt2; q2)∞E(x; it)E(y; it).

Then the formula ([3, 14.6.7]) and (3) lead to

∞∑
n=0

(it)nqn
2/4

(q; q)n
Ty
qHn(x|q) =

∞∑
n=0

gn(y)
(q; q)n

(it)n
∞∑
m=0

(it)mqm
2/4

(q; q)m
Hm(x|q).

Hence,

Ty
qHn(x|q) =

n∑
m=0

(q; q)n
(q; q)m(q; q)n−m

Hm(x|q)gn−m(y)q(m
2−n2)/4.

□
Theorem 11. Let f be a function in L2((−1, 1), w(x)dx) satisfying the following func-

tional equation

Ty
qf (x) = f (x)f (y),

and we denote by Zf the set of zeros of

F(t) = (−qt2; q2)∞̂f (t).

Then f is a function of two variables x and t equal to the q-exponential function

Eq(x; it) , for |x| < 1 and t Î C − Zf
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Proof. Let f be a function in L2 ((−1, 1), w(x)dx) satisfying

Ty
qf (x) = f (x)f (y).

By Proposition 9, we have

Eq(x; it)̂f (t) = f (x)̂f (t).

Then for all complex numbers t such that f̂ (t) �= 0 , we have

f (x) := f (x, t) = Eq( x; it),

and f is a function of two variables x and t. □

q-Gauss Weierstrass transform

We conclude this study by an application of the q-translation operators. We consider

the q-analogue of the Gauss Weierstrass transform by (see [3]).

FW(f )(y) =
(q; q)∞
2π

∫ π

0
Ty
qf (x)W(x)dx, (19)

where

W(x) = (e2iθ , e−2iθ ; q)∞.

In [1], the author proved that (19) can be inverted by the Askey-Wilson operator

f (y) =
(
1
4
q1/2(1 − q)2D2

q ; q
2
)

∞
FW(f )(y). (20)

where f is a polynomial.

In the following theorem we prove that the inversion formula (20) is still valid in the

space

H∞ =
⋂
ε>0

Hε .

Theorem 12. The q-Gauss Weierstrass transform has the inversion formula

f (y) =
(
1
4
q1/2(1 − q)2D2

q ; q
2
)

∞
FW(y), f ∈ H∞.

Proof. Let f Î H∞, then by the formula

1
(qt2; q2)∞

=
(q; q)∞
2π

∫ π

0
Eq(x; t)W(x)dx,

we have

FW(y) =
(q; q)∞
2π

∞∑
n=−∞

1
2k(ωn)

Fq(f )(n)Eq(y; iωn)
∫ 1

−1
Eq(x; iωn)W(x)dx

=
∞∑

n=−∞

1
2k(ωn)

1
(−qω2

n ; q2)∞
Fq(f )(n)Eq(y; iωn).
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So that(
1
4
q1/2(1 − q)2D2

q ; q
2
)

∞
FW(x)

=
∞∑

n=−∞

1
2k(ωn)

Fq(f )(n)Eq(y; iωn)

= f (y)

□
Another q-analogue of Gauss Weierstrass transform can be defined by

Fγ (y) =
(q, γ 2; q)∞

2π(γ , qγ 2; q)∞

∫ 1

−1
Ty
qf (x)w(x|γ , q)dx,

where

w(cos θ |γ , q) = (e2iθ , e−2iθ ; q)∞
(γ e2iθ , γ e−2iθ ; q)∞

.

In a similar way as in Theorem 12, we can prove the following inversion formula for

the transform Fg.

Theorem 13. The transform Fg has the inversion formula

f (y) = ϕγ

(
1
4
q1/2(1 − q)2D2

q

)
Fγ (y), f ∈ H∞,

where

ϕγ (α) =
1

0φ1(−; qγ ; q; qγ α2)
.
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