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Abstract

In this article, we employ the Tarski’s fixed point theorem to establish the existence
of extremal solutions for fractional differential equations with maxima.

1 Introduction
Fractional calculus has become an exciting new mathematical method of solution of

diverse problems in mathematics, science, and engineering. Indeed, recent advances of

fractional calculus are dominated by modern examples of applications in differential and

integral equations and inclusions, physics, signal processing, fluid mechanics, viscoelasti-

city, mathematical biology, engineering, dynamical systems, control theory, electrical cir-

cuits, generalized voltage divider, computer sciences, and electrochemistry (see [1,2]).

The theory and applications of fractional differential equations received in recent

years considerable interest both in pure mathematics and in applications. There exist

several different definitions of fractional differentiation. Whereas in mathematical trea-

tises on fractional differential equations the Riemann-Liouville approach to the notion

of the fractional derivative is normally used [3-5], the Caputo fractional derivative

often appears in applications [6], Erdèlyi-Kober fractional derivative [7] and The Weyl-

Riesz fractional operators [8]. There are some advantages in studying the extremal

solution for fractional differential equations, because some boundary conditions are

automatically fulfilled and due to lower order differential requirements (see [9]).

Differential equations with maximum arise naturally when solving practical and phe-

nomenon problems, in particular, in those which appear in the study of systems with auto-

matic regulation and automatic control of various technical systems. It often occurs that

the law of regulation depends on maximum values of some regulated state parameters

over certain time intervals. Many studies of the existence of solutions are imposed such as

periodicity, asymptotic stability and oscillatory [10-12]. In [13], the authors discusses the

existence of univalent solutions for fractional integral equations with maxima in complex

domain, by using technique associated with measures of non-compactness.

In this article, we establish the extreme solutions (maximal and minimal solutions)

for fractional differential equation with maxima in sense of Riemann-Liouville frac-

tional operators, by using the Tarski’s fixed point theorem. Moreover, we extend the

existence of extremal solutions from initial value problems to boundary value problems

for infinite quasi-monotone functional systems of fractional differential equations.
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2 Preliminaries
The ordered set (poset) X is called a lattice if sup{x1, x2} and inf{x1, x2} exist for all x1,

x2 Î X. A lattice X is complete when each nonempty subset Y ⊂ X has the supremum

and the infimum in X. In particular, every complete lattice has the maximum and the

minimum. Denoted by

[a, b]X = {x ∈ X : a ≤ x ≤ b}.

The fundamental tool in our work is the following well-known Tarski’s fixed point

theorem which can be found in [14]:

Theorem 2.1. Every nondecreasing mapping G : X ® X on a complete lattice X has

a minimal, x*, and a maximal fixed point, x*. Moreover,

x∗ = min{x ∈ X : Gx ≤ x}, x∗ = max{x ∈ X : x ≤ Gx}.

Let T >0 and h >0 be fixed. We denote by AC([0, T]) the set of all functions x : [0,

T] ® ℝ which are absolutely continuous and by B([-h, 0]) the set of all functions x :

[-h, 0] ® ℝ which are bounded. Let M be an arbitrary index set and for each for all

j ∈ M, hj : [0, T] → R be a Lebesgue-integrable function and define

Chj
([0, T]) =

⎧⎨
⎩x : [0, T] → R, |x(s) − x(t)| ≤

∣∣∣∣∣∣
t∫

s

hj (η)dη

∣∣∣∣∣∣ , s, t ∈ J := [0, T]

⎫⎬
⎭ ,

with the property

x1, x2 ∈ Chj
([0, T]), x1 ≤ x2 ⇔ x1(t) ≤ x2(t), ∀t ∈ [0, T].

Also, we define the set

Sj =
{
ξ : [−η, T] → R : ξ|[−η,0] ∈ B([−η, 0]) and ξ|[0,T] ∈ Chj

([0, T])
}

satisfies

ξ1, ξ2 ∈ Sj , ξ1 ≤ ξ2 ⇔ ξ1(t) ≤ ξ2(t), t ∈ [−η, T].

And set

S =
∏
j∈M

Sj , j ∈ M

satisfies

γ , λ ∈ S, γ ≤ λ ⇔ γj ≤ λj , j ∈ M.

One of the most frequently used tools in the theory of fractional calculus is furnished

by the Riemann-Liouville operators (see [15]).

Definition 2.1. The fractional (arbitrary) order integral of the function f of order

a >0 is defined by

Iαa f (t) =

t∫
a

(t − τ )α−1

	(α)
f (τ )dτ .
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When a = 0, we write

Iαa f (t) = Iαf (t) = f (t) ∗ φα(t),

where (*) denoted the convolution product,

φα(t) =
tα−1

	(α)
, t > 0

and ja(t) = 0, t ≤ 0 and ja ® δ(t) as a ® 0 where δ(t) is the delta function.

Definition 2.2. The fractional (arbitrary) order derivative of the function f of order 0

< a <1 is defined by

Dα
a f (t) =

d
dt

t∫
a

(t − τ )−α

	(1 − α)
f (τ )dτ =

d
dt
I1−α
a f (t).

3 Main results
We study fractional differential equations with maxima of the form

Dαu(t) =
{
F

(
t, u (t) , maxs∈Ju (s)

)
if t ∈ J;

u (θ) = φ (θ) if θ ∈ [−η, 0] ,
(1)

where F : J × ℝ × S ® ℝ and j : [-h, 0] ® ℝ. We denote by ||j|| the norm

——φ—— = max
{
φ(θ) : θ ∈ [−η, 0]

}
.

Definition 3.1. We say that uj ∈ S is a lower solution of problem (1) if for each

j ∈ M we have

Dαuj (t) ≤ Fj

(
t, u (t) , max

s∈J
u (s)

)
, t ∈ J; uj (θ) ≤ φ (θ) , θ ∈ [−η, 0]. (2)

Analogously we say that uj is an upper solution of (1) if the above inequalities are

reversed. We say that uj is a solution of (1) if it is both a lower and an upper solution.

A solution u* in A ⊂ S is a maximal solution in the set A if u* ≥ u for any other solu-

tion u Î A. The minimal solution in A is defined analogously by reversing the inequal-

ities; when both a minimal and a maximal solution in A exist, we call them the

extremal solutions in A.

Next we pose our main result

Theorem 3.1. Assume that there exist g, l Î S with g ≤ l such that the following

hypotheses hold:

(i) For each ξ Î [g, l]S the initial value problem

Dαzj (t) =
{
Fj

(
t, z (t) , maxs∈Jz (s)

)
t ∈ J;

zj (0) = φ (0)
(3)

has a maximal solution z* and a minimal solution z* in A := [γj , λj ]Chj ([0,T])

(ii) For each ξ ∈ [γ , λ]S, j ∈ M and t Î J if u(t) ≤ v(t) and uj = vj then

Fj (t, u (t) , ξ) ≤ Fj (t, v (t) , ξ) .
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(iii) The function Fj (t, u (t) , .) is nondecreasing in [g, l]S. Moreover, the function

j is nondecreasing in [-h, 0].
Then problem (1) has a maximal solution, u*, and a minimal one, u*, in [g, l]S.
Proof. We shall prove the existence of the maximal solution since the existence of

the minimal solution follows from the dual arguments.

Firstly we consider the mapping

�j : [γ , λ]S → [γj , λj ]Sj

then in virtue of condition (i) we can define

(�jξ) =
{

φξ (θ) if θ ∈ [−η, 0];
ξ∗(t) if t ∈ J,

(4)

where ξ* is the the maximal solution in [γj , λj ]Chj ([0,T]) of the problem (3). There-

fore (�jξ) ∈ [γj , λj ]Sj . Secondly, we impose the mapping

� : [γ , λ]S → [γ , λ]S.

Next we proceed to prove that F satisfies the conditions of Theorem 2.1.

Step 1. F: [g, l]S ® [g, l]S is nondecreasing.
Let ξ1, ξ2 Î [g, l]S and fix j ∈ M . By (iii) we have

(�jξ1)(θ) = φξ1(θ) ≤ φξ2(θ) = (�jξ2)(θ), θ ∈ [−η, 0].

On the other hand, �jξ ∈ A and in view of conditions (ii) and (iii) we obtain that

(�jξ1) ≤ (�jξ2), on J.

Since j ∈ M is arbitrary we conclude that (Fξ1) ≤ (Fξ2).

Step 2. [g, l]S is a complete lattice.

It suffices to prove that for each j ∈ M the set [γj , λj ]Sj is a complete lattice. Let

B ⊂ [γj , λj ]Sj this implies that B ≠ ∅ and B has the supremum and the infimum.

Define

ξ∗(t) = sup
{
ξ(t) : ξ ∈ B, t ∈ [−η, T]

}
.

It is clear that ξ*(t) is well defined for all t Î [-h, T] and satisfies γj ≤ ξ∗ ≤ λj i.e, ξ*

is bounded on [-h, 0]. Finally we shall prove that ξ* Î A. For fix t, s Î J and ξ Î B we

observe that

ξ(s) ≤ |ξ(s) − ξ(t)| + ξ(t) ≤
∣∣∣∣∣∣

t∫
s

hj (r)dr

∣∣∣∣∣∣ + ξ∗(t)

⇒ sup ξ(s) ≤
∣∣∣∣∣∣

t∫
s

hj (r)dr

∣∣∣∣∣∣ + ξ∗(t)

⇒ ξ∗(s) ≤
∣∣∣∣∣∣

t∫
s

hj (r)dr

∣∣∣∣∣∣ + ξ∗(t)

⇒ ξ∗(t) ≤
∣∣∣∣∣∣

s∫
t

hj (r)dr

∣∣∣∣∣∣ + ξ∗(s)

⇒ |ξ∗(s) − ξ∗(t)| ≤
∣∣∣∣∣∣

t∫
s

hj (r)dr

∣∣∣∣∣∣ .
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Therefor ξ∗ ∈ [γj , λj ]Sj and ξ* = sup B. The existence of inf B is proved by similar

manner. Hence [γj , λj ]Sj is a complete lattice and consequently

[γ , λ]S =
∏

j∈M [γj , λj ]Sj
.

Steps 1 and 2 imply that F satisfies the conditions of Tarski’s fixed point theorem

and then F has the maximal fixed point x* which satisfies

x∗ = max
{
x ∈ [γ , λ]S : x ≤ �x

}
. (5)

Step 3. X* is the maximal solution of problem (1) in [g, l]S.
By the definition of F we have u* is a solution for the problem (1). Suppose now

that u := uj )j∈M ∈ [γ , λ]S is a lower solution for (1) i.e.

Dαuj (t) ≤
{
Fj

(
t, u (t) , maxs∈Ju (s)

)
if t ∈ J;

uj (θ) ≤ φ(θ) if θ ∈ [−η, 0].
(6)

Then by (5) it follows that for every solution x of the problem (1) satisfies x ≤ x*.

This completes the proof of Theorem 3.1.

Remark 3.1. Note that Condition (i) in Theorem 3.1 looks difficult to verify but it is

useful for applying the Theorem 2.1. however, there are in the literature a lot of suffi-

cient conditions which imply the existence of extremal solutions. Condition (ii) is

called quasimonotonicity. This property is important for extremal fixed points of dis-

continuous maps. Moreover, the functional boundary condition u(θ) = j(θ), θ Î [-h, 0]
includes the initial condition u(0) = j(0):= u0, where θ = 0. As well as several types of

periodic conditions, which have more interest, such as the ordinary periodic condition

u(θ) = j(θ):= u(T) for fixed θ which probably takes the value θ = 0. Moreover, the

functional periodic condition x(θ) = j(θ):= x(θ + T), θ Î [-h, 0]. Finally, j(t) can repre-

sented as integral initial condition such as

u(0) =

T∫
0

uj (s)ds.

Additional condition on ξ Î S, for all j ∈ M if ξj is Lebesgue-measurable on [-h, 0]
leads to suggest the initial condition

u(0) =

T/2∫
−η

uj (s)ds.

Next we replace the condition (i) by assuming F in the set of

L1X(J, R × R)-Carathéodory.

Definition 3.2. A mapping p : J × ℝ ® ℝ is said to be Carathéodory if

(C1) t ® p (t, u) is measurable for each u Î ℝ,

(C2) u ® p (t, u) is continuous a.e. for t Î J.

A Carathéodory function p (t, u) is called L1 (J, ℝ)-Carathéodory if (C3) for each

number r >0 there exists a function hr Î L1(J, ℝ) such that |p(t, u)| ≤ hr (t) a.e t Î J

for all u Î ℝ with |u| = r.
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A Carathéodory function p (t, u) is called L1X(J,R)- Carthéodory if (C4) there exists a

function h Î L1(J, ℝ) such that |p (t, u)| ≤ h (t) a.e t Î J for all u Î ℝ where h is called

the bounded function of p.

Theorem 3.2. Let F be L1X(J,R)- Carathéodory. If the assumptions (ii) and (iii) hold

then the problem (1) has at least one solution u (t) on J.

Proof. Operating equation (1) by Ia and using the properties of the fractional opera-

tors (see [9,15]), we have

u(t) = φ(θ) +
t∫
0

(t − τ )α−1

	(α)
F(τ , u, v)dτ .

Define an operator P as follows:

(Pu) (t) := φ (θ) +

t∫
0

(t − τ )α−1

	(α)
F(τ , u, v)dτ . (7)

Then by the assumption of the theorem and the properties of the fractional calculus

we obtain that

|(Pu)(t)| ≤ ||φ|| +
t∫

0

(t − τ )α−1

	(α)
|F(τ , u, v)|dτ

≤ |φ(θ)| +
t∫

0

(t − τ )α−1

	(α)
h(τ ) dτ

≤ ||φ|| + ||h||L1
t∫

0

(t − τ )α−1

	(α)
dτ

≤ ||φ|| + ||h||L1Tα

	(α + 1)

:= ρ.

This further implies that

||Pu||C ≤ ρ,

where C [(J, R × R)] is the space of all continuous real valued functions on J with a

supremum norm ||.||C that is P : Br ® Br . Therefore, P maps Br into itself. In fact, P

maps the convex closure of P [Br] into itself. Since f is bounded on Br, thus P [Br] is

equicontinuous and the Schauder fixed point theorem shows that P has at least one

fixed point u Î A such that Pu = u, which is corresponding to solution of the problem

(1). To obtain the maximal and minimal solutions, we use the same arguments in The-

orem 3.1.

Moreover condition (i) can replaced by letting F in the set of all functions which are

μ - Lipschitz. We have the following definition:

Definition 3.3. A function F (t, u, v): J × ℝ × S ® ℝ is called

(i) a μ - Lipschitz if and only if there exists a positive constant μ such that
∣∣F(t, u1, v1) − F(t, u2, v2)

∣∣ ≤ μ [||u1 − u2|| + ||v1 − v2||] ,
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where

||.|| = sup
t,s∈J

{| . |},

and the constant μ is called a Lipschitz constant.

(ii) A contraction if and only if it is μ - Lipschitz with μ <1.

Theorem 3.3. Let F be μ - Lipschitz. If μTα

	(α+1) < 1, then (1) has a unique solution u

(t) on J.

Proof. Assume the operator P defined in Equation (6) then we have

|(Pu1)(t) − (Pu2)(t)| ≤
t∫

0

(t − τ )α−1

	(α)
|F(τ , u1, v1) − F(τ , u2, v2)|dτ

≤ μ(||u1 − u2|| + ||v1 − v2||)
t∫

0

(t − τ )α−1

	(α)
dτ

≤ μTα

	(α + 1)
(||u1 − u2|| + ||v1 − v2||).

Hence by the assumption of the theorem we have that P is a contraction mapping

then in view of the Banach fixed point theorem, P has a unique fixed point which is

corresponding to the solution of Equation (1). In this case u (t) = u* (t) = u* (t).

Example 3.1. Let J = [0, 1] denote a closed and bounded interval in ℝ. Consider the

problem

Dαu(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, if u < 0;[
h(t), h(t) exp

u(t)
2

]
, if u ≥ 0

u(0) = h(0) = 0.

(8)

It is clear that F is L1X(J,R)- Carathéodory with any decreasing growth function h Î

L1(J, ℝ+) such that ||F (t, u)|| ≤ h (t) a.e t Î J for all u Î ℝ. Therefore in view of Theo-

rem 3.2, the problem (8) has maximal and minimal solutions.

Example 3.2. Let S be any nonmeasurable set such that S ⊂ [0, 1]. Consider the pro-

blem

Dαu(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, if u > t, t ∈ J;
1, if u = t, t ∈ S
0, otherwise.
u(0) = 0.

(9)

Obviously F does not satisfy the condition (i) of Theorem 3.1, and hence the pro-

blem (9) hasn’t extremal solutions.
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