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Abstract
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1 Introduction
In this paper, we discuss the existence of strong solutions for a class of semilinear evo-

lution equations with nonlocal initial conditions in a Hilbert space H

u′(t) + Au(t) = f (t, u(t)), t ∈ J, (1)

u(0) =
m∑
i=1

γiu(ti), (2)

where A: D(A) ⊂ H ® H is a positive definite self-adjoint operator, f: J × H ® H is

given function satisfying some assumptions, J denote the real compact interval [0, a], a

>0 is a constant, 0 < t1 < t2 < · · · < tm ≤ a, m Î N, gi are real numbers, gi ≠ 0, i = 1,

2, ..., m.

In 1990, Byszewski and Lakshmikantham [1] first investigated the nonlocal problems.

They studied and obtained the existence and uniqueness of mild solutions for nonlocal

differential equations. Since it is demonstrated that the nonlocal problems have better

effects in applications than the classical Cauchy problems, differential equations with

nonlocal conditions were studied by many authors and some basic results on nonlocal

problems have been obtained, see [2-10] and the references therein. The importance of

nonlocal conditions have also been discussed in [11-15]. For example, Deng [11] used

the nonlocal condition of type (2) to describe the diffusion phenomenon of a small

amount of gas in a transparent tube. In this case, condition (2) allows the additional

measurements at ti, i = 1, 2, ..., m, which is more precise than the measurement just at

t = 0. In [12], Byszewski pointed out that if gi ≠ 0, i = 1, 2, ..., m, then the results can
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be applied to kinematics to determine the location evolution t ® u(t) of a physical

object for which we do not know the positions u(0), u(t1), ..., u(tm), but we know that

the nonlocal condition (2) holds. Consequently, to describe some physical phenomena,

the nonlocal condition can be more useful than the standard initial condition.

However, most of the existing articles only studied the existence and uniqueness of

mild solutions for evolution equations with nonlocal conditions, there are very few

papers considered the regularity results for nonlocal evolution equations. In [2,3],

Byszewski discussed the existence of strong and classical solutions for the evolution

equation

du(t)
dt

+ Au(t) = f (t, u(t)), t ∈ (t0, t0 + a] (3)

with the nonlocal condition

u(t0) + g(t1, t2, ... , tm, u(·)) = u0 (4)

or

u(t0) +
m∑
i=1

γiu(ti) = u0 (4a)

in a reflexive Banach space X, but the conditions in [2,3] are very strong and some of

them can not be satisfied in applications. In this paper, we obtained the existence of

strong solutions for the nonlocal problem (1)-(2) in a frame of abstract Hilbert spaces.

Furthermore, an optimal condition (see condition (H1)) on the coefficients gi (i = 1, 2,

..., m) to guarantee that the nonlocal problem (1)-(2) has solutions has been obtained.

At last, we demonstrated that the abstract results obtained can be applied to the para-

bolic partial differential equation with nonlocal conditions. Our discussions are based

on analytic semigroups theory and the famous Schauder’s fixed point theorem.

2 Preliminaries

Let H be a Hilbert space with inner product (·,·), then ‖·‖ =
√
(·, ·) is the norm on H

induced by inner product (·,·). We denote by C(J, H) the Banach space of all continu-

ous H-value functions on interval J with the maximum norm ‖u‖C = max
t∈J

∥∥u(t)∥∥ and by

L(H) the Banach space of all linear and bounded operators on H.

Let A: D(A) ⊂ H ® H be a positive definite self-adjoint operator in Hilbert space H

and it have compact resolvent. By the spectral resolution theorem of selfadjoint opera-

tor, the spectrum s(A) only consists of real eigenvalues and it can be arrayed in

sequences as

λ1 < λ2 < · · · < λn < · · · , λn → ∞(n → ∞). (5)

By the positive definite property of A, the first eigenvalue l1 >0. From [16,17], we

know that -A generates an analytic operator semigroup T (t)(t ≥ 0) on H, which is

exponentially stable and satisfies

||T(t)|| ≤ e−λ1t, ∀t ≥ 0. (6)

Since the positive definite self-adjoint operator A has compact resolvent, the embed-

ding D(A) ↪ H is compact, and therefore T (t)(t ≥ 0) is also a compact semigroup.
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We recall some concepts and conclusions on the fractional powers of A. For a >0, A-a

is defined by

A−α =
1

�(α)

∫ ∞

0
sα−1T(s) ds,

where Γ(·) is the Euler gamma function. A−α ∈ L(H) is injective, and Aa can be

defined by Aa = (A-a)-1 with the domain D(Aa) = A-a(H). For a = 0, let Aa = I.

We endow an inner product (·,·)a = (Aa·, Aa·) to D(Aa). Since Aa is a closed linear

operator, it follows that (D(Aa), (·,·)a) is a Hilbert space. We denote by Ha the Hilbert

space (D(Aa), (·,·)a). Especially, H0 = H and H1 = D(A). For 0 ≤ a < b, Hb is densely

embedded into Ha and the embedding Hb ↪ Ha is compact. For the details of the

properties of the fractional powers, we refer to [17] and [18].

It is well known [[16], Chapter 4, Theorem 2.9] that for any u0 Î D(A) and h Î C1(J, H),

the initial value problem of linear evolution equation (LIVP){
u′(t) + Au(t) = h(t), t ∈ J,
u(0) = u0,

(7)

has a unique classical solution u Î C1(J, H) ∩ C(J, H1) expressed by

u(t) = T(t)u0 +
∫ t

0
T(t−s)h(s)ds. (8)

If u0 Î H and h Î L1(J, H), the function u given by (8) belongs to C(J, H), which is

known as a mild solution of the LIVP(7). If a mild solution u of the LIVP(7) belongs

to W1,1(J, H) ∩ L1(J, H1) and satisfies the equation for a.e. t Î J, we call it a strong

solution.

Throughout this paper, we assume that

(H1)
m∑
i=1

|γi| < eλ1t1 .

By assumption (H1), we have

∥∥∥∥ m∑
i=1

γiT(ti)

∥∥∥∥ ≤
m∑
i=1

|γi| e−λ1t1 < 1. By operator spectrum

theorem, we know that the operator

B :=
(
I −

m∑
i=1

γlT(ti)
)−1

(9)

exists, bounded and D(B) = H. Furthermore, by Neumann expression, B can be

expressed by

B =
∞∑
n=0

(
m∑
i=1

γiT(ti)

)n

. (10)

Therefore

‖B‖ ≤
∞∑
n=0

∥∥∥∥∥
m∑
i=1

γiT(ti)

∥∥∥∥∥
n

=
1

1 −
∥∥∥∥ m∑
i=1

γiT(ti)

∥∥∥∥
≤ 1

1 − e−λ1t1
m∑
i=1

|γi|
. (11)
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To prove our main results, for any h Î C(J, H), we consider the linear evolution

equation nonlocal problem (LNP)

u′(t) + Au(t) = h(t), t ∈ J, (12)

u(0) =
m∑
i=1

γiu(ti). (13)

Lemma 1 If the condition (H1) holds, then the LNP (12)-(13) has a unique mild solu-

tion u Î C(J, H) given by

u(t) =
m∑
i=1

γiT(t)B
∫ ti

0
T(ti − s)h(s)ds +

∫ t

0
T(t − s)h(s)ds, t ∈ J. (14)

Moreover, uÎ W 1,2(J, H) ∩ L2(J, H1) is a strong solution of the LNP (12)-(13).

Proof. By (7) and (8), we know that Eq. (12) has a unique mild solution u Î C(J, H)

which can be expressed by

u(t) = T(t)u(0) +
∫ t

0
T(t − s)h(s)ds. (15)

From (15),

u(ti) = T(ti)u(0) +
∫ ti

0
T(ti − s)h(s)ds, i = 1, 2, ...,m. (16)

By (13) and (16),

u(0) =
m∑
i=1

γiT(ti)u(0) +
m∑
i=1

γi

∫ ti

0
T(ti − s)h(s)ds. (17)

Since I − ∑m
i=1 γiT(ti) has a bounded inverse operator B,

u(0) =
m∑
i=1

γiB
∫ ti

0
T(ti − s)h(s)ds. (18)

From (15) and (18), we know that u satisfies (14).

Inversely, we can verify directly that the function u Î C(J, H) given by (14) is a mild

solution of the LNP (12)-(13).

By the maximal regularity of linear evolution equations with positive definite opera-

tor in Hilbert spaces (see [19], Chapter II, Theorem 3.3), when u(0) = u0 Î H1/2, the

mild solution of the LIVP (7) has the regularity

u ∈ W1,2(J, H) ∩ L2(J, H1) ∩ C(J, H1/2) (19)

and it is a strong solution.

We note that u(t) defined by (14) is the mild solution of the LIVP (7) for

u(0) =
∑m

i=1 γiB
∫ ti
0 T(ti − s)h(s)ds. By the representation (8) of mild solution, u(t) = T

(t)u(0) + v(t), where v(t) =
∫ t
0 T(t − s)h(s)ds Since the function v(t) is a mild solution

of the LIVP (7) with the null initial value u(0) = θ, v has the regularity (19). By the

analytic property of the semigroup T (t), T (ti)u(0) Î D(A) H1/2. Hence,
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u(0) =
∑m

i=1 γiT(ti)u(0)+
∑m

i=1 γiv(ti) ∈ H1/2. Using the regularity (19) again, we obtain

that u Î W 1,2(J, H) ∩ L2(J, H1) and it is a strong solution of the LNP (12)-(13). □
For any r >0, let

�r = {u ∈ C(J, H) :
∥∥u(t)∥∥ ≤ r, t ∈ J},

then Ωr is a bounded closed and convex set on C(J, H).

3 Main results
Theorem 1 Let A be a positive definite self-adjoint operator in Hilbert space H and it

have compact resolvent, f: J × H ® H be continuous. If condition (H1) and the following

condition

(H2) For some r >0, there exists a function � Î L(J, ℝ+) such that for all t Î J and u

Î H satisfying ||u|| ≤ r, ||f(t, u) || ≤ �(t), hold, then the problem (1)-(2) has at least

one strong solution u Î W 1,2(J, H) ∩ L2(J, H1).

Proof. We consider the operator Q on C(J, H) defined by

Qu(t) =
m∑
i=1

γiT(t)B
∫ ti

0
T(ti − s)f (s, u(s))ds

+
∫ t

0
T(t − s)f (s, u(s))ds, t ∈ J.

(20)

By assumption (H1) and Lemma 1, it is easy to see that the mild solution of problem

(1)-(2) is equivalent to the fixed point of the operator Q. In the following, we will

prove that Q has a fixed point by using the famous Schauder Fixed Point Theorem.

At first, we prove that Q is continuous on C(J, H). To this end, let {un}∞n=1 ⊂ C(J,H)

be a sequence such that lim
n→+∞ un = u on C(J, H). By the continuity of the nonlinear

term f, for each s Î J, lim
n→+∞ f (s, un(s)) = f (s, u(s)). Therefore, we can conclude that

sup
s∈J

∥∥f (s, un(s)) − f (s, u(s))
∥∥ → 0, as n → ∞. (21)

From (6) and (20), for t Î J, we have∥∥Qun(t) − Qu(t)
∥∥

≤

m∑
i=1

|γi|e−λ1t

1 − e−λ1t1
m∑
i=1

|γi|

∫ ti

0
e−λ1(ti−s)

∥∥f (s, un(s)) − f (s, u(s))
∥∥ ds

+
∫ t

0
e−λ1(t−s)

∥∥f (s, un(s)) − f (s, u(s))
∥∥ ds

<
eλ1t1 + 1

λ1(1 − e−λ1t1
m∑
i=1

|γi|)
sup
s∈J

∥∥f (s, un(s)) − f (s, u(s))
∥∥ ,

which implies that

‖Qun − Qu‖C <
eλ1t1 + 1

λ1(1 − e−λ1t1
m∑
i=1

|γi|)
sup
s∈J

∥∥f (s, un(s)) − f (s, u(s))
∥∥ .
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From (21), we know that

||Qun − Qu||C → 0, as n → ∞.

That is, Q is continuous on C(J, H).

Subsequently, we prove that Q: C(J, H) ® C(J, H) is a compact operator. Let

0 ≤ α < 1
2 , 0 < ν < 1

2 − α. By [20], we can prove that the operator Q defined by (20)

maps C(J, H) into Cν (J, Ha). By Arzela-Ascoli’s theorem, the embedding Cν (J, Ha) ↪ C

(J, H) is compact. This implies that Q: C(J, H) ® C(J, H) is a compact operator. Com-

bining this with the continuity of Q on C(J, H), we know that Q: C(J, H) ® C(J, H) is a

completely continuous operator.

Next, we prove that there exists a positive constant R big enough, such that Q(ΩR) ⊂
ΩR. In fact, choosing

R =

m∑
i=1

|γi| (1 − e−λ1t1) + 1

1 − e−λ1t1
m∑
i=1

|γi|

∫ a

0
ϕ(s)ds.

For any u Î ΩR, we have

||Qu(t)|| ≤
m∑
i=1

|γi| e−λ1t ‖B‖
∫ ti

0
e−λ1(ti−s)

∥∥f (s, u(s))∥∥ ds
+

∫ t

0
e−λ1(t−s)

∥∥f (s, u(s))∥∥ ds

≤

m∑
i=1

|γi|

1 − e−λ1t1
m∑
i=1

|γi|

∫ ti

0
ϕ(s)ds +

∫ t

0
ϕ(s)ds

≤

m∑
i=1

|γi| (1 − e−λ1t1) + 1

1 − e−λ1t1
m∑
i=1

|γi|

∫ a

0
ϕ(s)ds

= R.

Therefore, Q(ΩR) ⊂ ΩR. Thus, Q: ΩR ® ΩR is a completely continuous operator.

By Schauder Fixed Point Theorem, we know that Q has at least one fixed point u Î
ΩR. Since u is mild solution of the LNP (12)-(13) for h(·) = f(·, u(·)), by Lemma 1, u Î
W 1,2(J, H) ∩ L2(J, H1) is a strong solution of the problem (1)-(2).

□
If we replace the assumption (H2) by the following assumption (H2)* For some r >0,

there exist a function � Î L(J, ℝ+) and a non-decreasing continuous function ψ: ℝ+ ®
ℝ+ such that for all t Î J and u Î H satisfying ||u|| ≤ r,∥∥f (t, u)∥∥ ≤ ϕ(t)ψ(‖u‖).

We have the following existence result.

Theorem 2 Let A be a positive definite self-adjoint operator in Hilbert space H and it

have compact resolvent, f: J × H ® H be continuous. If the conditions (H1) and (H2)*

are satisfied, then the problem (1)-(2) has at least one strong solution u Î W 1,2(J, H) ∩
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L2(J, H1) provided that there exists a constant R with

Mψ(R)
∫ a

0
ϕ(s)ds ≤ R, (22)

where

M =

m∑
i=1

|γi|(1 − e−λ1t1 ) + 1

1 − e−λ1t1
m∑
i=1

|γi|
. (23)

Proof. By the proof of Theorem 1, we know that the operator Q: C(J, H) ® C(J, H)

is completely continuous. For any u Î ΩR, from the assumption (H2)* and (22), we

have

∥∥|Qu(t)
∥∥ ≤

m∑
i=1

|γi| e−λ1t ‖B‖
∫ ti

0
e−λ1(ti−s)

∥∥f (s, u(s)∥∥ ds
+

∫ t

0
e−λ1(t−s)

∥∥f (s, u(s))∥∥ ds

≤

m∑
i=1

|γi| ψ(R)

1 − e−λ1t1
m∑
i=1

|γi|

∫ ti

0
ϕ(s)ds + ψ(R)

∫ t

0
ϕ(s)ds

≤

m∑
i=1

|γi| (1 − e−λ1t1) + 1

1 − e−λ1t1
m∑
i=1

|γi|
ψ(R)

∫ a

0
ϕ(s)ds

= R,

which implies Q(ΩR) ⊂ ΩR. Thus, Q: ΩR ® ΩR is a completely continuous operator.

By Schauder Fixed Point Theorem, we know that Q has at least one fixed point u Î Ω

R. Since u is mild solution of the LNP (12)-(13) for h(·) = f(·, u(·)), by Lemma 1, u Î W
1,2(J, H) ∩ L2(J, H1) is a strong solution of the problem (1)-(2).

□
Corollary 1 Let A be a positive definite self-adjoint operator in Hilbert space H and

it have compact resolvent, f: J × H ® H be continuous. If the conditions (H1) and (H2)*

are satisfied, then the problem (1)-(2) has at least one strong solution u Î W1,2(J, H) ∩
L2(J, H1) provided that

lim inf
r→+∞

ψ(r)
r

<
1

M
∫ a
0 ϕ(s)ds

,

where M is defined by (23).

4 An example
In order to illustrate our main results, we consider the parabolic partial differential

equation with nonlocal condition
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⎧⎪⎪⎨
⎪⎪⎩

∂
∂ t u(x, t) − ∂2

∂x2 u(x, t) = f (x, t, u(x, t)), (x, t) ∈ [0, 1| × J,
u(0, t) = u(1, t) = 0, t ∈ J,

u(x, 0) =
m∑
i=1

γiu(x, ti), x ∈ [0, 1],
(24)

where J = [0, a], 0 < t1 < t2 <... <tm ≤ a, gi are real numbers, gi ≠ 0, i = 1, 2, ..., m, f:

[0, 1] × J × ℝ ® ℝ is continuous.

Let H = L2(0, 1; ℝ) with the norm || · ||2. We define the linear operator A in Hilbert

space H by

Au = − ∂2

∂x2
u, u ∈ D(A) = H2(0, 1) ∩ H1

0(0, 1),

where H2(0, 1) = W2,2(0, 1), H1
0(0, 1) = W1,2

0 (0, 1). It is well know from [16,17] that

A is a positive definite self-adjoint operator on H and -A is the infinitesimal generator

of an analytic, compact semigroup T(t)(t ≥ 0). Moreover, A has discrete spectrum with

eigenvalues ln = n2π2, n Î N, associated normalized eigenvectors vn(x) =
√
2 sin nπx,

the set {vn: n Î N} is an orthonormal basis of H and

T(t)u =
∞∑
n=1

e−n2π2t(u, vn)vn,
∥∥T(t)∥∥ ≤ e−π2t, ∀t ≥ 0.

Let f(t, u(t)) = f(·, t, u(·, t)), then the problem (24) can be rewritten into the abstract

form of problem (1)-(2).

Theorem 3 If the nonlinear term f(x, t, u(x, t)) = sin u(x, t)/(t1/2 + 1), x Î [0, 1], t Î

J and
∑m

i=1 |γi| < eπ
2t1, then the problem (24) has at least one strong solution

u ∈ C(J, H1
0(0, 1)) ∩ L2(J, H2(0, 1)) ∩ W1,2(J, L2(0, 1;R)).

Proof. Let �(t) = t-1/2, from the condition
∑m

i=1 |γi| < eπ
2t1, we easily see that the con-

ditions (H1) and (H2) hold. Hence by Theorem 1, the problem (24) has a strong solu-

tion u ∈ C(J, H1
0(0, 1)) ∩ L2(J, H2(0, 1)) ∩ W1,2(J, L2(0, 1;R)) in the sense of L2(0, 1;

ℝ). □
Theorem 4 If

∑m
i=1 |γi| < eπ

2t1, f: [0, 1] × J × ℝ ® ℝ is continuous and satisfies the

following conditions

(P1) For some r >0, there exists a function � Î L(J, ℝ+) such that for all t Î J, x Î [0,

1] and u Î ℝ, | u |≤ r, | f(x, t, u(x, t)) |≤ �(t),

(P2) There exists a function c: ℝ+ ® ℝ+ such that∣∣f (x, t, ξ) − f (y, s, η)
∣∣ ≤ c(r)(

∣∣x − y
∣∣μ + |t − s|μ/2 + |ξ − η|),

for any r >0, μ Î (0, 1) and (x, t, ξ), (y, s, h) Î [0, 1] × J × [-r, r], then the problem

(24) has at least one classical solution u Î C2+μ,1+μ/2([0, 1] × J).

Proof. From the condition
∑m

i=1 |γi| < eπ
2t1 and assumption (P1), it is easy to verify

that the conditions (H1) and (H2) are satisfied. Hence by Theorem 1, the problem (24)

has at least one strong solution

u ∈ C(J, H1
0(0, 1)) ∩ L2(J, H2(0, 1)) ∩ W1,2(J, L2(0, 1;R)) in the sense of L2(0, 1; ℝ).

Since the nonlinear term f satisfies the condition (P2), by using the similar regulariza-

tion method in [20], we can prove that u Î C2+μ,1+μ/2([0, 1] × J) is a classical solution

of the problem (24). □
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