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Abstract

The algorithm of singular point quantities for an equilibrium of three-dimensional
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singular point quantities and Liapunov constants on center manifold is rigorously
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is applied to illustrate the advantage in investigating Hopf bifurcation of three-
dimensional system.
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1 Introduction
We consider the real three-dimensional differential autonomous systems which take
the form

X = Ax + f(x) @

where x € R?, A e R*3, f(x) e C* with £f(0) = 0, Df(0) = 0, then the origin is an
equilibrium. The systems (1) usually involve many important nonlinear dynamical
models such as Lotka-Volterra system [1,2] and Lorenz system [3,4].

As far as Hopf bifurcation of the origin of systems (1) is concerned, the Jacobian
matrix A at the origin should have a pair of purely imaginary eigenvalues and a nega-
tive one. In general, one can apply firstly the center manifold theorem to reduce the
system (1) to a two-dimensional system [5], then compute Liapunov constants or the
bifurcation formulae based on Liapunov functions-Poincaré theory [6,7]. However, this
traditionary way has quite complicated course of determining coefficients of the two-
dimensional reduced equations, and for bifurcation formulae or Liapunov coefficient
[6,8], usually, only the first value is obtained, thus just one single limit cycle in the vici-
nity of the origin can be found.

Recently, the authors Wang et al. [9] introduced an algorithm of computing the singu-
lar point quantities on center manifold, which misses the above tedious course.
In contrast to the usual ones, this algorithm is more convenient to investigate the multi-
ple Hopf bifurcation at equilibrium of a three-dimensional system. However, it is possi-
bly difficult to be approbated. For this reason, this paper will give the explicit relation
between the singular point quantities and Liapunov constants of the origin of system (1).

© 2012 Wang and Huang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:wqinlong@163.com
mailto:wqinlong@163.com
http://creativecommons.org/licenses/by/2.0

Wang and Huang Advances in Difference Equations 2012, 2012:78 Page 2 of 12
http://www.advancesindifferenceequations.com/content/2012/1/78

And more we hope that the results presented here will stimulate the analysis of topologi-
cal structure and dynamical behavior for a higher-dimensional system.

This paper is organized as follows. In Section 2, we give some preliminaries about
Liapunov constants, the focal values and singular point quantities on center manifold
for a three-dimensional system (1). In Section 3, the relation between the singular
point quantities and Liapunov constants is investigated, and their algebraic equivalence
is proved rigorously. In Section 4, the singular point quantities of the Lii system as an
example are computed, then the existence of four limit cycles for this system is judged.

2 The related definitions

2.1 Liapunov constants on center manifold

We give firstly the definition of Liapunov constants for a three-dimensional system.
Considering the Jacobian matrix A at the origin of system (1) has a pair of purely ima-
ginary eigenvalues and a negative one, then the system (1) can be put in the following

form:

o0
X1 = L1x1 + £oxo + Zxk(xll X2, X3),

k=2

o0
5('2 =40x1 — 01Xy + Z Yk(xlr X2, xS)/ (2)
. ~ k=2
X3 = —dxz + Y Up(x1, %2, x3)

k=2

Where ;= $%(i=1,2,3), and d, &, Ly, £, e R(d > 0, £3 + ££, < 0), and X}, Yy, Uy
are homogeneous polynomials in x;, x,, x3 of degree k.

According to the center manifold theorem [5], the three-dimensional system (2) has
an approximation to the center manifold taking the form

u=1u(xy, x2) =uy(x1, x2) +h.o.t. (3)

where u, is a quadratic homogeneous polynomial in x; and x,, and h.o.t. denotes the
terms with orders greater than or equal to 3. Substituting u = u(x,, x,) into the equa-
tions of system (2), we can obtain a generic two-dimensional differential system with
center-focus type linear part as follows

[o¢]
X1 = 01x1 + £axy + Z}N(k(xl, x2),
2 (4)
Xy = €x1 — £1xp + kX; Yie(x1, x2)
where X,, Y, are homogeneous polynomials in x;, x, of degree k, and their coeffi-
cients are polynomial functions of coefficients of the system (2). System (4) is often
called the reduction system of (2). Correspondingly, one can take a generic Liapunov
function

[}
H(.X'], X2) = K(K.X’% — 2613(?13(’2 — EQ.X%) + ZHk(.X‘], X2) (5)
k=3

where £ can be an arbitrary non-zero real number, H is a homogeneous polynomial
in x1, x, of degree k and the coefficients of H should satisfy



Wang and Huang Advances in Difference Equations 2012, 2012:78
http://www.advancesindifferenceequations.com/content/2012/1/78

dr “ =Vo®2 + V@2 4 4+ V@™ (6)
where ®(x;, %) = (x3 +x3) or #3 or &3 or (x; + x,)° or other suitable forms [7,10,11].
Definition 2.1. V5, in (6) is called the mth Liapunov constant of the origin for sys-

tem (2) or (4), m =1, 2, ...

2.2 The focal values on center manifold

In this part, we give the definition of the focal values for a three-dimensional system.
One transformation matrix P can be found such that the coefficient matrix A of linear
part of system (2) becomes the matrix B as follows

£1€¢, O 0-wo0
PAP=P'|¢ —;0 |P=|lw0 0 |#2B (7)
00 —d 00 —d

where |P| = 0 and @ = (—¢2 — ££,)"/? > 0. Thus by a nondegenerate transformation
(1, %0, x3)" = P (%, y, u)’, and after a time scaling: ¢ = wr, the system (2) can be changed
into the following system

00 .

g’[‘ =—y+ Y Akﬂxky’ul =X(x y, u),
ke+j+1=2
Yy S Byl
a =X+ D By =Y(x y, u), ®)
Fe+j+1=2
o0 .

W= —dou+ Y dgayu' =U(x, y, u)

ke+j+1=2

where %, y, u, Ay, By, dig€ R (k, j, L e N) and dy = d/w. Similarly, according to the cen-
ter manifold theorem, putting certain approximation with the same form as (3) into (8),
we get the following real planar polynomial differential system

00 .
By 2 Ay = X(x, y),
+j=2
. . , ©)
d’; =x+ ) Bijky] =Y(x y)
k+j=2

where Ay, Byj € R(k, j € N) and all Ay;, By; are polynomial functions of coefficients
of the system (8) or (2). System (9) is also called the equations on the center manifold
or reduction system of (8). It is well-known, the origin of system (9) is center-focus
type, and some significant work about it has been done in [12-14].

In order to define the focal values, we transform system (9) into the following form
under the polar coordinates: x = r cos 0, y = r sin 6,

o0 o0
‘3; = rkX; (pk(e)rk, ‘é{i =1+ kX; wk(e)rh (10)

where ¢x(0) and wi(6), k = 1, 2, 3, ... are analytic. System (10) is again transformed

into

o0
& =T Re(0), (11)
k=0
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where the function on the right-hand side of Equation (11) is convergent in the

range 0 € [-4, 47, |r| < 1o (r is certain positive constant) and
Re(0 +7) = (—1)*Ri(0),k=0,1,2,.... (12)

For sufficiently small 7, let

o0
A(h) =127, h)—h, 1=71(0, h) = > vu(0)h" (13)
m=1
be the Poincaré succession function and the solution of Equation (11) satisfying the

initial-value condition r|y-o = 4. Moreover, for (13) we have
v@)=1, vu(0)=0, m=2,3,.... (14)

Definition 2.2. For the succession function in (13), if v5(27) = v3(27) = - - - = vou(271)
= 0 and vy, 1(27m) 2 0, then the origin is called the fine focus or weak focus of order k,
and the quantity of vy, 1(27) is called the kth focal value at the origin on center mani-
fold of system (8) or (2), k = 1, 2, ...

Remark 1. For the coefficients of the form solution in (13), we have the following
property [13,15]: for every positive integer m = 1, 2, ..., there exists expression of the
relation

T = ()
Vam(270) = 1y () ;; Em Vaks1(27) (15)

where every gﬂ‘) is a polynomial of vy(7), vo(7), ..., v,,(r) and v{(27), v5(271), ..., Vo
(27r) with rational coefficients. Particularly, if for each 1 < k < m - 1, vy,1(2m) = 0
holds, we can get v»(271) = v4(27m) = - = v,,,(27) = 0.

2.3 The singular point quantities on center manifold
Here, we recall the definition of the singular point quantities on center manifold. By

means of transformation
z=x+yi, w=x—yi, u=u T=it, i=+—1, (16)

system (8) is also transformed into the following complex system

o0 .
g; =Z+ Z akﬂzkw]ul = Z(Z, w, U)/
ke+j+1=2
x .
3? = —w— Z bkjlwszul =—-W(z, w, u), 17)
Le+j+1=2
oo . -
Wo=idou+ Y. dgdwiu = Uz, w, u)
ke+j+1=2

where z, w, T, ay, b Zikﬂ € C (k j, I € N), the systems (8) and (17) are called con-
comitant. If no confusion arises, Eikﬂ, U are still written as di; and U.

Lemma 2.1 (see [9]). For system (17), using the program of term by term calculations,
we can determine a formal power series:

o0
F(z, w, u)=zw+ Y. cCopyzwbu” (18)
a+p+y=3

Page 4 of 12
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such that
dF  oF oF aF o)
= Z— W U= m+1 19
ar = 22 " ay Wt g Y 2 (@) (19)

where ¢119 = 1, €101 = €o11 = €200 = Co20 = 0, Cro = 0, k = 2, 3, ... And p,, is called the
mth singular point quantity at the origin on center manifold of system (17) or (8) or (2).
Lemma 2.2 (see [9]). For the mth singular point quantity and the mth focal value at
the origin on center manifold of system (8), i.e. u,, and v,,,.1, m = 1, 2, ..., we have the

following relation:

. LMl
Vome1 (27) =i +1im > &n i, (20)
k=1
where gr(nk) (k=1,2,...,m—1)are polynomial functions of coefficients of system (17).

Usually it is called algebraic equivalence and written as v, ~ i,

3 The conclusions and proofs
3.1 The equivalence for singular point quantities on center manifold
In this subsection, we give firstly the results about the equivalence. Then the key theo-
rem, i.e. the following Theorem 3.1 will be proved in next subsection.

Theorem 3.1. For the mth Liapunov constant of the origin for system (2) and the mth
focal value at the origin for system (8), i.e. Vs, and v,,,.1, for every positive integer m,
we have the following relation:

m—1
k
Vom = 0mVoma1 (27) + Z €r$1 skt (2m) (21)
k=1

where gr(nk) (k=1,2,...,m — 1) are polynomial functions of coefficients of system (8)

and
2 -1
om = 2w (v? +v?) f [p(0)]™"'do | (22)
0
with
xie, if® = xi
_ ] %20 if® =x
() = X3y + X3, , if® =x? +x2 , (23)
(xlg +X29) , if‘b = (x1 +X2)
where

x19 = [(1v + wv) cos(0) + (£1v — wv) sin(0)]/€,  x29 = vcos(0) +vsin(0) (24)

and v, v are the two constants given by the real transformation matrix P in (7) with
v2 + 0% 2 0. Then, we also call the relation algebraic equivalence and write as V,,, ~
O, Voru1(2m), m =1, 2, ...

How to determine the above v, v is shown in the next elementary lemma.

Lemma 3.2. The nondegenerate real transformation matrix in (7) possesses necessa-
rily the following generic form:

Page 5 of 12
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vli+vw vl —vw 0
12 £
P= v v 0 (25)

0 0 ¢

where ¢, v, v are three real numbers such that ¢(v* + v*) = 0 holds.

Proof. Considering that the coefficient matrix A in (7) has a pair of purely imaginary
eigenvalues iw, —i®w and one real eigenvalue -d, one can select freely their eigenvectors
respectively, for example

01 +iw ' 4 —iw ' /
n = E 1110 ’ Ny = K 1110 ln3=(01011)-

Thus, there must exist only a generic transformation matrix 77 = ky10;+kxN>+k3n3
with the following form

ka(G+io) la(bi-io)

¢ ¢
Tl = kl kz 0
0 0 ks
such that
iow 0 0
T'AT; = | 0 —iw 0 | 2] (26)
0 0 —d

where ky, k, and k3 are three arbitrary non-zero constants.
Similarly, we obtain also that for the matrix B in (7), there must exist only a generic
transformation matrix 7, with the following form

ij; —ij, O
Tr=1j1 j» O
0 0 js
such that
iw 0 0
T;'BT = 0 —iw 0 | =] (27)
0 0 —d

where j;, j» and j3 are also three arbitrary non-zero constants.
Then from (26) and (27), there must exist only a generic transformation matrix P as

follows
0 (Ko —Kq )i+ (Ko +K7 ) (Ko +K71 )l — (Ko —K7 )i 0
20 20
P=T\T;' = (KrzKl)l Karki 0 (28)
0 0 ¢

such that P! AP = B in (7) holds, and where K; = ki/j1, Ky = ky/j and ¢ = ks/j3 are
also arbitrary non-zero numbers because of the property of ky, ky, k3, j1, j» and js.
Furthermore in order to guarantee that the transformation in (7) is real and nonde-
generate, form (28), there is no other choice, only we can let K; and K, conjugate, i.e.

Ki=v+iv, K, =v —iv,v,v,eR,

Page 6 of 12
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at the same time, ¢, v and v are three real numbers such that |P| = 0 holds, thus we
obtain the generic form of the transformation matrix P. o

Remark 2. From the expression 0,,, m = 1, 2, ... in (22), one should notice that once
the coefficient matrix A and transformation matrix P are given explicitly, then o, is
never an arbitrary and undefined value. In particular, when A = -1, = @, A; = 0 in sys-
tem (2), i.e. A = B in (7), we can get the identity matrix E as the simplest transforma-
tion matrix P, namely v = 1, v = 0, if we choose

1
K= 2a)’4 and @ =x? +x3

in (6), then at this time every o, = 211.

Furthermore, from Lemma 2.2 and Theorem 3.1, we have

Theorem 3.3. For the mth Liapunov constant of the origin for system (2) and the mth
singular point quantity of the origin for system (8) or (17), i.e. Vs, and p,,,, m = 1, 2, ...,

there exists the following relation:
m—1 '
Vom = im0 mpm + im0y Z ér(n )Mk (29)
k=1

where G, has been given in (22) of Theorem 3.1 and gr(nk)(k =1,2,...,m—1)are
polynomial functions of coefficients of system (17). Similarly we also call it algebraic
equivalence and write as Vs, ~ 1 7T C,uph.

Remark 3. From (20) in Lemma 2.2 and (29) in Theorem 3.3, we get that:

Vo =0113(27) = im0 (30)
and if for all k = 1, 2, ..., m — 1, Vo = 0 or vory; = 0 or g = 0 holds, then we have

Vom = OmVome1 = iT0 iy, m=2,3,.... (31)
Thus the stability of the origin for the systems (1) or (2) can be figured out directly

by calculating the singular point quantities of the origin for system (17).

3.2 Proof of theorem 3.1
Firstly, from Lemma 3.2 and the nondegenerate transformation: (x1,x2,x3)" = P(x, y, u)’

in (7), we obtain

(%1, %2, x3) = (”zlz”wx + "llz’”"y, vx + vy, Lu), (32)

and more under the polar coordinates x = r cos 6, y = r sin 6, we have

x1 = y[(ve1 +vw) cos() + (v€; — vw)sin(8)] = rx1e,

. (33)
Xy =r[v cos(8) +vsin(0)] = rxzg.
Substituting (32) into the Liapunov function (5), then we denote
[o¢]
H(xy, x2) = H|x, y| = Y Hilx, y] (34)

k=2
where Hy[x, y] is a homogeneous polynomial in x, y of degree k and

Halx,y] = =% (v + v?)(£7 + €£2) (x* +)?) (35)
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with H3[1,0] = % (v? + v?)w’ And more from the expressions (13) and (34), we have

Hlx,y] = H[r(8, h) cos(0), r(6, h) sin(6)] = in[cos(e), sin(6)]r*(6, h) )
k=2
= H(6,h).

Next, we investigate AHf = H(27, h) — H(0, h) based on the Equation 6.

On the one hand, from (14), we denote

H(27,h) — H(0,h) = in[l,O][rk(zn,h) —7%(0, h)]

k=2
s 37
= Hi[1,0][* (27, h) — K] 37
k=2
= A,
where
™27, h) — ¥ = (r(2m, h) — h)(F~ Y27, h) + 7*22n, W)h + - - - + K1) 38)
= (r(27, h) — h)(kh*~! + o(H*1)),
and from the expression (13), one can get
AHy = (r(2m,h) —h) > Hi[1,0](kh* " + o(H*"))
k=2
2
= (r(27, h) — h) |:£ k(v? +v?)w’h + o(h)j| (39)
2 o0
- ZK(# +v?)w? ;um(zn)hmﬂ(l +0(1)).
On the other hand, we denote
2 2w 2
A(2m, h) — H(0, h) =/g’;de = / didr 4 - C})/ffj d0do = AH,. (40)
0 0 0
From system (10) and the expression (13), we can get
. -1
4= |:1 + ;erkll/fk+1(9)i| =1+c(@)h+c(0)h?+---=1+0(1) (41)

where y,1(0), ci_1(0) (k = 2, 3, ...) are analytic. At the same time, putting (33) in the
right side of (6), we have

A3 V(92 (0)(0, M = 3 Va2 $(0)]1 (1 + 0(1), (42)

m=1 m=1

thus

00 2
Ay =) {Vzmh””” ( f [6(6)]™"do + o(l))} . 43)
0

m=1

Page 8 of 12
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According to (39), (43) and applying (15) in Remark 1 and mathematical induction

to m, we complete the proof.

4 Singular point quantities for the Lii system
In this section, we investigate the singular point quantities of the equilibrium point of
the Lii system which bridges the gap between the Lorenz and Chen attractors [7], and
takes the following form
X1 =a(xy —x1)
Xy =CXp — X1X3 (44)
X3 = X1X — bxs
where a >0, b >0, ¢ >0. Obviously, system (44) has three equilibrium points: O(0, 0, 0),
O1(v/be, ~/be, ¢)and Oz(—\/ be, —~/be, c)- Because the Jacobian matrix at the origin O
has no purely imaginary eigenvalues, it is unnecessary to consider its singular point
quantities. And more the equations in (44) are invariant under the transformation:

(xlr X2, x3) = (_xll —X2, x3)l (4'5)

which means that system (44) is symmetrical. Therefore, we only need to consider
O;.
The Jacobian matrix of system (44) at O; is

—a a 0
Ay=| —¢c ¢ —Vbe
Vbe vbe —b

with the characteristic equation: A> + (@ + b — ¢)A + abA + 2abc = 0. To guarantee
that A, has a pair of purely imaginary eigenvalues tiw(w >0) and one negative real
eigenvalue Ao, we let its characteristic equation take the form

(A +@?) (A — xo) = 0.
Thus we obtain the critical condition of Hopf bifurcation at O;: ¢ = (a + b)/3, then
w=~bc, ho=—2c (46)

namely b = wa, ¢ = (@® + ©*)/(3a). By the translation: (x1, x5, x3) = (¥1 + ®, x5 +
o, x3 + ¢), we make the equilibrium O; become the origin and change system (44) into

X1+ 0
x=A |2+ | +| —(x1 +@)(x3+¢) |- 47)
X3 +¢ (x1 + @) (x2 + @)

Under the conditions (46), one can find a nondegenerate matrix

V3a(2a’-0?)  3J/3d%0 /3

dy\/dy dy/do 2w+/do

P0 = 2a+/3dy w+/3dy 20% —a?

d, d, 2w+/3dy

0 1 1
such that
0—w 0

Py'APy =@ 0 0 (48)

0 0 —2dy/(3a)

Page 9 of 12
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where dy = a® + o?, dy = 4a*+ o>
Then we can use the nondegenerate transformation x = P, y and the time re-scaling:

t — t/w to make the system (47) become the following form:

y i)[Po_1 x diag(Poy + E)AsPoy]

1ip-1 g (49)
o [Po " AcPoy + Py x diag(Poy)AsPoy]

where y = (y1, y2, ¥3), and E is the 3 x 3 identity matrix.
Now we put y; = (z + w)/2, y5 = (z - w)i/2, y3 = u, t = —Ti in system (49) and obtain
the following same form as the complex system (17):

é]j;" =2+ d1jp1UZ + donn UW + dq110<W + a200z2 + a020w2 + a002u2 =7
d? = —(w + bou Uz + b101 uw + buozw + b02022 + b200w2 + boozuz) =-W (50)

d;{ = doolu + d101 uz + dou uw + dnozw + d200Z2 + d020w2 + d002u2 =U

where u e R, z, w, Te C, and

_ 3a(7a*+40?) 9a*
200 = ogd, 7t 24140V
3a(16a°-93a?w* +40®) = 3a?(320°—16a°—72a*®?—105a%w*) .
ap20 = — 3 + 3 1,
2d3d, 2d3dy 0

a _ 3% (8a*+194%w’+200") a2(4a(‘721a4w2736a2w4+16w6)i

002 = 8dodydy? 8dodydy o0 ’
it = — doa(5a*>—4w?) | 3a*(5a*—4w?) .

101 = dydyo? 2dido

Aoty = __a(a’—20)(8a°+30a* 0? +454’ w* —4°) + 3a2(az—sz)(4a4+5a2w2—8w4)i

o1 = 2doddr0? 2dod2dr0 ’
dun = 18a3(2a%+5w?) + 3a2(8w474a4723a2w2)i

1o = &d; Bdro ’

bka = Zlka(kjl =200, 020, 002, 101, 011, 110),

d _ _ 6a(16a°—36a* @’ —21da’w* +40°) + 54a2w(4a47a2w272w4)i
200 = d3d; did; ’
d _ 6a(16a°—36a*w? —21a?w* +40°) + 54a2w(4a47a2w272w4)i
020 = did; & ’
3a? (54> —40?) .
dooz = — 2y Y
dior = _ 3a(16a*—7a’w?+40*) 12a2(2a2—a)2)(a2—2w2)i
101 = d3d; Bdro ’
dons = 3a(16a* -7d’w’ +40*) 12a2(2a27w2)(a272w2)i
ol = £d; Bdro ’
36a’w(a?—2w?) .
duo = £d, 1,
pr i
door = 3,01

where d, = a® + 4”, and aj denotes the conjugate complex number of i

According to Lemma 2.1, we obtain the recursive formulas c,g, and y,, in Appendix.
By applying the formulas in the Mathematica symbolic computation system, we figure
out easily the first twenty singular point quantities of the origin of system (50):

w1 = —243ia°(2a* — 0?)(a® — 50°)w/(dod?dyds3),
[y = —891849714087780ia’ (2a* — w?)w? [(did;d3d3ds), (51)
M3 =fg=---=MU=0

where ds = a* + 11a°0” + 0, dy = 4a* + 89a°w* + 4", and in the above expression
of each yy, k = 2, 3, ..., we have already let gy = -« = 1 = 0.

Page 10 of 12
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From the remark 3 and the singular point quantities (51), if we let P, 1A,P, in (48)
become A in (7), and considering the particular case in the Remark 2, then we have

Theorem 4.1. For the flow on center manifold of the system (44), the first two focal
values and Liapunov constants of the origin are as follow

(Yvs =impy,  vs=imu (52)
.. 1, 1,
(ll) Vz = 21/L1, V4 = 21/L2 (53)

where the expression of vs is obtained under the condition of vz = 0, and V, is
obtained under the condition of V, = 0.

Remark 4. Considering Hopf bifurcation at the two symmetrical equilibria O; and O,,
form the Theorem 4.1, we conclude that the Lii system (44) at least 4 small limit

cycles, which will be proved rigorously in a following paper.

Appendix
Capy = ﬁ_al_ydﬂ [d200(1 + ¥ )Ca—2,8,y+1 — bo20(1 + B)Ca—2,+1,y +drio(1 + ¥ )Ca1,8-1,y41—
(@200 + b110B — a200e — d101Y )ca—1,6,y — bon1 (1 + B)Ca—1,6+1,p-1+
do20 (Y + 1)Ca,p—2,y+1 + (D200 — b200B + ar10e + don1 ¥ )ea,p—1,y — (dooz + b101f—
a101@ — d002Y )ea,8,y -1 — 002 (1 + B)Ca,pe1,y—2 + @020 (1 + &) Car1,8-2,y +
aon (1 + o)Cas1,8-1,y—1 + 4002 (1 + &) Cas1,8,y—21,
Mm = dZOOCm—2,m,1 - bozo(l + m)Cm—z,m+1,o + dllOCm—l,m—l,l - (azoo — dzoom + bnom)

Cm—1,m,0 + A020Cm,m—2,1 + (b200 + A110m — b2oo™)C,m—1,0 + 020 (1 + M)Cis1,m—2,0-
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