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Abstract

In this paper, we first introduce a concept of the mean-value of uniformly almost
periodic functions on time scales and give some of its basic properties. Then, we
propose a concept of pseudo almost periodic functions on time scales and study
some basic properties of pseudo almost periodic functions on time scales. Finally, we
establish some results about the existence of pseudo almost periodic solutions to
dynamic equations on time scales.
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1 Introduction

The theory of dynamic equations on time scales has been developed over the last sev-
eral decades, it has been created in order to unify the study of differential and differ-
ence equations. Many papers have been published on the theory of dynamic equations
on time scales [1-14]. In addition, the existence of almost periodic, asymptotically
almost periodic, pseudo-almost periodic solutions is among the most attractive topics
in the qualitative theory of differential equations and difference equations due to their
applications, especially in biology, economics and physics [15-34]. Recently, in [14,35],
the almost periodic functions and the uniformly almost periodic functions on time
scales were presented and investigated, as applications, the existence of almost periodic
solutions to a class of functional differential equations and neural networks were stu-
died effectively (see [13,14,35]). However, there is no concept of pseudo-almost peri-
odic functions on time scales so that it is impossible for us to study pseudo almost
periodic solutions for dynamic equations on time scales.

Motivated by the above, our main purpose of this paper is firstly to introduce a concept
of mean-value of uniformly almost periodic functions and give some useful and important
properties of it. Then we propose a concept of pseudo almost periodic functions which is
a new generalization of uniformly almost periodic functions on time scales and present
some relative results. Finally, we establish some results about the existence and uniqueness
of pseudo almost periodic solutions to dynamic equations on time scales.

The organization of this paper is as follows: In Section 2, we introduce some nota-
tions, definitions and state some preliminary results needed in the later sections. In
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Section 3, we introduce a concept of mean-value of uniformly almost periodic func-
tions and establish some useful and important results. In Section 4, we propose a con-
cept of pseudo almost periodic functions on time scales and present some relative
results. In Section 5, we establish some results about the existence and uniqueness of
pseudo almost periodic solutions to dynamic equations on time scales. As applications
of our results, in Section 6, we study the existence of pseudo almost periodic solutions
to quasi-linear dynamic equations on time scales.

2 Preliminaries
Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators o, p : T — T and the graininess u : T — R* are defined, respectively, by

o(t)=infseT:s>1t}, p(t)=sup{seT:s<t}, u(t)=o(t)—t

A point ¢t € T is called left-dense if t > infT and p(¢) = ¢, left-scattered if p(¢) < ¢,
right-dense if t < sup T and o(¢) = ¢, and right-scattered if o(¢) > ¢. If T has a left-scat-
tered maximum 1, then T* = T\{m}; otherwise T* = T. If T has a right-scattered mini-
mum m1, then Ty, = T\{m}; otherwise T}, = T.

A function f: T — R is right-dense continuous provided that it is continuous at
right-dense point in T and its left-side limits exist at left-dense points in T. If fis con-
tinuous at each right-dense point and each left-dense point, then f'is said to be a con-
tinuous function on T.

Fory:T — R and ¢ ¢ T, we define the delta derivative of y(£), y*(t), to be the num-
ber (if it exists) with the property that for a given ¢ >0, there exists a neighborhood U
of ¢ such that

ly(e (1) =y =2l (1) =]l < elo(t) =

forall se U.
Let y be right-dense continuous, if Y “(£) = y(t), then we define the delta integral by

[ ¥(s)As = V(1) — Y(a).

A function p: T — R is called regressive provided 1+u(t)p(t) = 0 for all ¢ ¢ T* The
set of all regressive and rd-continuous functions p: T — R will be denoted by
R =R(T) = R(T,R). We define the set
R =R (T, R)={peR : 1+u(t)p(t) >0, Vt € T}.

A n x n-matrix-valued function A on a time scale T is called regressive provided I +
u(t)A(t) is invertible for all t € T, and the class of all such regressive and rd-continuous
functions is denoted, similar to the above scalar case, by R = R(T) = R(T, R"™*").

If r is a regressive function, then the generalized exponential function e, is defined by

et 9) = exp | (o)A

for all s, t € T, with the cylinder transformation

Log(;l+hz)l ifh # 0,

ai2) = :z, ifh = 0.
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Definition 2.1 ([1,3]). Let p, q : T — Rbe two regressive functions, define

p®g=p+q+pupq, 6p=—1fM, poq=p&(89).

Lemma 2.1 ([1,3]). Assume that p, 4 : T — Rare two regressive functions, then
(i) eo(t, s) = 1 and e,(t, 1) = 1;

(i) e,(0(8), 5) = (1 + p(OpB)e,t 9

(iii) ep(t, 5) = ep(ls,t) = ecp(s, 0);ep(t, s)ep(s, 1) = ey(t, 1)

(iv) (ecp(t, 5))* = (Op)Deay(t, 9);

() Ifa, b, c € T, then /b p(t)ey(c, o ()AL =ep(c, a) — ep(c, b)-

Definition 2.2 ([36]). For every x, y € R, [x, y) ={t e R : x <t <y}, define a counta-
bly additive measure m, on the set

Fi={[a,b)nT:abeTa<b)
that assigns to each interval [a, 1;) N Tits length, that is,
my([a,b)) = b — a.

The interval [a, a)is understood as the empty set. Using m,, they generate the outer
measure mion P(T), defined for each E € P(T)as

i%f{zie,ﬁ(?;i - ai)] eR", b&E

+00, bekE,

m (E) =

with
7% = {{[&,,5,) NT e ]:1}"517'1 ZI»fz C N,E C LIJ ([ai,bi) ﬂT)}
167%

A set A C Tis said to be A-measurable if the following equality:
mi(E) = m;(ENA)+m;(EN(T\A))

holds true for all subset E of T. Define the family
M(m7) ={A C T : AisA — measurable},

the Lebesgue A-measure, denoted by uy, is the restriction of mito M(m3).
Definition 2.3 ([35]). A time scale Tis called an almost periodic time scale if

[Mi={reR:txteT, Vte T} #{0}.

Remark 2.1. In the following, we always use Tto denote an almost periodic time scale.

Throughout this paper, E" denotes R” or C", D denotes an open set in E" or D = E",
S denotes an arbitrary compact subset of D.

Definition 2.4 ([35]). Let Tbe an almost periodic time scale. A function
f € C(T x D, E")is called an almost periodic function in t € Tuniformly for x € D if
the e-translation set of f

Ele, f, S}={r eIl : |f(t+1, x)—f(t, x)| < & forall(t, x) € T x S}
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is a relatively dense set in Tfor all ¢ >0 and for each compact subset S of D; that is,
for any given ¢ >0 and each compact subset S of D, there exists a constant l(¢, S) >0
such that each interval of length (¢, S) contains a (¢, S) € Efe, f, S} such that

If(t+1,x) —f(t,x)| <e, forallteTxS.

t is called the e-translation number of f and and (e, S) is called the inclusion length

of Els, £, S}.

3 The mean-value of uniformly almost periodic functions on time scales
Let f € C(T x D, E") and f{t, x) be almost periodic in ¢ uniformly for x € D, we denote
t0+T
a(f, r, x) := Tl—i>rPoo]1“ / f(tx)e ™ At, wheretyeT, TeTl, (3.1)

lo

where ) € R, i = /—1. Obviously, for a fixed (f;, A, x), a(f, 1, x) € E".
Definition 3.1. a(fi¢, 0, x)) is called mean-value of f(t, x) if

1 to+T
0<a(f, 0, x)= Tlin;o T [ f(t, x)At < +o0.
to

Theorem 3.1. For any A € R, a(f, A, x) defined by (3.1) exists uniformly for x € S and
is uniformly continuous on S with respect to x, where S is an arbitrary compact subset
of D.

Proof. For any t; € II, ¢; >0, we can make a sequence {tj}jcz+ C 1_[, where t; = it;.

to+t;

We will prove that the sequence {tll_ f(t, x)At}iez+ converges uniformly with
to

respect to x € S.

For any integers m, n and x € §, taking ¢, t,, we have

to+ty Lo+lm
1 1
/f(t,x)At— ff(t,x)At
In Im
to to
to+t, to+bmn
< tm/f(t,x)At— /f(t,x)At
Untn
to to
to+tmn lo+tm
1
+tmtn f(t,x)At —t, /f(t,x)At (3.2)
to to
. B m | tottn to+ln
1
t, x)At — t, x)At
= 2| [ rewa- [ s
_k:l to Le—1)n
to+tim lo+tm

n

£ / f(t,x)At — /f(t,x)At

k=1 Vo Z1ym o
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Consider the following integral form:
Lo+lays Lo+t

f(t, x)At— /f(t, x)At, (3.3)

la to

where s=n,a=(k-1n, k=1,2,..,mors=m,a=(k-1)m, k=1,2,.. n For
arbitrary a, s, we can evaluate (3.3):

For any & >0, let I=1I(},S) be an inclusion length of E(f,,S) and
T € E(f, §, S)N[ta—to, ta — to +1] then, for all x € S, we get***

lo+las Lo+t

/f(t, x)At — [f(t, x)At

la lo

to+TH+  fobly  fotlass  fo+T
f - / + / + / f(t, x)At
to+T o fobTHh I

(3.4)
to+; fo+lass to+T
< f If(t+7t, x)—f(t x)|At+ / If(t, x)|At+ / If(t, x)|At
to to+T+Ls ta
< &L +2IG,
4
where G= (txs)liTpxs IF(t x) | According to (3.4), we can reduce (3.2) to the following:

to+t, to+tm
1 1 t1 ety Etm
L)AL — t)At 21G 2IG
tn / f( ) tm / f( ) = tmtn [m( 4 * ) * n( 4 v )}
It to

0
£ 2ZG(1 1)
= + + — 0, ty ty > +00.
2 1] m n

By the Cauchy convergence criterion, the sequence Ll tf)0+tif(t’ x)At} , converges
' i€
uniformly with respect to x € S.

For any sufficiently large 0 <T" € II, there exist 0 <¢, € Il such that 0 <t,, <7 < ¢,.1,
so for all x € S, we have

to+T lo+ty
/f(t, x)At — /f(t, x)At| < G(T — tn) < Gty.
to to
Therefore,
to+T to+ty to+T to+ty
1 1 1
/f(t,x)At— /f(t,x)At < /f(t,x)At— /f(t,x)At
T tn T
to to to to

to+ty,

+(;—;) [ e aia

to

Gt 1 1
< - — .G
T t, T

2G
< — 0, t; —> +00.
n
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Hence,
to+t,
1
a(f,0,x) = lim . ff(t,x)At uniformly forx € S.
n—+00 t,

to

tZ°+T f(t, x)At is continuous with respect to x € S, where S is an arbi-

Besides, for 1
trary compact set in £, a(f; 0, x) is uniformly continuous on S.

It is oblivious that f{¢, x)e ™' is almost periodic in ¢ uniformly for x € D and af(f; A, x)
= a(fl¢, x)e"m, 0, x), so it is easy to see that a(f, A, x) exists uniformly for x € S and is
uniformly continuous on S with respect to x. This completes the proof. O

Theorem 3.2. Assume that T € 11 and f(t, x) € C(T x D, E")is almost periodic in t

uniformly for x € D, then
a+T
1 .
lim /f(t, x)e ™At = m(f(t, x), A x)
T—+00 T
o

uniformly exists for « € Tand
m(f(t, x), A, x) = a(f(t + o, x)e™, A, x).

Proof. For m(f, A, x) = m(fit, x)e ™, 0, ), it suffices to show that, for x € S, Va € T,
the following uniformly exists:

a+T
1
m(f, 0, x) = TErPoo T /f(t, x) At. (3.5)

Take =15, S)and T € E(5, f, S}Nfa—to, @ —to+1, &= SUP 0| for e

S, we obtain

to+T

a+T
;ff(t,x)At—;/f(t,x)At

lo

to+t+T  to+T a+T to+T
1

— + + t, x)At

o\ =S ] e

lo+T to to+T+T o (36)

to+T a+T to+T

; /lf(t+r,x)—f(t,x)|At+ / |f(t,x)|At+/|f(t,x)|At
to to+t+T o

1 /T 2IG e 2IG
< + =+
TN\ 4 T 4 T

IA

and

to+nT to+T

an /f(t, x)At—;/f(t, xX)At

to to

n to+kT to+T

Z; / f(t x)At — /f(z, x)At

k=1 | ee—1)T fo

1
n

(3.7)

e 2IG
+ .
T

IA
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From (3.7), let n — oo, for x € S, we have

to+T
1 21G
alf, 0, %) — /f(t, XAt < z T (3.8)

to

Using trigonometric inequality, according (3.6) and (3.8), we can take T > SLG such
that

41G

a+T
1 e
t, x)At—a(f, 0, x)| < _+ < €.
o [ se—ag 0 9] < 5+
o

Hence, we can easily obtain that (3.5) uniformly exists for @ € T and m(f, 0, x) = a(f,
0, x) = a(flt, x), 0, x). Furthermore,

to+T

a+T
;/f(t, X)At = ]1, /f(t+ot, x)At.

to

Therefore, a(fit + o, x), 0, x) uniformly exists for ¢ € T and m(f(t, x), 0, x) = a(f(t +
a, x), 0, x). It is easy to see that fz, x)e " is almost periodic in ¢ uniformly for x € D,
thus, we have

m(f(t, x), A, x) = m(f(t, x)e”™*, 0, x)
= a(f(t + o, x)e" (4 0, x)
= a(f(t+a,x)e ™, 1, x).

Hence, m(f(t, x), A, x) uniformly exists for ¢ € T. This completes the proof. O
In Theorem 3.1 and Theorem 3.2, if we take A = 0, then we have

to+T
a(f(t, x), 0, x) = Tlim ; /f(t, x)At = my(f(¢, x)) (3.9
and
to+T
a(f(t+a), 0, x) = Tlim ; /f(t+a, X)At = m(f(t + o, x)) (3.10)

to

uniformly converge for x € S and for x € S, o € T, respectively.
Definition 3.2. (3.9) and (3.10) are called the mean value and the strong mean-value
of fit, x), respectively.
Lemma 3.1. Let T € 11, then for any real number A = 0,
to+T
my (™) = Tl—i>rPoo ; / e™ At = 0, wherety € T. (3.11)
to
Proof. First note that for any fixed 7' >0, by Lemma 3.1 and Theorem 5.2 in [36], [to,
to + T ] contains only finitely many right scattered points. Assume that

[to, to+T] = Uiy [0 (t:), tia] where

Page 7 of 24
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h<ti<tbh<---<ty=tg+T

are right scattered points. Then

to+T
. 1 4
mt(e‘“)=Tlim T / eMAL
— +00
o(t) Liv1
1 . .
= lim Z /‘emAt+ / eMde
=0\ G o ()

n—1

1 . 1. . .
= Jim 20: <u(ti) (cos Atj +isin At;) + N [(sin Aty — sin Ao (t;))
=

+i(cos Ao (t;) — cos Ati1)]),

since sin ¢ and cos t are bounded for £ € R, one can easily see that (3.11) holds. The
proof is complete. O

Theorem 3.3. Let f(t, x) € C(T x D, E")be almost periodic in t uniformly for x € D,
then for any finite set of distinct real numbers Ay, Ay, ..., A and any finite set of real or
complex n-dimensional vectors by, by, ..., by,

|

Proof. Note that |f(t, x)|2 = (f(t, x), f(t,x)) is almost periodic in ¢ for x € D where

N
f(t x) =Y bre™

k=1

k=1

2 N N
) =m(If(t, x)|2)—Z|ﬂ(f: Ay x)|2+Z|bk—a(f, Mo 02 (3.12)
k=1

(,» denotes the usual inner product in E" and f (¢, x) denotes the conjugate of f{¢, x), so

it has a mean-value, thus

2

N
m, ‘f(t, x) — Z byt

N N 4
- (<f(t, 0= b (65 =) bke—w»

k=1 k=1 k=1
N
= m(If (LX) = Y (b alf, e %))
k=1
N N N '
- (bk/a(f/ )"kl x)) + Z Z (bl/ bj)m[(el(}wi}\})t),
k=1 =1 j=1
by Lemma 3.1, it is easy to obtain that
N ) 2 N
m | |f(tx) — X:bkelkkI =m(If (t, x)|2) - Z (br, a(f, e x))
k=1 k=1

N N
(br,a(f, A, x)) + ) (b, b;)
k=1 j=1

N N
=m(If(t9)17) = D la(f, b X) > + Y Ibr — a(f, Ae X) 1.
k=1 k=1

The proof is complete. O
In Theorem 3.3, if we take by = a(f, 1, x)(k = 1, 2, ..., N), then we have the following
corollary:

Page 8 of 24
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Corollary 3.1. The best approximation of uniformly almost periodic function f(t, x) on
time scales satisfies the following:

2

N
=m(If(t, x)*) =D la(f, o x)I.

k=1

N
(6 x) =) be™

k=1

m

By Corollary 3.1, one can easily get the following corollary:
Corollary 3.2. Let f(t, x) € C(T x D, E")be almost periodic in t uniformly for x € D,
then

N
Y la(f, a0 < m(If (5 X))
k=1
Theorem 3.4. Let f(t, x) € C(T x D, E")be almost periodic in t uniformly for x € D,
then there is a countable set of real numbers A such that a(f, A, x) = 0 on S if L ¢ A.
Proof. Since f(¢t, x) is uniformly almost periodic, then for all (t,x) € T x S, there
exists M > 0 such that |f(¢, x)| < M. Therefore, for any n € N, the real number set
(peR:la(f,rx)] > 1} is finite (If it is infinite, then
Sweila(f, A x)1? > 352, L — +o0, this contradicts Corollary 3.2). Hence, for any
fixed x € S, one can obtain the real number set {1 € R: a(f, 4, x) = 0} is countable.

Furthermore, by Corollary 3.2, one can see that

N
> supla(f, i x)I* < M2
k=1 ¥€S

Thus, there is a countable set of real numbers A such that a(f, A, x) = 0 on Sif A ¢
A. The proof is complete. O

Theorem 3.5. If f : T x D — R"is a non-negative almost periodic function in t uni-
formly for x € D and fX 0, then a(f, 0, x) > 0.

Proof. Let f(t, x)=M >0 and pick 6 > 0 so that f(5, x)> 2" on
(th — 8, th +38) x S. Let [ € TI be an inclusion length of E{¥, f, S} and take [ > 25 (In
fact, one can choose 0 <7y € II such that nzy = [ € 11, n is some positive integer). If &
€ I, teT, find ek, f, SyN[h+8—1t), h+8—ty+I.  Then
to—8+7t elh h+l| Either ty+7 or t; —28+ 7t € [h, h+I] since [ > 26. In the first

case if t € (t; — 8 + 7, ty + T) then

If(t, x)| = If(t+7, )| = If(t+7, x) —f(t, x)| > 2;\/1 —1;/1 = 1;/1
to+h+l

The second case can be handled similarly. In either case [

to+h f(t x)At > A;(S since

on a subinterval of length §,f(t, x)z";. Now write & = (n -1) [ to get

to+nl
ftoo:(r:lq)lf(t' x)At > ¥5. Hence

to+NI N to+nl Mé
1
t, x)At = t, x)At .
N IR0V SR (I e
o n=le(n=1)l

Letting N — o one can get a(f, 0, x) > Afl‘s > 0. The proof is complete. O

Page 9 of 24
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4. Pseudo almost periodic functions on time scales
Let BC(T x D, E") denote the space of all bounded continuous functions from T x D
to E™ Set

A P(T x D), ={g € C(T x D,E") : g is almost periodic in t uniformly for x € D},

o P(T), ={g € C(T,E") : g is almost periodic} ,

to+1
- 1
PoA Py(T)y = [ga € BC(T,E") : ¢ is A - measurable such that lim oy / lp(s)]As =0,
T—+00
to—1

where to € T, 7 € T}

and

Pt Po(T x D),
= {(p € BC(T x D,E") : ¢(-,x) € P.af Py(T) for each x € D and

to+1
lim / [lo(s, x)||As = 0 uniformly for x € D, where tp € T,r € T

r—>+00 21
to—T

Remark 4.1. ¢ Doy Py(T) does not require | zlxglclx; @ (Oexists. Counsider, for example,
let T =2, [n, n+ Lland

) g Stsns
= 0, t -elsewhere.

Obviously, for any fixed ny € Nand t € T, one can easily see that t = ng € T, thus ng
€ T, that is, Tis an almost periodic time scale. It is clear that lim,_,..¢(t) does not

exist, noting that {n + rll}neNare right scattered points, so

N
o 1] +k1 n 1.1

rlirilozr/"”(s)'“:nli“é‘on 2 / ¢kds+;“(k+k)¢k
to—7 =1k =

It
j_
g3
X =
=
A
-
ES

>
/N
|

> =
~
.
~

I
T=
g8
I =
7
§ —_
I
o

Hence ¢ € @gf@o(’ﬂ‘).
Definition 4.1. A function f € C(T x D, E")is called pseudo almost periodic in t uni-
formly for x € D if f =g+ ¢, where g € o P(T x D)pand ¢ € P.od Po(T x D)y
Remark 4.2. Note that g and ¢ are uniquely determined. Indeed, since
to+1

1
) / llo(s, %)[1As =0,

N(¢) - TEIJrnoo 2

to—1
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iff=g1+ ¢1 = & + ¢, then one has N(g, — g,) = 0, which implies that g, = g, thus,
¢1 = ¢y. g and ¢ are called the almost periodic component and the ergodic perturbation
of the function f, respectively. Denote by P of P (T x D)ythe set of pseudo almost peri-
odic functions uniformly for x € D.

Example 4.1. Let T = |2, [2k, 2k + 1],

1
fit) = gt) + ¢(t), where g(t) = sin t + sin 71t, ¢(t) = _to(t)' teT
and
F (t, x) = fit) cos x, t € T.
Since
1 lo+1 1 lo+1 1 1 fo+T
lim / l@(s)|As = lim / As = lim : =0,
r—+o00 21 r—+o00 21 so (5) r—>+00 21 S {p—r
to—T to—T

50, 9 € Pd Py(T). Therefore, f ¢ Pt P(T) F € Pod P(T x D).
Theorem 4.1. Iff c @g{@(’ﬂ‘ X D) then
to+T

. 1

rl—1>£%o . / (s, x)As := M(f)
to—T

exists and is finite. It is the mean value of f. Moreover M(f) = M(g).

Proof. Indeed

to+1 to+1 to+1
o1 o1 .1
rkr};o o /f(s, x)AS—Tl_l)IJrIéO o /g(s, x)AS+T1_l>I+IéO o / o(s, x)As.
to—T to—T to—T

Since g € &7 Z(T x D), then

to+1

—+00
to—1

lim /g(s, x)As

exists and is finite by Theorem 3.1. Furthermore, one has
—lp(s, x)I < o(s, x) < lo(s, x).

Then
to+1 to+1 to+1

. 1 . 1 . 1
— < <
TEIE;O . / lo(s, x)|As _rgrgo oy / (s, x)As _Tgrgo oy / lo(s, x)As.

to—T to—7T to—T

Since ¢ € P Py(T x D)
to+1
1
lim / lp(s, x)[As =0 =M(p).

r—>+00 21
to—1
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Hence
to+1
li ! As=0
rirggozr @(s, x)As = 0.
to—1

Therefore M(f) = M(g). The proof is complete. O

By Definition 4.1 and the definition of a(-, A, x), one can easily have
Corollary 4.1. If f € Do/ P (T x D),then a(f, A, x) = a(g, A, x).
Furthermore, from Definition 4.1, one can easily show that

Theorem 4.2. If f ¢ gé‘;z{:@(’ﬂ‘ x D)nand g is the almost periodic component of f,
then we have

8(TxS8) Cf(TxS)

and

”f” = ”g” = (L,x%2£x8|g(t’ x)| = (t,x%religxs |f(t, x)

’

where f (T x S)and g (T x S)denote the value field of f and g on T x S, respectively,
f (T x S)denotes the closure of f (T x S), where S is an arbitrary compact subset of D.

Definition 4.2. A closed subset C of Tis said to be an ergodic zero set in Tif
H«A(C N ([to — 71, + T] N T))

) — 0asr — oo, wherety € T.
.

By the definition of ﬁ@ﬂ@o(’ﬂ‘ x D),» the proof of the following theorem is
straightforward.

Theorem 4.3. A function ¢ e ﬁg{@o(’ﬂ‘ x D),if and only if for ¢ > 0, the set
C.={teT: |<p(t, x)| > elis an ergodic zero subset in T.

Theorem 4.4. (i) A function ¢e PodPy(T xD)if and only if
lp|? € P Po(T x D).

(ii) d e ﬁ%ﬁo(T % D)nif and only if the norm function
(-, x)| € P/ Po(T x D).

Proof. (i) The sufficiency follows since

to+T to+T Y2 = qoar 1/2
1 1 2
s, X)| As < t, x)| As 1As
5 / lo(ss )] as < /|<0( )| /
to—71 0—T o0—T
to+T 1/2
| ! / lo(s, x)|*As
2r A
to—T1

The necessity follows from the fact that

to+1 to+1

1 1
2 / lo(s, %) [*As < Il > / lo(t,x)|As,
to—r to—r

since ¢ is bounded on T. Therefore, one can easily see that (i) is satisfied.
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(ii) By (i), ®=(¢1,92,...,0n) € PAPy(T xD), if and only if
0igi € Pd Py(T xD),i=1,2,...,n The latter is equivalent to

n
|CI>(~,x)|2 = Z |<,0(~,x)|2 € P Py(T x D), which again by (i), is equivalent to
i=1
|®(-,x)| € P Po(T x D). O
The proof is complete.
For H=(hy, hy, ..., hy) € E", suppose that H(¢) € D for all teT. Define
Hx::T — T x D by

H o 1(t) = (&, hi(t), ha(t), ..., ha(1)).

For F=(fy, fo ..., fu) € P P(T x D), let G = (g1, &, s &) and @ = (¢1, ¢, .,
¢,), where g; and ¢; are the almost periodic component and the ergodic perturbation
of fi(i = 1, 2, .., n), respectively.

Definition 4.3. Let S be a compact subset of D. A function f € C(T x D, E")is said to
be continuous in x € S uniformly for ¢ e Tif for given x € S and ¢ >0, there exists a J(x,
e) > 0 such that ¥ € S and |x — x| <d(x, €) imply that |fit, x') - fit, x)| <¢ for all t € T.

Theorem 4.5. Suppose that the function fe @g{@(’ﬂ‘ x D),is continuous in x € S
uniformly  for teTand Fe Pof P(T)such that F(T)CD, then
fo(Fxt)e 352{32(’]1‘)”, where F(T)denotes the value field of F and S is an arbitrary
compact subset of D.

Proof. Letf=g+ ¢pand F= G + © with G= (g1, g2, .., &) €  P(T), as above.
Note that

fo(Fxt)=go(Fxt)+¢o(Fxt)
=go(Gxt)+[go(Fxt)—go(Gxt)+¢po(Fx1u)].

It follows from Theorem 4.2 that G (T) ¢ F(T) c D. By Theorem 3.15 in [35], we
have go (G x t) € & Z(T),. To finish the proof, we need to show that the function %
=go(Fx1)-go(Gx1)+¢o(Fx)isin P Py(T),:

First we show that go (F x () — g0 (G x 1) € P Po(T)

It is trivial in the case that ¢ = 0. So we assume that g # 0. Set D; = F(T). By Theo-

rem 3.1 in [35], the function g is uniformly continuous on T x D;. For ¢ > 0, there
exists a 0 > 0 such that

e
|g(t, x1) — g(t, x2)| < X% € Dy, |x1 — x| < 8,teT. (4.1)

Set
Cs={teT : |[F(t) - G()| = |®(1)| = 8}. (4.2)
It follows from Theorem 4.3 and (ii) of Theorem 4.4 that Cs is an ergodic zero sub-
set of T. We can find 7 >0 such that when r > T,

MA(([to—T,t0+T]mT)mC5) - &

. 4.3
or a]g] (+3)

Page 13 of 24
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By (4.1), (4.2) and (4.3), we have

to+T

o | 186 B —ss G| as

to—7

1
oA [ e[ s ) - el s
([to—r,to+r[NT)\Cs  ([to—1,to+7]NT)NC;
MA(([tO —1,t+ T] N T) n Cg) -
2r '

IA

S +2|
5 +2]gl

Therefore, go (F x 1) — g o (G x 1) € P Po(T)y

Finally, we show that g o (F x () € ﬁg{@o(’ﬂ‘)n. Note that f = ¢ + ¢ and g is uni-
formly continuous on T x D;. By the hypothesis, fis continuous in § € D; uniformly
for t € T; so is ¢. Since D; is compact in E", one can find, say m, open balls Oy with

center € Dy, k =1, 2, .., m, and radius 5(x*, £/2) such that D; C U,’LlOk and

o(t, x) —o(t, ¥)| < ;,x €Oy teT. (4.4)
The set
By ={t e T:F(t) € Oy} (4.5)

. m k_l . .

is open and T = Uk=1 By. Let Ej, = By\ U1'=1 Bj, then Ex N E; = & when k = j, 1 <k, j
< m.

Since for each (-, x(®)) € P o Py(T), there is a number T > 0 such that

to+r

m
1 €

Z / ‘(p(s, x(k))‘ As < _,1>Ty. (4.6)
2r 2

k=1 to—T1

It follows from (4.4), (4.5) and (4.6) that
to+1

1 1«
o [ e rlss <) S [ (el FO) - oo™+ ot a0]) + a
to—7 k=1 g \([to 1t +r1NT)

to+r

m
e 1
3 0)
= +H 2r / ‘(p(s,x‘)

to—r

As < ¢e.

This shows that ¢ o (Fxt)e Pof Po(T)pe The proof is complete. O
Define

Eo(T x D), ={f € C(T x D,E") : f(t,x) — 0, uniformlyinx € D, as|t| — oo}.

Eo(T), = {f € C(T, E") : f(t) = O, as [t| — oo}.

Definition 4.4. Let o7 o/ Z(T x D),denote all the functions f of the form f = g + ¢,
where g€ o P(T x D)pand ¢ € Eo(T x D). The members of o of P(T x D)are
called asymptotically almost periodic functions in t uniformly for x € D.

It is obvious that Eo(T x D), C 2o Py(T x D), and
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o A P(T x D), C Pt P(T x D),

Corollary 4.2. If f € of of P (T X D)pand F € of of P (T)nsuch that F(T) C D, then
fo(Fxt)eddP(T),.

Proof. Obliviously,

fo(Fxt)=8o(Fxt)+@o(Fxu)
=go0(Gxt)+[go(Fxt)—go(Gxt)+po(Fxt)]

where go (G xt) € &/ P(T), By the hypothesis that ® =F — G € Eo(T), and
¢ € Eo(T x D)y, it follows that go (F xt) —go (G x t) € Eo(T), since the uniform
continuity of g and ¢ o (F x ¢) € Eo(T), since p(t, F(t)) < i‘ég‘/’(t' X), The proof is
complete. O

Theorem 4.6. Suppose that § € o/ P (T x D)ysatisfies that for every ¢ > 0,

uaft:g(t,x) > —e telto—rto+r]NT}

) — 1, ast — +00, wherety € T, r € II.
’

Then g > 0 for all T x S, where S is an arbitrary compact subset of D.

Proof. Suppose that the conclusion does not hold. This implies that g(t;, x) < 0 for
some t;. Choose ¢ > 0, ¢ < —g(t;,, x).

By continuity, there exists >0 so that |t — t’0| < § implies g(¢, x) <-¢. In view of
Definition 2.4, there exists [(¢, S) > 0 so that in each interval  of length /, one can find

5-almost period 7 with the property that
|g(t+ 7, x) —g(t, x)| < ;
Choose a sequence 7; of almost periods, 7, € [to + kI, to + (k + 1)I], we have

g(t+ 1, x) < —;, andt € [ty — 8, ty+8]NTand everyk € N.

Denote M = |t;| + 8, we have
paltelto—kl—M, to+kl+ M| N'T: g(t, x) < —;_} > 2.

Therefore,

puait € [to —kl— M, to + kL + M]NT : g(t,x) < — 5} - 2kS
2kl + 2M — 2kl +2M°

The right hand side does not tend to zero as k — +c. This contradicts the assump-
tion made in the lemma. Therefore, g > 0. The proof is complete. O

Theorem 4.7. If feC(TxD, E"),f=g+¢, where ge o P(T x D)pand
¢ € Pt Py(T x D),y then

(i) If‘tl‘if;o @(t, X)exists, then |tl|iinoo(p(t’ x) =0,

(if) For all (t, x) € T x S, if f= O then g > 0, where S is an arbitrary compact subset
of D.

Proof. (i) Suppose that the property does not hold, then there exist a constant @ > 0
and c € II such that ¢(t, x) > & for ¢ > ¢, which yields
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1 to+1 |7
r

1 fo+C 0+ 1.
[ |e(s x)|As = |:f lo(s, x)|As+ [ |e(s, x)]As:| > a(r—o).
f r fo t r

0+C

Passing to the limit as r — o, we obtain
to+1
.1 ~
lim |<p(s, x)| As > a,

r—o0 21
to—T

which contradicts the fact that ¢ € 2.5/ Zy(T x D),
(ii) Assuming f > 0, we want to show that g > 0. We have f= g + ¢ with

to+r

lim [ |e(s x)| As = o0.

r—oo 21 fo—r
Thus, there exists {¢,.},eny € I, ¢,, = +00 as 1 —> o such that g(¢ + ¢, x) — g(t, x) for
all (¢, x) € T x S. Furthermore, for any ¢ > 0 and r > 0, one can easily get

uafltefto—r1 to+r]NT: et x) > e} — 0,asr — 00,

which implies that

ua{t:g(t,x) > —¢e,te(to—rto+r]NT}

) — 1, asr — +oo,wherety € T, r € I1.
’

By Theorem 4.6, one can have g(t, x) > 0 for all (¢, x) € T x S.
The proof is complete. O

5 Pseudo almost periodic solutions of dynamic equations on time scales
Consider the non-autonomous equation

x® = A(t)x + F(1) (5.1)

and its associated homogeneous equation
X = A(t)x, (5.2)
where the n x n coefficient matrix A(¢) is continuous on T and column vector F =
(fis for oo f) " is in E™ Define IFll = Stlel'llI‘) |F(t) | We will call A(¢) almost periodic if all

the entries are almost periodic.
Definition 5.1 ([37]). Equation (5.2) is said to admit an exponential dichotomy on
Tif there exist positive constants K, o, projection P and the fundamental solution matrix

X(2) of (5.2), satisfying

{ IX()PX~1(s)| < Keeu(t,s),s,t € T, t >,

IX())(I = P)X(s)| < Keeu(s, 1), s,t € T, t <s. (5:3)

Lemma 5.1. Let o >0, then for any fixed s € Tand s = -, one has the following:
eou(t,s) > 0,t — +o0.
Proof. If u(t) >0, since ¢ € R*, we have

- 1

l+ut)a= 1+“(t)1+u()(lt)a B 1+ p(t)a =

Page 16 of 24
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Thus, ©a € R* and it is easy to have
Log(1+ u(t) ©a) € R forallt e T.
So

Log(1 + u(t) © )

gu(f)(ea) = (1)

Hence
t
eca(t, 5) = exp /Su(t)(ea)At — 0ast — +00.
N

If u(t) = 0, one can easily get the conclusion. If s = -0, it is easy to see that
t
/ £.1)(Ba)At - —o0 as t — +oo, thus, egy(t, s) — 0. The proof is complete. O
N

Theorem 5.1. Suppose that A(t) is almost periodic, (5.2) admits an exponential
dichotomy and the function F € .o Py(T), Then (5.1) has a unique bounded solu-
tion x € P Po(T)y

Proof. Similar to the proof of Theorem 4.1 in [35], by checking directly, one can see
that the function:

x(t) = f X(t)PX (0 (s))F(s) As — f X(t)(I — P)X~ (o (s))F(s)As (5.4)

is a solution of (5.1). Now, we show that the solution is bounded. It follows from

(5.4) that
t +00
|x()| = sup / X()PX (o(s)) F(s)As — / X(t) (I = P)X " (o(s))F(s)As
te
o0 t
t +00
< sup / ecu(t, 0(s)) A s| + /e@a(a(s), t)As| | K|IFI
teT - A
< (3 o) KO- KuE,
where II'll = Sop 'l The solution x is bounded since F is bounded. By Lemma 4.13 in

[35], the bounded solution is unique since the homogeneous equation (5.2) has no
nontrivial bounded solution.

In the following, we show that xe @ﬂ@O(T)n. Let
I(t) = /t X(t)PX" (o (s))F(s)As and H(t) = /+00 X(t) (I — P)X ! (o(s))F(s)As. Then

x = I + H. It follows from (5.3) and Theorem 2.15 in [38] that

Page 17 of 24
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to+7 to+1 t
1 1
. / lI(0)| At < o / At/ X(6)PX! (o (s))||F(s)| As
to—r to—r —00
to+1 t
1
< ) /At /Keea(t,a(s)) |F(S)|As
-
to—r —00
fo+7 to—r t
1
= /At (/ + /Keea(t,a(s)) |F(s){) As
to—1 —00  lop—T
to—T to+r
1
=, / |F(s)| As /Keea(t,a(s))At
—00 to—r1
to+r to+1
1
+, /|F(s)|As /Keea(t,a(s))mﬂlul
T
to—1 s

To show that | € &2.o/ P,(T),, we only need to show that both /; — 0 and I, — 0

when r — . By Lemma 5.1, one can obtain

to+r

I1=21r / ‘F(S)|AS /Keea(t/ o(s)) At

to—T1

1 to—r1 to+1 K
- _/ |F(s)|As[[ PRCCIORIOIRY
< 2HK(1+;Tch) / |F(s)| As /ea(a(s), a(t)) At

_ zHK“;’_”) / IFS)| [ealo(s), to— 1) = ealo(s), to+7)] As

to—r to—1
1 K(1 + pex
< o ( w ) [IF|l (/ eou(to — 1, 0(s)) As — / eou(to +1, o(s)) As)
—00 —00
1 K(1+pa) 1
= ( ) (eca(to — 1, —00) —eau(to — 1, to — 1) — eay(to +1, —00)
2r o Sa

+eou(to+1, to — 1)) = 0asr — +00;

to+1 to+r
1
I, = 5 / |F(s)| As /Keea(t, a(s)) At
r
to—T1 N
to+1 to+r
! / |F(s)|As/ K a(o(0), o(s))At
- o(t), o
2r 1+u(t)ow o
to—r s
to+7 to+7
1
< ) K(1 + piex) / |F(s)|A5 /e(,(a(s), o(t)) At
.
to—r1 s

_ ;rK“;ﬁ“) / IF(5)| lea(@(5), 5) — ea(0(s), 1o +7)] As

to+1

)2
< ;TK(l a,u,a) /|F(s)|As.

to—r
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Therefore, by (ii) of Theorem 4.4, F()| € @M:@o(T), so I, > 0asr —> +oo.

Similarly, one can show that H ¢ Pof Py(T),- The proof is complete. O

Theorem 5.2. Suppose that A(t) is almost periodic and (5.2) admits an exponential
dichotomy. Then, for every F e ﬁmﬂ@(’ﬂ‘)n. (5.1) has a unique bounded solution
xp € P AP (1) The mapping F — xp is bounded and linear with

1 1 2+ uo
lxell < ( - )KIIFII = KF|l. (5.5)
o Sua o

Proof. Since F € P/ P(T),, F=G + ® where G € o/ (T), and & € Pt Py(T)p-
According to the proof of Theorem 5.1, the function

Xp = / X(t)PX~ (o (s))F(s)As — /X(t)([ — P)X (o (s))F(s) As
= / X()PX (o (5)) G(s) As — / X(t) (I = P)X~" (o(s)) G(s) As
+ / X(6)PX (o (5))D(s) As — / X(t) (I = P)X ! (o(5))@(s) As
=XG + Xo
is the unique solution of (5.1), where
xG = / X(t)PX (0 (5))G(s) As — / X(t) (I = P)X (o (s))G(s) As,
Xp 1= /X(t)PX*l(a(s))cb(s) As — /X(t) (I—P)X~ ! (o(s))®(s) As.

By Theorem 4.1 in [35], xg € &/ Z(T),. By Theorem 5.1, xo, € P.of Py(T),. There-
fore, xp € 35,@/,@(11‘)”. Obviously, the mapping F — xr is linear. The proof is com-

plete. O
Lemma 5.2. Let ¢i(t) : T — R*be an almost periodic function, —c; € R*, T € Tand

t+T
1
m(ci)=TlLr&T/ci(s)As>0, i=1,2,...,n
t

Then the following linear system

x2(t) = diag(—cy (t), —ca(t), ..., —ca(t))x(t) (5.7)

admits an exponential dichotomy on T, where m(c;) denote the mean-value of c;, i =

1,2, .,n
Proof. According to Theorem 2.77 in [3], the linear system (5.7) has a unique solu-

tion
x(t) = xoe—c (L to),

where x(ty) = xo, —¢ = diag(—c,(£), —¢2(2), ..., —=c,(2)).

Page 19 of 24
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Now, we prove that x(f) admits an exponential dichotomy on T.
According to Theorem 3.2 and Theorem 3.5, one has

1 t+T 1 to+T
m(ci) =71LH010T lfci(s)As= TlggoT l{ ci(s)As >0, tpeT, i=1,2, ..., n

So there exists Ty > 0, when T >T,, one has

to+T 1 to+T

1 1
(s) A ) = JAs, i=1,2, ..., n,
T t{c,(s) s > 2m(c,) T i 2m(c,) s, i n

to

that is

to+T 1
ci(s) — .m(c))As>0, i=1,2, ..., n
SN RCORNID)
thus, for T > T,, we have ¢i(t) > tm(ci), i=1,2, ... ,n

Case 1. If u(n) > 0,71 € [s, t]T, s, t € T, we have

¢ m(ci) X
- MO 0™ o - e, =12,
1+u(t) m(;) 2
then
()
uim) ™"
. ¢ log(1 — zey)
log(1 — : ()"
/ og(1 — u(n)ci(n)) A,’E/ PO A 21,2,
w(n) ()
thus
. ¢ log(1 — M(ﬂ)m,%c(x:))
op /log(l—ﬂ(’?)Ci(’?)) Al < exp / L) "y I S
) w(n) a J () ’ S
that is,

e_.(t s)<e m(c;) (ts), i=1,2,...,n
e
2

Case 2. If u(n) =0,n € [s, t]1, s, t € T, one cane easily obtain

t

e—(t, s) =exp [/—Ci(ﬂ) An} < exp :/_m(ch) A’?] =e ()t ) i=1,2,...n.
N © 2

Set P = I, we have

IX()PX~1 (o (s))| = |xoe—c(t, t0)Ixy ea—c(s, to)| < Ke pnq(t s)
e
2

where K > 1, M = 1{1112! {m(c1), m(c2), ..., m(cu)}, Therefore, x(t) admits an expo-

nential dichotomy with P = I on T. This completes the proof. O
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Example 5.1. Consider the following dynamic equation on an almost periodic time

scale T = oo 2k, 2k + 1]
i=1

x2(t) = Ax(t) + E(1), (5.8)
where
-1 0 sinv/3t+ !
= 16 — to(t)
A ( 0 _116> . F(t) (cos S+ ml(t) and 0 < p(t) < 16.

Obviously, —A € R*. By Lemma 5.2, it is easy to know that the homogeneous equation
of (5.8) admits an exponential dichotomy with P = I on T. Similar to Example 4.1, one
easily to see that F e @g{ﬁ(’ﬂ‘)x By Theorem 5.2 and Theorem 2.77 in [3], one can
obtain that (5.8) has a unique pseudo almost periodic solution:

t +00

/ X(t)PX ' (o (s))F(s) As — / X()(I — P)X~ (o (s))F(s) As

—00 t

t 0 in+/3 !
1 Sin S+ 5o (s)
t, As.
/ 6_116( G(S)) (0 1) (COS«/2S+ ! s

so(s)

x(t)

6 Applications
Application 1. Consider the following quasi-linear system

x® = A(t)x + F + oG o (x x 1), (6.1)

where o € E"\{0}, A(t) is a n x n almost periodic matrix, F ¢ 3542{@(11‘)” and
G e P P(T x D), We call the system

x® = A(t)x+F (6.2)

the generating system of (6.1).

By Theorem 5.2, system (6.2) has a unique solution x° e @g{@(’ﬂ‘)n if (5.2) admits
an, exponential dichotomy. Now we have the following theorem about (6.1).

Theorem 6.1. If F @M@(T)n, A(t) be almost periodic and (5.2) admits an expo-
nential dichotomy. Let x° @@%@(T)nbe the unique solution of system (6.2) and
denote D = {x € E" : {x — xo(t){ <a,t € T}, where a > 0. Assume that

() Ge PoA P(T x D)and L > 0 such that

G(t, ¥) = G(t, ¥)| < LIX —x"|, ¥, X" €D, teT; (6.3)

(ii) 0 < lpol < min{, =i/ o.zaykicr b where K and o are the same as those in
Theorem 5.2, & = St'ijll? w(t),

Then system (6.1) has a unique solution x ,@%,@(T)Tﬁuch that x € D for allt e T.
Furthermore, ||x - x°|| — 0 as yo — O.

Proof. We construct a sequence of approximations by induction, starting with »° and
taking x* to be the bounded solution of the system
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()2 = A()x" + F+ oG o (61 x 1). (6.4)

First, we show that x* exists, x* e 9’7,52{32(11‘)" and ¥*(T) c D, k=0,1,2, ..., where
x*(T) denotes the value field of x*. Obliviously, the conclusion holds for k = 0 by the
hypothesis. Assume that the conclusion holds for k —1. Then we shall show that the
conclusion also holds for k. By Theorem 4.5, one can see that
Go (xk—1 x 1) € 35%33(11‘)", so from Theorem 5.2, (6.4) has a unique solution
*e Pof P(T), It follows from (6.2) and (6.4) that,

(F —x9)2 = A(t) (6 — x°) + oG o (%1 x 1).

By (5.5), we have
2+ o
[# =] < 7" M K olnen.

Therefore, x*(T) C D, since

oa
(2+ ae)KIIGI

[ol <
Next, we show that {xk} is Cauchy sequence in Do P(T), Since
(1 — )2 = A (K = x%) + po[Go (2 x 1) — Go (&1 x 1)),
it follows from (5.5) and (6.3) that
24
ka+1 —ka < +aWK|“°| Hc o (¥ x 1) —Go (&1 x L)H

<2+;wz

=0 =

4]

<0k |xt —x°

’

where 0 <6 = 2*5“K|/L0|L < 1. This shows that {x*} is a Cauchy sequence in

,@g{,@(’]l‘)n. Since 35@7,@(’]1‘)” is a Banach space, there is an x ¢ 3543732(11‘)” such
that ||« - x|| = 0, when k — oo. It follows from (6.4) that x is a solution of (6.1). It is
clear that ||x - 2°|| = 0, as o — 0.

To show the uniqueness, let x* be another solution of (6.1). Similar to the discussion

above, we have
llx — x| <0 llx —x*|,

this is a contradiction. The proof is complete. O
Application 2. Let D be a ball in E" with center at origin and radius ro. Consider the
following system

x® = A(t)x+Go (x x 1), (6.5)

where A(f) is a n x n almost periodic matrix and G ¢ @ﬂﬁ(TxD)n. Set
B ={Fe P4 PT x D), : F(T) C D}, where F(T) denotes the value field of F.
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B is a closed subset of .o/ 2(T x D), Therefore, P(T) is a complete metric space.
Theorem 6.2. Let D, G, A(t), and P(T)be as those in the previous paragraph. Assume
that, (5.2) admits an exponential dichotomy and the function G satisfies,
>4
TRYE sup |G(t, x)| < rowhere i = sup p(t)
o (tx)eTxD teT

and

|G(t, ) = G(t, x")| <L|¥ —x"|,x¥,x" e D,teT (6.6)

with 2"0’}"‘ KL < 1. Then (6.5) has a unique solution in @d,@(ﬂl‘)n.
Proof. By Theorem 5.2, one can define the mapping T : B — Z.o/ 2(T), by the fact
that, for F € B, TF is the unique pseudo almost periodic solution of the system

x® = A(t)x+Go (F x t). (6.7)

We claim that TB B since by (5.5),

|| < 2+aﬁaKHGo(Fx N

The mapping is a contraction on P(T). In fact, for F;, F, € B, it follows from (5.5)
and (6.6) that

- - 2 0
ITF — TRl < = MY K)1G o (B x ) = Go (Fy x 1))
o
2 + o
< KL||Fy — Fy|l.

Therefore, T has a unique fixed point in P(T), which is the unique pseudo almost
periodic solution of (6.5). The proof is complete. O
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