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Abstract

In this paper, we first introduce a concept of the mean-value of uniformly almost
periodic functions on time scales and give some of its basic properties. Then, we
propose a concept of pseudo almost periodic functions on time scales and study
some basic properties of pseudo almost periodic functions on time scales. Finally, we
establish some results about the existence of pseudo almost periodic solutions to
dynamic equations on time scales.
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1 Introduction
The theory of dynamic equations on time scales has been developed over the last sev-

eral decades, it has been created in order to unify the study of differential and differ-

ence equations. Many papers have been published on the theory of dynamic equations

on time scales [1-14]. In addition, the existence of almost periodic, asymptotically

almost periodic, pseudo-almost periodic solutions is among the most attractive topics

in the qualitative theory of differential equations and difference equations due to their

applications, especially in biology, economics and physics [15-34]. Recently, in [14,35],

the almost periodic functions and the uniformly almost periodic functions on time

scales were presented and investigated, as applications, the existence of almost periodic

solutions to a class of functional differential equations and neural networks were stu-

died effectively (see [13,14,35]). However, there is no concept of pseudo-almost peri-

odic functions on time scales so that it is impossible for us to study pseudo almost

periodic solutions for dynamic equations on time scales.

Motivated by the above, our main purpose of this paper is firstly to introduce a concept

of mean-value of uniformly almost periodic functions and give some useful and important

properties of it. Then we propose a concept of pseudo almost periodic functions which is

a new generalization of uniformly almost periodic functions on time scales and present

some relative results. Finally, we establish some results about the existence and uniqueness

of pseudo almost periodic solutions to dynamic equations on time scales.

The organization of this paper is as follows: In Section 2, we introduce some nota-

tions, definitions and state some preliminary results needed in the later sections. In
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Section 3, we introduce a concept of mean-value of uniformly almost periodic func-

tions and establish some useful and important results. In Section 4, we propose a con-

cept of pseudo almost periodic functions on time scales and present some relative

results. In Section 5, we establish some results about the existence and uniqueness of

pseudo almost periodic solutions to dynamic equations on time scales. As applications

of our results, in Section 6, we study the existence of pseudo almost periodic solutions

to quasi-linear dynamic equations on time scales.

2 Preliminaries
Let T be a nonempty closed subset (time scale) of ℝ. The forward and backward jump

operators σ ,ρ : T → T and the graininess μ : T → R+ are defined, respectively, by

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ (t) − t.

A point t ∈ T is called left-dense if t > infT and r(t) = t, left-scattered if r(t) < t,

right-dense if t < supT and s(t) = t, and right-scattered if s(t) > t. If T has a left-scat-

tered maximum m, then Tk = T\{m}; otherwise Tk = T. If T has a right-scattered mini-

mum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous provided that it is continuous at

right-dense point in T and its left-side limits exist at left-dense points in T. If f is con-

tinuous at each right-dense point and each left-dense point, then f is said to be a con-

tinuous function on T.

For y : T → R and t ∈ Tk, we define the delta derivative of y(t), yΔ(t), to be the num-

ber (if it exists) with the property that for a given ε >0, there exists a neighborhood U

of t such that

|[y(σ (t)) − y(s)] − y�(t)[σ (t) − s]| < ε|σ (t) − s|

for all s Î U.

Let y be right-dense continuous, if Y Δ(t) = y(t), then we define the delta integral by

t∫
a
y(s)�s = Y(t) − Y(a).

A function p : T → R is called regressive provided 1+µ(t)p(t) ≠ 0 for all t ∈ Tk. The

set of all regressive and rd-continuous functions p : T → R will be denoted by

R = R(T) = R(T,R). We define the set

R+ = R+(T, R) = {p ∈ R : 1 + μ(t)p(t) > 0, ∀t ∈ T}.
A n × n-matrix-valued function A on a time scale T is called regressive provided I +

µ(t)A(t) is invertible for all t ∈ T, and the class of all such regressive and rd-continuous

functions is denoted, similar to the above scalar case, by R = R(T) = R(T, Rn×n).

If r is a regressive function, then the generalized exponential function er is defined by

er(t, s) = exp
{ t∫

s
ξμ(τ)(r(τ ))�τ

}

for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h , if h �= 0,

z, if h = 0.
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Definition 2.1 ([1,3]). Let p, q : T → Rbe two regressive functions, define

p ⊕ q = p + q + μpq, �p = − p
1 + μp

, p � q = p ⊕ (�q).

Lemma 2.1 ([1,3]). Assume that p, q : T → Rare two regressive functions, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(s(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii) ep(t, s) = 1
ep(s,t)

= e�p(s, t); ep(t, s)ep(s, r) = ep(t, r);

(iv) (e⊖p(t, s))
Δ = (⊖p)(t)e⊖p(t, s);

(v) If a, b, c ∈ T, then
∫ b

a
p(t)ep(c, σ (t))�t = ep(c, a) − ep(c, b).

Definition 2.2 ([36]). For every x, y ∈ R, [x, y) = {t ∈ R : x ≤ t < y}, define a counta-

bly additive measure m1 on the set

F1 = {[ã, b̃) ∩ T : ã, b̃ ∈ T, ã ≤ b̃},

that assigns to each interval [ã, b̃) ∩ Tits length, that is,

m1([ã,b̃)) = b̃ − ã.

The interval [ã, a)is understood as the empty set. Using m1, they generate the outer

measure m∗
1on P(T), defined for each E ∈ P(T)as

m∗
1(E) =

⎧⎨
⎩ inf

R̃

{∑
i∈IR̃(b̃i − ãi)

}
∈ R

+, b �∈ E,

+∞, b ∈ E,

with

R̃ =
{
{[ãi, b̃i) ∩ T ∈ F1}i∈IR̃ : IR̃ ⊂ N,E ⊂ ∪

i∈IR̃
([ai, bi) ∩ T)

}
.

A set A ⊂ Tis said to be Δ-measurable if the following equality:

m∗
1(E) = m∗

1(E ∩ A) +m∗
1(E ∩ (T\A))

holds true for all subset E of T. Define the family

M(m∗
1) = {A ⊂ T : Ais� − measurable},

the Lebesgue Δ-measure, denoted by µΔ, is the restriction of m∗
1to M(m∗

1).

Definition 2.3 ([35]). A time scale Tis called an almost periodic time scale if

� := {τ ∈ R : t ± τ ∈ T, ∀t ∈ T} �= {0}.

Remark 2.1. In the following, we always use Tto denote an almost periodic time scale.

Throughout this paper, En denotes ℝn or Cn, D denotes an open set in E
n or D = E

n,

S denotes an arbitrary compact subset of D.

Definition 2.4 ([35]). Let Tbe an almost periodic time scale. A function

f ∈ C(T × D,En)is called an almost periodic function in t ∈ Tuniformly for x Î D if

the ε-translation set of f

E{ε, f , S} = {τ ∈ � : |f (t + τ , x) − f (t, x)| < ε, for all (t, x) ∈ T × S}
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is a relatively dense set in Tfor all ε >0 and for each compact subset S of D; that is,

for any given ε >0 and each compact subset S of D, there exists a constant l(ε, S) >0

such that each interval of length l(ε, S) contains a τ(ε, S) Î E{ε, f, S} such that

|f (t + τ , x) − f (t, x)| < ε, for all t ∈ T × S.

τ is called the ε-translation number of f and and l(ε, S) is called the inclusion length

of E{ε, f, S}.

3 The mean-value of uniformly almost periodic functions on time scales
Let f ∈ C(T × D,En) and f(t, x) be almost periodic in t uniformly for x Î D, we denote

a(f ,λ, x) := lim
T→+∞

1
T

t0+T∫
t0

f (t, x)e−iλt�t, where t0 ∈ T, T ∈ �, (3:1)

where λ ∈ R, i =
√−1. Obviously, for a fixed (f, l, x), a(f ,λ, x) ∈ En.

Definition 3.1. a(f(t, 0, x)) is called mean-value of f(t, x) if

0 < a(f , 0, x) = lim
T→∞

1
T

t0+T∫
t0

f (t, x)�t < +∞.

Theorem 3.1. For any λ ∈ R, a(f, l, x) defined by (3.1) exists uniformly for x Î S and

is uniformly continuous on S with respect to x, where S is an arbitrary compact subset

of D.

Proof. For any t1 Î Π, t1 >0, we can make a sequence {ti}i∈Z+ ⊂
∏

, where ti = it1.

We will prove that the sequence { 1ti
∫ t0+ti

t0
f (t, x)�t}i∈Z+ converges uniformly with

respect to x Î S.

For any integers m, n and x Î S, taking tm, tn, we have∣∣∣∣∣∣
1
tn

t0+tn∫
t0

f (t, x)�t − 1
tm

t0+tm∫
t0

f (t, x)�t

∣∣∣∣∣∣
≤ 1

tmtn

∣∣∣∣∣∣tm
t0+tn∫
t0

f (t, x)�t −
t0+tmn∫
t0

f (t, x)�t

∣∣∣∣∣∣
+

1
tmtn

∣∣∣∣∣∣
t0+tmn∫
t0

f (t, x)�t − tn

t0+tm∫
t0

f (t, x)�t

∣∣∣∣∣∣
≤
∣∣∣∣ t1
tmtn

∣∣∣∣
⎡
⎢⎣ m∑

k=1

∣∣∣∣∣∣∣
t0+tn∫
t0

f (t, x)�t −
t0+tkn∫

t(k−1)n

f (t, x)�t

∣∣∣∣∣∣∣
+

n∑
k=1

∣∣∣∣∣∣∣
t0+tkm∫

t(k−1)m

f (t, x)�t −
t0+tm∫
t0

f (t, x)�t

∣∣∣∣∣∣∣
⎤
⎥⎦ .

(3:2)
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Consider the following integral form:

t0+ta+s∫
ta

f (t, x)�t −
t0+ts∫
t0

f (t, x)�t, (3:3)

where s = n, a = (k − 1)n, k = 1, 2, ..., m or s = m, a = (k − 1)m, k = 1, 2, ..., n. For

arbitrary a, s, we can evaluate (3.3):

For any ε >0, let l = l( ε
4 , S) be an inclusion length of E(f , ε

4 , S) and

τ ∈ E(f , ε
4 , S) ∩ [ta − t0, ta − t0 + l], then, for all x Î S, we get***∣∣∣∣∣∣
t0+ta+s∫
ta

f (t, x)�t −
t0+ts∫
t0

f (t, x)�t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⎛
⎝ t0+τ+ts∫

t0+τ

−
t0+ts∫
t0

+

t0+ta+s∫
t0+τ+ts

+

t0+τ∫
ta

⎞
⎠ f (t, x)�t

∣∣∣∣∣∣
≤

t0+ts∫
t0

|f (t + τ , x) − f (t, x)|�t+

t0+ta+s∫
t0+τ+ts

|f (t, x)|�t+

t0+τ∫
ta

|f (t, x)|�t

≤ εts
4

+ 2lG,

(3:4)

where G = sup
(t,x)∈T×S

|f (t, x)|. According to (3.4), we can reduce (3.2) to the following:

∣∣∣∣∣∣
1
tn

t0+tn∫
t0

f (t)�t − 1
tm

t0+tm∫
t0

f (t)�t

∣∣∣∣∣∣ <
t1
tmtn

[
m
(

εtn
4

+ 2lG
)
+ n
(

εtm
4

+ 2lG
)]

=
ε

2
+
2lG
t1

(
1
m

+
1
n

)
→ 0, tm, tn → +∞.

By the Cauchy convergence criterion, the sequence
{
1
ti

∫ t0+ti
t0

f (t, x)�t
}
i∈N

converges

uniformly with respect to x Î S.

For any sufficiently large 0 <T Î Π, there exist 0 <tn Î Π such that 0 <tn <T ≤ tn+1,

so for all x Î S, we have∣∣∣∣∣∣
t0+T∫
t0

f (t, x)�t −
t0+tn∫
t0

f (t, x)�t

∣∣∣∣∣∣ ≤ G(T − tn) ≤ Gt1.

Therefore,∣∣∣∣∣∣
1
T

t0+T∫
t0

f (t, x)�t − 1
tn

t0+tn∫
t0

f (t, x)�t

∣∣∣∣∣∣ <
1
T

∣∣∣∣∣∣
t0+T∫
t0

f (t, x)�t −
t0+tn∫
t0

f (t, x)�t

∣∣∣∣∣∣
+
(
1
tn

− 1
T

) t0+tn∫
t0

|f (t, x)|�t

≤ Gt1
T

+
(
1
tn

− 1
T

)
tnG

<
2G
n

→ 0, tn → +∞.
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Hence,

a(f , 0, x) = lim
n→+∞

1
tn

t0+tn∫
t0

f (t, x)�t uniformly for x ∈ S.

Besides, for 1
T

∫ t0+T
t0

f (t, x)�t is continuous with respect to x Î S, where S is an arbi-

trary compact set in E
n, a(f, 0, x) is uniformly continuous on S.

It is oblivious that f(t, x)e−ilt is almost periodic in t uniformly for x Î D and a(f, l, x)
= a(f(t, x)e−ilt, 0, x), so it is easy to see that a(f, l, x) exists uniformly for x Î S and is

uniformly continuous on S with respect to x. This completes the proof. □
Theorem 3.2. Assume that T Î Π and f (t, x) ∈ C(T × D, En)is almost periodic in t

uniformly for x Î D, then

lim
T→+∞

1
T

α+T∫
α

f (t, x)e−iλt�t := m(f (t, x), λ, x)

uniformly exists for α ∈ Tand

m(f (t, x), λ, x) = a(f (t + α, x)e−iλα , λ, x).

Proof. For m(f, l, x) = m(f(t, x)e−ilt, 0, x), it suffices to show that, for x Î S, ∀α ∈ T,

the following uniformly exists:

m(f , 0, x) = lim
T→+∞

1
T

α+T∫
α

f (t, x)�t. (3:5)

Take l = l( ε
4 , S) and τ ∈ E{ ε

4 , f , S} ∩ [α − t0, α − t0 + l], G = sup
(t,x)∈T×S

|f (t, x)|, for x Î

S, we obtain∣∣∣∣∣∣
1
T

α+T∫
α

f (t, x)�t − 1
T

t0+T∫
t0

f (t, x)�t

∣∣∣∣∣∣
=
1
T

∣∣∣∣∣∣
⎛
⎝ t0+τ+T∫

t0+τ

−
t0+T∫
t0

+

α+T∫
t0+τ+T

+

t0+τ∫
α

⎞
⎠ f (t, x)�t

∣∣∣∣∣∣
≤ 1

T

⎛
⎝ t0+T∫

t0

|f (t + τ , x) − f (t, x)|�t +

α+T∫
t0+τ+T

|f (t, x)|�t +

t0+τ∫
α

|f (t, x)|�t

⎞
⎠

≤ 1
T

(
εT
4

+
2lG
T

)
=

ε

4
+
2lG
T

(3:6)

and ∣∣∣∣∣∣
1
nT

t0+nT∫
t0

f (t, x)�t − 1
T

t0+T∫
t0

f (t, x)�t

∣∣∣∣∣∣
=
1
n

∣∣∣∣∣∣∣
n∑

k=1

1
T

⎡
⎢⎣

t0+kT∫
t0+(k−1)T

f (t, x)�t −
t0+T∫
t0

f (t, x)�t

⎤
⎥⎦
∣∣∣∣∣∣∣

≤ ε

4
+
2lG
T

.

(3:7)
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From (3.7), let n ® ∞, for x Î S, we have∣∣∣∣∣∣a(f , 0, x) − 1
T

t0+T∫
t0

f (t, x)�t

∣∣∣∣∣∣ ≤
ε

4
+
2lG
T

. (3:8)

Using trigonometric inequality, according (3.6) and (3.8), we can take T > 8lG
ε

such

that ∣∣∣∣∣∣
1
T

α+T∫
α

f (t, x)�t − a(f , 0, x)

∣∣∣∣∣∣ ≤
ε

2
+
4lG
T

< ε.

Hence, we can easily obtain that (3.5) uniformly exists for α ∈ T and m(f, 0, x) = a(f,

0, x) = a(f(t, x), 0, x). Furthermore,

1
T

α+T∫
α

f (t, x)�t =
1
T

t0+T∫
t0

f (t + α, x)�t.

Therefore, a(f(t + a, x), 0, x) uniformly exists for α ∈ T and m(f(t, x), 0, x) = a(f(t +

a, x), 0, x). It is easy to see that f(t, x)e−ilt is almost periodic in t uniformly for x Î D,

thus, we have

m(f (t, x),λ, x) = m(f (t, x)e−iλt, 0, x)

= a(f (t + α, x)e−iλ(t+α), 0, x)

= a(f (t + α, x)e−iλα ,λ, x).

Hence, m(f(t, x), l, x) uniformly exists for α ∈ T. This completes the proof. □
In Theorem 3.1 and Theorem 3.2, if we take l = 0, then we have

a(f (t, x), 0, x) = lim
T→+∞

1
T

t0+T∫
t0

f (t, x)�t := mt(f (t, x)) (3:9)

and

a(f (t + α), 0, x) = lim
T→+∞

1
T

t0+T∫
t0

f (t + α, x)�t := mt(f (t + α, x)) (3:10)

uniformly converge for x Î S and for x Î S, α ∈ T, respectively.

Definition 3.2. (3.9) and (3.10) are called the mean value and the strong mean-value

of f(t, x), respectively.

Lemma 3.1. Let T Î Π, then for any real number l ≠ 0,

mt(eiλt) = lim
T→+∞

1
T

t0+T∫
t0

eiλt�t = 0,where t0 ∈ T. (3:11)

Proof. First note that for any fixed T >0, by Lemma 3.1 and Theorem 5.2 in [36], [t0,

t0 + T ] contains only finitely many right scattered points. Assume that

[t0, t0 + T] =
⋃n

i=0 [σ (ti), ti+1], where
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t0 < t1 < t2 < · · · < tn = t0 + T

are right scattered points. Then

mt(eiλt) = lim
T→+∞

1
T

t0+T∫
t0

eiλt�t

= lim
T→+∞

1
T

n−1∑
i=0

⎛
⎜⎝

σ (ti)∫
ti

eiλt�t +

ti+1∫
σ (ti)

eiλtdt

⎞
⎟⎠

= lim
T→+∞

1
T

n−1∑
i=0

(
μ(ti) (cos λti + i sin λti) +

1
λ
[(sin λti+1 − sin λσ (ti))

+i(cos λσ (ti) − cos λti+1)]
)
,

since sin t and cos t are bounded for t Î ℝ, one can easily see that (3.11) holds. The

proof is complete. □
Theorem 3.3. Let f (t, x) ∈ C(T × D, En)be almost periodic in t uniformly for x Î D,

then for any finite set of distinct real numbers l1, l2, ..., lN and any finite set of real or

complex n-dimensional vectors b1, b2, ..., bN,

mt

⎛
⎝
∣∣∣∣∣f (t, x) −

N∑
k=1

bke
iλkt

∣∣∣∣∣
2
⎞
⎠ = mt(|f (t, x)|2)−

N∑
k=1

|a(f , λk, x)|2+
N∑
k=1

| bk−a(f , λk, x)|2. (3:12)

Proof. Note that |f (t, x)|2 = 〈f (t, x), f (t, x)〉 is almost periodic in t for x Î D where

〈,〉 denotes the usual inner product in E
n and f (t, x) denotes the conjugate of f(t, x), so

it has a mean-value, thus

mt

⎛
⎝
∣∣∣∣∣f (t, x) −

N∑
k=1

bke
iλkt

∣∣∣∣∣
2
⎞
⎠ = mt

(〈
f (t, x) −

N∑
k=1

bke
iλk

t
, f (t, x) −

N∑
k=1

bke
−iλkt

〉)

= mt(|f (t, x)|2) −
N∑
k=1

〈bk, a(f ,λk, x)〉

−
N∑
k=1

〈bk,a(f ,λk, x)〉 +
N∑
l=1

N∑
j=1

〈bl, bj〉mt(ei(λl−λj)t),

by Lemma 3.1, it is easy to obtain that

mt

⎛
⎝
∣∣∣∣∣f (t, x) −

N∑
k=1

bke
iλkt

∣∣∣∣∣
2
⎞
⎠ = mt(|f (t, x)|2) −

N∑
k=1

〈bk, a(f ,λk, x)〉

−
N∑
k=1

〈bk,a(f ,λk, x)〉 +
N∑
j=1

〈bj, bj〉

= mt(|f (t, x)|2) −
N∑
k=1

|a(f ,λk, x)|2 +
N∑
k=1

|bk − a(f ,λk, x)|2.

The proof is complete. □
In Theorem 3.3, if we take bk = a(f, lk, x)(k = 1, 2, ..., N), then we have the following

corollary:
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Corollary 3.1. The best approximation of uniformly almost periodic function f(t, x) on

time scales satisfies the following:

mt

⎛
⎝
∣∣∣∣∣f (t, x) −

N∑
k=1

bke
iλkt

∣∣∣∣∣
2
⎞
⎠ = mt(|f (t, x)|2) −

N∑
k=1

|a(f , λk, x)|2.

By Corollary 3.1, one can easily get the following corollary:

Corollary 3.2. Let f (t, x) ∈ C(T × D, En)be almost periodic in t uniformly for x Î D,

then

N∑
k=1

|a(f , λk, x)|2 ≤ mt(|f (t, x)|2).

Theorem 3.4. Let f (t, x) ∈ C(T × D, En)be almost periodic in t uniformly for x Î D,

then there is a countable set of real numbers Λ such that a(f, l, x) ≡ 0 on S if l ∉ Λ.

Proof. Since f(t, x) is uniformly almost periodic, then for all (t, x) ∈ T × S, there

exists M > 0 such that |f(t, x)| ≤ M. Therefore, for any n Î N, the real number set

{λ ∈ R : |a (f ,λ, x) | > 1
n } is finite (If it is infinite, then∑∞

k=1 |a(f , λk, x)|2 >
∑∞

k=1
1
n → +∞, this contradicts Corollary 3.2). Hence, for any

fixed x Î S, one can obtain the real number set {l Î ℝ: a(f, l, x) ≠ 0} is countable.

Furthermore, by Corollary 3.2, one can see that

N∑
k=1

sup
x∈S

|a(f , λk, x)|2 ≤ M2.

Thus, there is a countable set of real numbers Λ such that a(f, l, x) ≡ 0 on S if l ∉
Λ. The proof is complete. □
Theorem 3.5. If f : T × D → R

nis a non-negative almost periodic function in t uni-

formly for x Î D and f ≢ 0, then a(f, 0, x) > 0.

Proof. Let f (t′0, x) = M > 0 and pick δ > 0 so that f (t, x) ≥ 2M
3 on

(t′0 − δ, t′0 + δ) × S. Let l Î Π be an inclusion length of E{M3 , f , S} and take l > 2δ (In

fact, one can choose 0 <τ0 Î Π such that nτ0 = l Î Π, n is some positive integer). If h

Î Π, t0 ∈ T, find τ ∈ E{M3 , f , S} ∩ [h + δ − t′0, h + δ − t′0 + l]. Then

t′0 − δ + τ ∈ [h, h + l]. Either t′0 + τ or t′0 − 2δ + τ ∈ [h, h + l] since l > 2δ. In the first

case if t ∈ (t′0 − δ + τ , t′0 + τ ) then

|f (t, x)| ≥ |f (t + τ , x)| − |f (t + τ , x) − f (t, x)| ≥ 2M
3

− M

3
=
M

3
.

The second case can be handled similarly. In either case
∫ t0+h+l
t0+h

f (t, x)�t > M
3 δ since

on a subinterval of length δ, f (t, x) ≥ M
3 . Now write h = (n -1) l to get∫ t0+nl

t0+(n−1)l f (t, x)�t > M
3 δ. Hence

1
Nl

t0+Nl∫
t0

f (t, x)�t =
1
Nl

N∑
n=1

t0+nl∫
t0+(n−1)l

f (t, x)�t >
Mδ

3l
.

Letting N ® ∞ one can get a(f , 0, x) ≥ Mδ
3l > 0. The proof is complete. □
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4. Pseudo almost periodic functions on time scales
Let BC(T × D,En) denote the space of all bounded continuous functions from T × D
to E

n. Set

AP(T × D)n = {g ∈ C(T × D,En) : g is almost periodic in t uniformly for x ∈ D},
AP(T)n = {g ∈ C(T,En) : g is almost periodic} ,

P̃AP0(T)n =

⎧⎨
⎩ϕ ∈ BC(T,En) : ϕ is � - measurable such that lim

r→+∞
1
2r

t0+r∫
t0−r

|ϕ(s)|�s = 0,

where t0 ∈ T, r ∈ �
}

and

P̃AP0(T × D)n

=
{
ϕ ∈ BC(T × D,En) : ϕ(·, x) ∈ P̃AP0(T) for each x ∈ D and

lim
r→+∞

1
2r

t0+r∫
t0−r

||ϕ(s, x)||�s = 0 uniformly for x ∈ D, where t0 ∈ T, r ∈ �

⎫⎬
⎭ .

Remark 4.1. ϕ ∈ P̃AP0(T) does not require lim
|t|→∞

ϕ(t)exists. Consider, for example,

let T =
⋃∞

n=1 [n, n + 1
n ]and

ϕ(t) =

{
1√
n
, n ≤ t ≤ n + 1

n ,

0, t elsewhere.

Obviously, for any fixed n0 ∈ Nand t ∈ T, one can easily see that t ± n0 ∈ T, thus n0
Î ∏, that is, Tis an almost periodic time scale. It is clear that lim|t|®∞�(t) does not

exist, noting that {n + 1
n }n∈Nare right scattered points, so

lim
r→∞

1
2r

t0+r∫
t0−r

|ϕ(s)|�s = lim
n→∞

1
n

⎡
⎢⎢⎢⎢⎢⎣

n∑
k=1

k+
1
k∫

k

1√
k
ds +

n∑
k=1

μ(k +
1
k
)
1√
k

⎤
⎥⎥⎥⎥⎥⎦

= lim
n→∞

1
n

n∑
k=1

(
1√
k

· 1
k
+
(
1 − 1

k

)
1√
k

)

= lim
n→∞

1
n

n∑
k=1

1√
k
= 0.

Hence ϕ ∈ P̃AP0(T).

Definition 4.1. A function f ∈ C(T × D,En)is called pseudo almost periodic in t uni-

formly for x Î D if f = g + �, where g ∈ AP(T × D)nand ϕ ∈ P̃AP0(T × D)n.

Remark 4.2. Note that g and � are uniquely determined. Indeed, since

N(ϕ) = lim
r→+∞

1
2r

t0+r∫
t0−r

||ϕ(s, x)||�s = 0,
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if f = g1 + �1 = g2 + �2, then one has N(g1 − g2) = 0, which implies that g1 = g2, thus,

�1 = �2. g and � are called the almost periodic component and the ergodic perturbation

of the function f, respectively. Denote by P̃AP(T × D)nthe set of pseudo almost peri-

odic functions uniformly for x Î D.

Example 4.1. Let T =
⋃∞

k=1 [2k, 2k + 1],

f(t) = g(t) + �(t), where g(t) = sin t + sin πt, ϕ(t) = − 1
tσ (t)

, t ∈ T

and

F (t, x) = f(t) cos x, t ∈ T.

Since

lim
r→+∞

1
2r

t0+r∫
t0−r

|ϕ(s)|�s = lim
r→+∞

1
2r

t0+r∫
t0−r

1
sσ (s)

�s = lim
r→+∞

1
2r

· 1
s

∣∣∣∣
t0+r

t0−r
= 0,

so, ϕ ∈ P̃AP0(T). Therefore, f ∈ P̃AP(T), F ∈ P̃AP(T × D).

Theorem 4.1. If f ∈ P̃AP(T × D)n, then

lim
r→+∞

1
2r

t0+r∫
t0−r

f (s, x)�s := M(f )

exists and is finite. It is the mean value of f. Moreover M(f) = M(g).

Proof. Indeed

lim
r→+∞

1
2r

t0+r∫
t0−r

f (s, x)�s = lim
r→+∞

1
2r

t0+r∫
t0−r

g(s, x)�s + lim
r→+∞

1
2r

t0+r∫
t0−r

ϕ(s, x)�s.

Since g ∈ AP(T × D)n then

lim
r→+∞

t0+r∫
t0−r

g(s, x)�s

exists and is finite by Theorem 3.1. Furthermore, one has

−|ϕ(s, x)| ≤ ϕ(s, x) ≤ |ϕ(s, x)|.

Then

− lim
r→+∞

1
2r

t0+r∫
t0−r

|ϕ(s, x)|�s ≤ lim
r→+∞

1
2r

t0+r∫
t0−r

ϕ(s, x)�s ≤ lim
r→+∞

1
2r

t0+r∫
t0−r

|ϕ(s, x)�s.

Since ϕ ∈ P̃AP0(T × D)n,

lim
r→+∞

1
2r

t0+r∫
t0−r

|ϕ(s, x)|�s = 0 = M(ϕ).
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Hence

lim
r→+∞

1
2r

t0+r∫
t0−r

ϕ(s, x)�s = 0.

Therefore M(f) = M(g). The proof is complete. □
By Definition 4.1 and the definition of a(·, l, x), one can easily have

Corollary 4.1. If f ∈ P̃AP(T × D)nthen a(f, l, x) = a(g, l, x).
Furthermore, from Definition 4.1, one can easily show that

Theorem 4.2. If f ∈ P̃AP(T × D)nand g is the almost periodic component of f,

then we have

g(T × S) ⊂ f (T × S)

and ∥∥f∥∥ ≥ ∥∥g∥∥ ≥ inf
(t,x)∈T×S

∣∣g(t, x)∣∣ ≥ inf
(t,x)∈T×S

∣∣f (t, x)∣∣ ,
where f (T × S)and g (T × S)denote the value field of f and g on T × S, respectively,

f (T × S)denotes the closure of f (T × S), where S is an arbitrary compact subset of D.

Definition 4.2. A closed subset C of Tis said to be an ergodic zero set in Tif

μ�(C ∩ ([t0 − r, t0 + r] ∩ T))
2r

→ 0 as r → ∞,where t0 ∈ T.

By the definition of P̃AP0(T × D)n, the proof of the following theorem is

straightforward.

Theorem 4.3. A function ϕ ∈ P̃AP0(T × D)nif and only if for ε > 0, the set

Cε = {t ∈ T :
∣∣ϕ(t, x)∣∣ ≥ ε}is an ergodic zero subset in T.

Theorem 4.4. (i) A function ϕ ∈ P̃AP0(T × D)if and only if

|ϕ|2 ∈ P̃AP0(T × D).

(ii) 
 ∈ P̃AP0(T × D)nif and only if the norm function∣∣
(·, x)∣∣ ∈ P̃AP0(T × D).

Proof. (i) The sufficiency follows since

1
2r

t0+r∫
t0−r

∣∣ϕ(s, x)∣∣�s ≤ 1
2r

⎡
⎣ t0+r∫
t0−r

∣∣ϕ(t, x)∣∣2�s

⎤
⎦

1/2⎡
⎣ t0+r∫
t0−r

1�s

⎤
⎦

1/2

=

⎡
⎣ 1
2r

t0+r∫
t0−r

∣∣ϕ(s, x)∣∣2�s

⎤
⎦

1/2

.

The necessity follows from the fact that

1
2r

t0+r∫
t0−r

∣∣ϕ(s, x)∣∣2�s ≤ ‖ϕ‖ 1
2r

t0+r∫
t0−r

∣∣ϕ(t, x)∣∣�s,

since � is bounded on T. Therefore, one can easily see that (i) is satisfied.
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(ii) By (i), 
 = (ϕ1,ϕ2, . . . ,ϕn) ∈ PAP0(T × D)n if and only if

ϕiϕ̄i ∈ P̃AP0(T × D), i = 1, 2, . . . , n. The latter is equivalent to

∣∣
(·, x)∣∣2 =
n∑
i=1

∣∣ϕ(·, x)∣∣2 ∈ P̃AP0(T × D), which again by (i), is equivalent to

∣∣
(·, x)∣∣ ∈ P̃AP0(T × D). □
The proof is complete.

For H = (h1, h2, . . . , hn) ∈ En, suppose that H(t) Î D for all t ∈ T. Define

H × ι : T → T × D by

H × ι(t) = (t, h1(t), h2(t), . . . , hn(t)).

For F = (f1, f2, . . . , fn) ∈ P̃AP(T × D)n , let G = (g1, g2, ..., gn) and F = (�1, �2, ...,

�n), where gi and �i are the almost periodic component and the ergodic perturbation

of fi(i = 1, 2, ..., n), respectively.

Definition 4.3. Let S be a compact subset of D. A function f ∈ C(T × D,En)is said to

be continuous in x Î S uniformly for t ∈ Tif for given x Î S and ε >0, there exists a δ(x,

ε) > 0 such that x’ Î S and |x − x’ | <δ(x, ε) imply that |f(t, x’) − f(t, x)| <ε for all t ∈ T.

Theorem 4.5. Suppose that the function f ∈ P̃AP(T × D)nis continuous in x Î S

uniformly for t ∈ Tand F ∈ P̃AP(T)nsuch that F(T) ⊂ D, then

f ◦ (F × ι) ∈ P̃AP(T)n, where F(T)denotes the value field of F and S is an arbitrary

compact subset of D.

Proof. Let f = g + � and F = G + F with G = (g1, g2, . . . , gn) ∈ AP(T)n as above.

Note that

f ◦ (F × ι) = g ◦ (F × ι) + ϕ ◦ (F × ι)

= g ◦ (G × ι) + [g ◦ (F × ι) − g ◦ (G × ι) + ϕ ◦ (F × ι)].

It follows from Theorem 4.2 that G (T) ⊂ F (T) ⊂ D. By Theorem 3.15 in [35], we

have g ◦ (G × ι) ∈ AP(T)n. To finish the proof, we need to show that the function h

= g ο (F × ι) - g ο (G × ι) + � ο (F × ι) is in P̃AP0(T)n.

First we show that g ◦ (F × ι) − g ◦ (G × ι) ∈ P̃AP0(T)n.

It is trivial in the case that g = 0. So we assume that g ≠ 0. Set D1 = F(T). By Theo-

rem 3.1 in [35], the function g is uniformly continuous on T × D1. For ε > 0, there

exists a δ > 0 such that

∣∣g(t, x1) − g(t, x2)
∣∣ < ε

2
, x1, x2 ∈ D1, |x1 − x2| < δ, t ∈ T. (4:1)

Set

Cδ = {t ∈ T :
∣∣F(t) − G(t)

∣∣ = ∣∣
(t)
∣∣ ≥ δ}. (4:2)

It follows from Theorem 4.3 and (ii) of Theorem 4.4 that Cδ is an ergodic zero sub-

set of T. We can find T >0 such that when r ≥ T,

μ�(([t0 − r, t0 + r] ∩ T) ∩ Cδ)
2r

<
ε

4
∥∥g∥∥ . (4:3)
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By (4.1), (4.2) and (4.3), we have

1
2r

t0+r∫
t0−r

∣∣g(s, F(s)) − g(s, G(s))
∣∣ �s

=
1
2r

⎧⎪⎨
⎪⎩

∫
([t0−r,t0+r]∩T)\Cδ

+
∫

([t0−r,t0+r]∩T)∩Cδ

∣∣g(s, F(s)) − g(s, G(s))
∣∣ �s

⎫⎪⎬
⎪⎭

≤ ε

2
+ 2
∥∥g∥∥ μ�(([t0 − r, t0 + r] ∩ T) ∩ Cδ)

2r
< ε.

Therefore, g ◦ (F × ι) − g ◦ (G × ι) ∈ P̃AP0(T)n.

Finally, we show that ϕ ◦ (F × ι) ∈ P̃AP0(T)n. Note that f = g + � and g is uni-

formly continuous on T × D1. By the hypothesis, f is continuous in S ⊂ D1 uniformly

for t ∈ T; so is �. Since D1 is compact in E
n, one can find, say m, open balls Ok with

center xk Î D1, k = 1, 2, ..., m, and radius δ(xk, ε/2) such that D1 ⊂
⋃

m
k=1Ok and∣∣∣ϕ(t, x) − ϕ(t, xk)

∣∣∣ < ε

2
, x ∈ Ok, t ∈ T. (4:4)

The set

Bk = {t ∈ T : F(t) ∈ Ok} (4:5)

is open and T =
⋃m

k=1
Bk. Let Ek = Bk\

⋃k−1

j=1
Bj, then Ek ∩ Ej = ∅ when k ≠ j, 1 ≤ k, j

≤ m.

Since for each ϕ(·, x(k)) ∈ P̃AP0(T)n, there is a number T0 > 0 such that

m∑
k=1

1
2r

t0+r∫
t0−r

∣∣∣ϕ(s, x(k))∣∣∣�s <
ε

2
, r ≥ T0. (4:6)

It follows from (4.4), (4.5) and (4.6) that

1
2r

t0+r∫
t0−r

∣∣ϕ(s, F(s))∣∣�s ≤ 1
2r

m∑
k=1

∫
Ek∩([t0−r,t0+r]∩T)

(∣∣∣ϕ(s, F(s)) − ϕ(s, x(k))
∣∣∣ + ∣∣∣ϕ(s, x(k)∣∣∣) + �s

≤ ε

2
+

m∑
k=1

1
2r

t0+r∫
t0−r

∣∣∣ϕ(s, x(k))∣∣∣�s < ε.

This shows that ϕ ◦ (F × ι) ∈ P̃AP0(T)n. The proof is complete. □
Define

E0(T × D)n = {f ∈ C(T × D,En) : f (t, x) → 0, uniformly in x ∈ D, as|t| → ∞}.

E0(T)n = {f ∈ C(T, En) : f (t) → 0, as |t| → ∞}.

Definition 4.4. Let AAP(T × D)ndenote all the functions f of the form f = g + �,

where g ∈ AP(T × D)nand ϕ ∈ E0(T × D)n. The members of AAP(T × D)nare

called asymptotically almost periodic functions in t uniformly for x Î D.

It is obvious that E0(T × D)n ⊂ P̃AP0(T × D)n and
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AAP(T × D)n ⊂ P̃AP(T × D)n.

Corollary 4.2. If f ∈ AAP(T × D)nand F ∈ AAP(T)nsuch that F(T) ⊂ D, then

f ◦ (F × ι) ∈ AAP(T)n.

Proof. Obliviously,

f ◦ (F × ι) = g ◦ (F × ι) + ϕ ◦ (F × ι)

= g ◦ (G × ι) + [g ◦ (F × ι) − g ◦ (G × ι) + ϕ ◦ (F × ι)],

where g ◦ (G × ι) ∈ AP(T)n. By the hypothesis that 
 = F − G ∈ E0(T)n and

ϕ ∈ E0(T × D)n, it follows that g ◦ (F × ι) − g ◦ (G × ι) ∈ E0(T)n since the uniform

continuity of g and ϕ ◦ (F × ι) ∈ E0(T)n since ϕ(t, F(t)) ≤ sup
x∈D

ϕ(t, x). The proof is

complete. □
Theorem 4.6. Suppose that g ∈ AP(T × D)nsatisfies that for every ε > 0,

μ�{t : g(t, x) > −ε, t ∈ [t0 − r, t0 + r] ∩ T}
2r

→ 1, as r → +∞, where t0 ∈ T, r ∈ �.

Then g ≥ 0 for all T × S, where S is an arbitrary compact subset of D.

Proof. Suppose that the conclusion does not hold. This implies that g(t′0, x) < 0 for

some t′0. Choose ε > 0, ε < −g(t′0, x).
By continuity, there exists δ >0 so that

∣∣t − t′0
∣∣ ≤ δ implies g(t, x) <−ε. In view of

Definition 2.4, there exists l(ε, S) > 0 so that in each interval I of length l, one can find
ε
2-almost period τ with the property that

∣∣g(t + τ , x) − g(t, x)
∣∣ < ε

2
.

Choose a sequence τk of almost periods, τk ∈ [t0 + kl, t0 + (k + 1)l], we have

g(t + τk, x) < − ε

2
, and t ∈ [t′0 − δ, t′0 + δ] ∩ T and every k ∈ N.

Denote M = |t′0| + δ, we have

μ�{t ∈ [t0 − kl − M, t0 + kl +M] ∩ T : g(t, x) < − ε

2
} ≥ 2kδ.

Therefore,

μ�{t ∈ [t0 − kl − M, t0 + kl +M] ∩ T : g(t, x) < − ε
2 }

2kl + 2M
≥ 2kδ

2kl + 2M
.

The right hand side does not tend to zero as k ® +∞. This contradicts the assump-

tion made in the lemma. Therefore, g ≥ 0. The proof is complete. □
Theorem 4.7. If f ∈ C(T × D, En), f = g + ϕ, where g ∈ AP(T × D)nand

ϕ ∈ P̃AP0(T × D)n, then

(i) If lim
|t|→∞

ϕ(t, x)exists, then lim
|t|→∞

ϕ(t, x) = 0.

(ii) For all (t, x) ∈ T × S, if f ≥ 0 then g ≥ 0, where S is an arbitrary compact subset

of D.

Proof. (i) Suppose that the property does not hold, then there exist a constant α̃ > 0
and c Î Π such that ϕ(t, x) > α̃ for t ≥ c, which yields
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1
r

t0+r∫
t0

∣∣ϕ(s, x)∣∣�s =
1
r

[
t0+c∫
t0

∣∣ϕ(s, x)∣∣�s +
t0+r∫
t0+c

∣∣ϕ(s, x)∣∣�s

]
≥ 1

r
α̃(r − c).

Passing to the limit as r ® ∞, we obtain

lim
r→∞

1
2r

t0+r∫
t0−r

∣∣ϕ(s, x)∣∣�s ≥ α̃,

which contradicts the fact that ϕ ∈ P̃AP0(T × D)n.

(ii) Assuming f ≥ 0, we want to show that g ≥ 0. We have f = g + � with

lim
r→∞

1
2r

t0+r∫
t0−r

∣∣ϕ(s, x)∣∣�s = 0.

Thus, there exists {cn}nÎN ⊂ Π, cn ® +∞ as n ® ∞ such that g(t + cn, x) ® g(t, x) for

all (t, x) ∈ T × S. Furthermore, for any ε > 0 and r > 0, one can easily get

μ�{t ∈ [t0 − r, t0 + r] ∩ T : ϕ(t, x) > ε} → 0, as r → ∞,

which implies that

μ�{t : g(t, x) > − ε, t ∈ [t0 − r, t0 + r] ∩ T}
2r

→ 1, as r → +∞, where t0 ∈ T, r ∈ �.

By Theorem 4.6, one can have g(t, x) ≥ 0 for all (t, x) ∈ T × S.

The proof is complete. □

5 Pseudo almost periodic solutions of dynamic equations on time scales
Consider the non-autonomous equation

x� = A(t)x + F(t) (5:1)

and its associated homogeneous equation

x� = A(t)x, (5:2)

where the n × n coefficient matrix A(t) is continuous on T and column vector F =

(f1, f2, ..., fn)
T is in E

n. Define ‖F‖ = sup
t∈T

∣∣F(t)∣∣. We will call A(t) almost periodic if all

the entries are almost periodic.

Definition 5.1 ([37]). Equation (5.2) is said to admit an exponential dichotomy on

Tif there exist positive constants K, a, projection P and the fundamental solution matrix

X(t) of (5.2), satisfying{∣∣X(t)PX−1(s)
∣∣ ≤ Ke�α(t, s), s, t ∈ T, t ≥ s,∣∣X(t)(I − P)X−1(s)

∣∣ ≤ Ke�α(s, t), s, t ∈ T, t ≤ s.
(5:3)

Lemma 5.1. Let a >0, then for any fixed s ∈ Tand s = −∞, one has the following:

e�α(t, s) → 0, t → +∞.

Proof. If µ(t) >0, since α ∈ R+, we have

1 + μ(t) � α = 1 + μ(t)
−α

1 + μ(t)α
=

1
1 + μ(t)α

< 1.
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Thus, �α ∈ R+ and it is easy to have

Log(1 + μ(t) � α) ∈ R for all t ∈ T.

So

ξμ(t)(�α) =
Log(1 + μ(t) � α)

μ(t)
< 0.

Hence

e�α(t, s) = exp

⎧⎨
⎩

t∫
s

ξμ(t)(�α)�t

⎫⎬
⎭→ 0 as t → +∞.

If μ(t) = 0, one can easily get the conclusion. If s = -∞, it is easy to see that∫ t

s
ξμ(t)(�α)�t → −∞ as t ® +∞, thus, e⊖a(t, s) ® 0. The proof is complete. □

Theorem 5.1. Suppose that A(t) is almost periodic, (5.2) admits an exponential

dichotomy and the function F ∈ P̃AP0(T)n. Then (5.1) has a unique bounded solu-

tion x ∈ P̃AP0(T)n.

Proof. Similar to the proof of Theorem 4.1 in [35], by checking directly, one can see

that the function:

x(t) =

t∫
−∞

X(t)PX−1(σ (s))F(s)�s −
+∞∫
t

X(t)(I − P)X−1(σ (s))F(s)�s (5:4)

is a solution of (5.1). Now, we show that the solution is bounded. It follows from

(5.4) that

∣∣x(t)∣∣ = sup
t∈T

∣∣∣∣∣∣
t∫

−∞
X(t)PX−1 (σ (s)) F(s)�s −

+∞∫
t

X(t) (I − P)X−1 (σ (s))F(s)�s

∣∣∣∣∣∣
≤ sup

t∈T

⎛
⎝
∣∣∣∣∣∣

t∫
−∞

e�α(t, σ (s)) � s

∣∣∣∣∣∣ +
∣∣∣∣∣∣
+∞∫
t

e�α(σ (s), t)�s

∣∣∣∣∣∣
⎞
⎠K ‖F‖

≤
(
1
α

− 1
�α

)
K ‖F‖ =

2 + μα

α
K ‖F‖ ,

where ‖·‖ = sup
t∈T

|·|. The solution x is bounded since F is bounded. By Lemma 4.13 in

[35], the bounded solution is unique since the homogeneous equation (5.2) has no

nontrivial bounded solution.

In the following, we show that x ∈ P̃AP0(T)n. Let

I(t) =
∫ t

−∞
X(t)PX−1(σ (s))F(s)�s and H(t) =

∫ +∞

t
X(t) (I − P)X−1 (σ (s))F(s)�s. Then

x = I + H. It follows from (5.3) and Theorem 2.15 in [38] that
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1
2r

t0+r∫
t0−r

∣∣I(t)∣∣�t ≤ 1
2r

t0+r∫
t0−r

�t

t∫
−∞

|X(t)PX−1 (σ (s))||F(s)|�s

≤ 1
2r

t0+r∫
t0−r

�t

t∫
−∞

Ke�α(t, σ (s))
∣∣F(s)∣∣�s

=
1
2r

t0+r∫
t0−r

�t

⎛
⎝ t0−r∫

−∞
+

t∫
t0−r

Ke�α(t, σ (s))
∣∣F(s)∣∣

⎞
⎠ �s

=
1
2r

t0−r∫
−∞

∣∣F(s)∣∣�s

t0+r∫
t0−r

Ke�α(t, σ (s))�t

+
1
2r

t0+r∫
t0−r

∣∣F(s)∣∣�s

t0+r∫
s

Ke�α(t, σ (s))�t = I1 + I2.

To show that I ∈ P̃AP0(T)n, we only need to show that both I1 ® 0 and I2 ® 0

when r ® ∞. By Lemma 5.1, one can obtain

I1 =
1
2r

t0−r∫
−∞

∣∣F(s)∣∣�s

t0+r∫
t0−r

Ke�α(t, σ (s))�t

=
1
2r

t0−r∫
−∞

∣∣F(s)∣∣�s

t0+r∫
t0−r

K
1 + μ(t) � α

e�α(σ (t), σ (s))�t

≤ 1
2r

K(1 + μ̄α)

t0−r∫
−∞

∣∣F(s)∣∣�s

t0+r∫
t0−r

eα(σ (s), σ (t))�t

=
1
2r

K(1 + μ̄α)
α

t0−r∫
−∞

∣∣F(s)∣∣ [eα(σ (s), t0 − r) − eα(σ (s), t0 + r)
]

�s

≤ 1
2r

K(1 + μ̄α)
α

‖F‖
⎛
⎝ t0−r∫

−∞
e�α(t0 − r, σ (s))�s −

t0−r∫
−∞

e�α(t0 + r, σ (s))�s

⎞
⎠

=
1
2r

K(1 + μ̄α)
α

1
�α

(e�α(t0 − r, −∞) − e�α(t0 − r, t0 − r) − e�α(t0 + r, −∞)

+ e�α(t0 + r, t0 − r)) → 0 as r → +∞;

I2 =
1
2r

t0+r∫
t0−r

∣∣F(s)∣∣�s

t0+r∫
s

Ke�α(t, σ (s))�t

=
1
2r

t0+r∫
t0−r

∣∣F(s)∣∣�s

t0+r∫
s

K
1 + μ(t) � α

e�α(σ (t), σ (s))�t

≤ 1
2r

K(1 + μ̄α)

t0+r∫
t0−r

∣∣F(s)∣∣�s

t0+r∫
s

eα(σ (s), σ (t))�t

=
1
2r

K(1 + μ̄α)
α

t0+r∫
t0−r

∣∣F(s)∣∣ [eα(σ (s), s) − eα(σ (s), t0 + r)]�s

≤ 1
2r

K(1 + μ̄α)2

α

t0+r∫
t0−r

∣∣F(s)∣∣�s.
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Therefore, by (ii) of Theorem 4.4,
∣∣F(·)∣∣ ∈ P̃AP0(T), so I2 ® 0 as r ® +∞.

Similarly, one can show that H ∈ P̃AP0(T)n. The proof is complete. □
Theorem 5.2. Suppose that A(t) is almost periodic and (5.2) admits an exponential

dichotomy. Then, for every F ∈ P̃AP(T)n. (5.1) has a unique bounded solution

xF ∈ PAP(T)n. The mapping F ® xF is bounded and linear with

‖xF‖ ≤
(
1
α

− 1
�α

)
K ‖F‖ =

2 + μα

α
K ‖F‖ . (5:5)

Proof. Since F ∈ P̃AP(T)n, F = G + 
, where G ∈ AP(T)n and 
 ∈ P̃AP0(T)n.

According to the proof of Theorem 5.1, the function

xF =

t∫
−∞

X(t)PX−1(σ (s))F(s)�s −
+∞∫
t

X(t)(I − P)X−1(σ (s))F(s)�s

=

⎛
⎝ t∫

−∞
X(t)PX−1(σ (s))G(s)�s −

+∞∫
t

X(t) (I − P)X−1 (σ (s))G(s)�s

⎞
⎠

+

⎛
⎝ t∫

−∞
X(t)PX−1(σ (s))
(s)�s −

+∞∫
t

X(t) (I − P)X−1 (σ (s))
(s)�s

⎞
⎠

:= xG + x


is the unique solution of (5.1), where

xG :=

t∫
−∞

X(t)PX−1(σ (s))G(s)�s −
+∞∫
t

X(t) (I − P)X−1(σ (s))G(s)�s,

x
 :=

t∫
−∞

X(t)PX−1(σ (s))
(s)�s −
+∞∫
t

X(t) (I − P)X−1 (σ (s))
(s)�s.

By Theorem 4.1 in [35], xG ∈ AP(T)n. By Theorem 5.1, x
 ∈ P̃AP0(T)n. There-

fore, xF ∈ P̃AP(T)n. Obviously, the mapping F ® xF is linear. The proof is com-

plete. □
Lemma 5.2. Let ci(t) : T → R+be an almost periodic function, −ci ∈ R+, T ∈ �and

m(ci) = lim
T→∞

1
T

t+T∫
t

ci(s)�s > 0, i = 1, 2, . . . ,n.

Then the following linear system

x�(t) = diag(−c1(t), −c2(t), . . . , −cn(t))x(t) (5:7)

admits an exponential dichotomy on T, where m(ci) denote the mean-value of ci, i =

1, 2, ..., n.

Proof. According to Theorem 2.77 in [3], the linear system (5.7) has a unique solu-

tion

x(t) = x0e−c (t, t0),

where x(t0) = x0, −c = diag(−c1(t), −c2(t), ..., −cn(t)).
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Now, we prove that x(t) admits an exponential dichotomy on T.

According to Theorem 3.2 and Theorem 3.5, one has

m(ci) = lim
T→∞

1
T

t+T∫
t
ci(s)�s = lim

T→∞
1
T

t0+T∫
t0

ci(s)�s > 0, t0 ∈ T, i = 1, 2, . . . , n.

So there exists T0 > 0, when T >T0, one has

1
T

t0+T∫
t0

ci(s)�s >
1
2
m(ci) =

1
T

t0+T∫
t0

1
2
m(ci)�s, i = 1, 2, . . . , n,

that is

1
T

t0+T∫
t0

(ci(s) − 1
2
m(ci))�s > 0, i = 1, 2, . . . , n,

thus, for T > T0, we have ci(t) > 1
2m(ci), i = 1, 2, . . . ,n.

Case 1. If μ(η) > 0, η ∈ [s, t]T , s, t ∈ T, we have

1 − μ(t)m(ci)
2

1 + μ(t)m(ci)
2

> 1 − μ(t)
m(ci)
2

> 1 − μ(t)ci(t), i = 1, 2, . . . ,n,

then

t∫
s

log(1 − μ(η)ci(η))
μ(η)

�η ≤
t∫

s

log(1 − μ(η)
m(ci)
2

1+μ(η)
m(ci)
2

)

μ(η)
�η, i = 1, 2, . . . ,n,

thus

exp

⎧⎨
⎩

t∫
s

log(1 − μ(η)ci(η))
μ(η)

�η

⎫⎬
⎭ ≤ exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t∫
s

log(1 − μ(η)
m(ci)
2

1+μ(η)
m(ci)
2

)

μ(η)
�η

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, i = 1, 2, . . . ,n,

that is,

e−ci(t, s) ≤ e
�
m(ci)
2

(t, s), i = 1, 2, . . . ,n.

Case 2. If μ(η) = 0, η ∈ [s, t]T , s, t ∈ T, one cane easily obtain

e−ci(t, s) = exp

⎧⎨
⎩

t∫
s

−ci(η)�η

⎫⎬
⎭ ≤ exp

⎧⎨
⎩

t∫
s

−m(ci)
2

�η

⎫⎬
⎭ = e

�
m(ci)
2

(t, s), i = 1, 2, . . . ,n.

Set P = I, we have∣∣X(t)PX−1(σ (s))
∣∣ = ∣∣x0e−c(t, t0)Ix−1

0 e�−c(s, t0)
∣∣ ≤ Ke

�
M

2

(t, s),

where K ≥ 1, M = min
1≤i≤n

{m(c1), m(c2), . . . , m(cn)}. Therefore, x(t) admits an expo-

nential dichotomy with P = I on T. This completes the proof. □
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Example 5.1. Consider the following dynamic equation on an almost periodic time

scale T =
⋃∞

i=1
[2k, 2k + 1]:

x�(t) = Ax(t) + F(t), (5:8)

where

A =
(− 1

16 0
0 − 1

16

)
, F(t) =

(
sin

√
3t + 1

tσ (t)

cos
√
2t + 1

tσ (t)

)
and 0 ≤ μ(t) < 16.

Obviously, −A ∈ R+. By Lemma 5.2, it is easy to know that the homogeneous equation

of (5.8) admits an exponential dichotomy with P = I on T. Similar to Example 4.1, one

easily to see that F ∈ P̃AP(T)2. By Theorem 5.2 and Theorem 2.77 in [3], one can

obtain that (5.8) has a unique pseudo almost periodic solution:

x(t) =

t∫
−∞

X(t)PX−1(σ (s))F(s)�s −
+∞∫
t

X(t)(I − P)X−1(σ (s))F(s)�s

=

t∫
−∞

e− 1
16
(t, σ (s))

(
1 0
0 1

) (
sin

√
3s + 1

sσ (s)

cos
√
2s + 1

sσ (s)

)
�s.

6 Applications
Application 1. Consider the following quasi-linear system

x� = A(t)x + F + μ0G ◦ (x × ι), (6:1)

where μ0 ∈ En\{0}, A(t) is a n × n almost periodic matrix, F ∈ P̃AP(T)n and

G ∈ P̃AP(T × D)n. We call the system

x� = A(t)x + F (6:2)

the generating system of (6.1).

By Theorem 5.2, system (6.2) has a unique solution x0 ∈ P̃AP(T)n if (5.2) admits

an, exponential dichotomy. Now we have the following theorem about (6.1).

Theorem 6.1. If F ∈ P̃AP(T)n, A(t) be almost periodic and (5.2) admits an expo-

nential dichotomy. Let x0 ∈ P̃AP(T)nbe the unique solution of system (6.2) and

denote D = {x ∈ En :
∣∣x − x0(t)

∣∣ ≤ a, t ∈ T}, where a > 0. Assume that

(i) G ∈ P̃AP(T × D)nand L > 0 such that∣∣G(t, x′) − G(t, x′′)
∣∣ ≤ L|x′ − x′′|, x′, x′′ ∈ D, t ∈ T; (6:3)

(ii) 0 < |μ0| < min{ α
(2+μ̄α)KL ,

αa
(2+μ̄α)K‖G‖ }, where K and a are the same as those in

Theorem 5.2, μ̄ = sup
t∈T

μ(t).

Then system (6.1) has a unique solution x ∈ P̃AP(T)nsuch that x Î D for all t ∈ T.

Furthermore, ||x - x0|| ® 0 as μ0 ® 0.

Proof. We construct a sequence of approximations by induction, starting with x0 and

taking xk to be the bounded solution of the system
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(xk)� = A(t)xk + F + μ0G ◦ (xk−1 × ι). (6:4)

First, we show that xk exists, xk ∈ P̃AP(T)n and xk(T) ⊂ D, k = 0, 1, 2, . . . , where

xk(T) denotes the value field of xk. Obliviously, the conclusion holds for k = 0 by the

hypothesis. Assume that the conclusion holds for k −1. Then we shall show that the

conclusion also holds for k. By Theorem 4.5, one can see that

G ◦ (xk−1 × ι) ∈ P̃AP(T)n, so from Theorem 5.2, (6.4) has a unique solution

xk ∈ P̃AP(T)n. It follows from (6.2) and (6.4) that,

(xk − x0)� = A(t) (xk − x0) + μ0G ◦ (xk−1 × ι).

By (5.5), we have∥∥∥xk − x0
∥∥∥ ≤ 2 + μ̄α

α
K |μ0| ‖G‖ .

Therefore, xk(T) ⊂ D, since

|μ0| ≤ αa
(2 + μ̄α)K ‖G‖ .

Next, we show that {xk} is Cauchy sequence in P̃AP(T)n. Since

(xk+1 − xk)� = A(t)(xk+1 − xk) + μ0[G ◦ (xk × ι) − G ◦ (xk−1 × ι)],

it follows from (5.5) and (6.3) that∥∥∥xk+1 − xk
∥∥∥ ≤ 2 + μ̄α

α
K |μ0|

∥∥∥G ◦ (xk × ι) − G ◦ (xk−1 × ι)
∥∥∥

≤ 2 + μ̄α

α
K |μ0| L

∥∥∥xk − xk−1
∥∥∥

= θ

∥∥∥xk − xk−1
∥∥∥

...

≤ θ k
∥∥x1 − x0

∥∥ ,
where 0 < θ = 2+μ̄α

α
K |μ0| L < 1. This shows that {xk} is a Cauchy sequence in

P̃AP(T)n. Since P̃AP(T)n is a Banach space, there is an x ∈ P̃AP(T)n such

that ||xk − x|| ® 0, when k ® ∞. It follows from (6.4) that x is a solution of (6.1). It is

clear that ||x − x0|| ® 0, as µ0 ® 0.

To show the uniqueness, let x* be another solution of (6.1). Similar to the discussion

above, we have

‖x − x∗‖ ≤ θ ‖x − x∗‖ ,

this is a contradiction. The proof is complete. □
Application 2. Let D be a ball in E

n with center at origin and radius r0. Consider the

following system

x� = A(t)x + G ◦ (x × ι), (6:5)

where A(t) is a n × n almost periodic matrix and G ∈ P̃AP(T × D)n. Set

B = {F ∈ P̃AP(T × D)n : F(T) ⊂ D}, where F(T) denotes the value field of F.
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B is a closed subset of P̃AP(T × D)n. Therefore, P(T) is a complete metric space.

Theorem 6.2. Let D, G, A(t), and P(T)be as those in the previous paragraph. Assume

that, (5.2) admits an exponential dichotomy and the function G satisfies,

2 + μ̄α

α
K sup

(t,x)∈T×D

∣∣G(t, x)∣∣ ≤ r0 where μ̄ = sup
t∈T

μ(t)

and ∣∣G(t, x′) − G(t, x′′)
∣∣ ≤ L

∣∣x′ − x′′∣∣ , x′, x′′ ∈ D, t ∈ T (6:6)

with 2+μ̄α

α
KL < 1. Then (6.5) has a unique solution in P̃AP(T)n.

Proof. By Theorem 5.2, one can define the mapping T̃ : B → P̃AP(T)n by the fact

that, for F ∈ B, T̃F is the unique pseudo almost periodic solution of the system

x� = A(t)x + G ◦ (F × ι). (6:7)

We claim that T̃B ⊂ B since by (5.5),∥∥∥T̃F∥∥∥ ≤ 2 + μ̄α

α
K
∥∥G ◦ (F × ι)

∥∥ ≤ r0.

The mapping is a contraction on P(T). In fact, for F1, F2 ∈ B, it follows from (5.5)

and (6.6) that

||T̃F1 − T̃F2|| ≤ 2 + μ̄α

α
K||G ◦ (F1 × ι) − G ◦ (F2 × ι)||

≤ 2 + μ̄α

α
KL||F1 − F2||.

Therefore, T̃ has a unique fixed point in P(T), which is the unique pseudo almost

periodic solution of (6.5). The proof is complete. □
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