
REVIEW Open Access

Output feedback stabilization of nonlinear
discrete-time systems with time-delay
Yali Dong* and Jun Wei

* Correspondence: dongyl@vip.sina.
com
School of Science, Tianjin
Polytechnic University, Tianjin
300387, China

Abstract

This article considers both the static output feedback stabilization issue and output-
feedback guaranteed cost controller design of a class of discrete-time nonlinear
systems with time-delay. First, by static output feedback controller, the new sufficient
conditions for static output feedback stabilization of a class of discrete-time nonlinear
systems with time-delay are presented. Then, we establish the new delay-
independent sufficient conditions for existence of the guaranteed cost control by
static output-feedback controller in terms of matrix inequalities. Finally, two examples
are given to show the effectiveness of our proposed approaches.
2000 MSC 93D15; 93C55; 34K20; 34D23.

1. Introduction
Time delay exists commonly in dynamic systems due to measurement, transmission

and transport lags, computational delays, or unmodeled inertia of system components,

which has been generally regarded as a main source of instability and poor perfor-

mance. Therefore, considerable attention has been devoted to the problem of analysis

and synthesis for time-delayed systems, and many research results have been reported

in the literature. To mention a few, the stability analysis result is reported in [1,2], the

stabilization problem for switched nonlinear time-delay systems is solved in [3], and

the model filtering problems are solved in [4], and the design problem of a hybrid out-

put feedback controller is also considered in [5].

The static output feedback problem for linear and nonlinear systems is an important

problem not yet completely solved and continuously investigated by many people. In prac-

tice, it is not always possible to have full access to the state vector and only the partial

information through a measured output is available. Introducing all of the results is not

easy because there exist various unconnected approaches. However, among the proposed

results, we can distinguish stability conditions expressed in terms of linear matrix inequal-

ities for discrete-time switched linear systems with average dwell time [6], constructive

approaches based on the resolution of Riccati equations [7], linear matrix inequality

approach to static output-feedback stabilization of discrete-time networked control sys-

tems [8] or optimization techniques [9,10], pole or eigenstructure assignment techniques

[11,12].

Recently, much effort has been directed towards finding a feedback controller in

order to guarantee robust stability, see [13,14]. On the other hand, when controlling a

real plant, it is also desirable to design a control systems which is not only
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asymptotically stable, but also guarantees an adequate level of performance index. One

way to address the robust performance problem is to consider a linear quadratic cost

function. This approach is the so-called guaranteed cost control [15,16]. In recent

years, with the development of robust control theory and H∞ control theory, the robust

guaranteed cost control approach to the design of state feedback control laws for

uncertain systems has been a subject of intensive research [17]. Quadratic guaranteed

cost control for linear systems with norm-bounded uncertainty was dealt with in [18].

However, all this research has been done on uncertain system without time delay or

continuous-time delay systems. Little attention has been paid towards discrete-time

systems with delay.

This article is concerned with both the static output feedback stabilization and out-

put-feedback guaranteed cost controller design for a class of discrete-time nonlinear

systems with time-delay. The new sufficient conditions for static output feedback stabi-

lization of a class of discrete-time nonlinear systems with time-delay are presented.

Then, sufficient LMI conditions for guaranteed cost control by static output feedback

are given. Finally, examples are given to show the effectiveness of our proposed

approaches.

The rest of the article is organized as follows. In Section 2, we present the main

results concerning the static output feedback stabilization problem for a class of non-

linear discrete-time systems with time-delay. In Section 3, we deal with the problem of

guaranteed cost control via static output feedback for a class of nonlinear discrete-time

systems with time-delay. Two numerical examples are given in Section 4 to illustrate

the proposed results. Finally, we draw some conclusions in Section 5.

The following notations will be used throughout this article. R is the set of all real

numbers. Z+ is the set of all non-negative integers. Z+ is the set of all positive integers.

Rn denotes the n-dimensional Euclidean space. Rn×m is the set of all (n×m)-dimensional

real matrices. I denotes an identity matrix with appropriate dimension. The superscript

‘T’ represents the matrix transposition. If a matrix is invertible, the superscript ‘-1’

represents the matrix inverse. X > 0(X ≥ 0) means that X is a real symmetric and posi-

tive-definite (semi-definite) matrix. The notation ||·|| refers to the Euclidean norm. For

an arbitrary matrix B and two symmetric matrices A and C, the symmetric term in a

symmetric matrix is denoted by an asterisk, i.e.,
[
A B
∗ C

]
=
[
A B
BT C

]
.

2. Static output feedback
Consider the following nonlinear discrete-time systems with time-delay described by

xk+1 = Axk + Adxk−d + Buk + f (xk) + g(xk−d),

xk = φk, −d ≤ k ≤ 0,

yk = Cxk + Cdxk−d,

(2:1)

where xkÎR
n is the system state; ukÎR

m is the input, ykÎR
p is the measured output;

A,Ad,C, and Cd are known real matrices with appropriate dimensions. d is a positive

integer; f = f(xk):R
n® Rn and g = g(xk-d):R

n® Rn are nonlinear functions satisfying f(0)

=0, g(0) =0 and

Dong and Wei Advances in Difference Equations 2012, 2012:73
http://www.advancesindifferenceequations.com/content/2012/1/73

Page 2 of 11



∂f (xk)
∂xk

∈ Co
{
F1, F2, . . . , Fv1

}
,

∂g(xk−d)
∂xk−d

∈ Co
{
T1,T2, . . . ,Tv2

}
, (2:2)

where the symbol “Co” stands for the convex hull, (Fi)1≤i≤v1 and (Ti)1≤i≤v2 are the

associated convex hull matrices. We say that the Jacobian
∂f (xk)
∂xk

belongs to a convex

polytopic set defined as

�1 =

{
�1(β1) =

v1∑
i=1

β1iFi,
v1∑
i=1

β1i = 1,β1i ≥ 0

}
, (2:3)

and
∂g(xk−d)
∂xk−d

belongs to a convex polytopic set defined as

�2 =

{
�2(β2) =

v2∑
i=1

β2iTi,
v2∑
i=1

β2i = 1,β2i ≥ 0

}
. (2:4)

Our first objective is to give sufficient linear matrix inequality conditions for stabili-

zation of system (2.1) by a static output controller uk=Kyk We introduce the following

key lemmas which will be used in setting the proofs of the next statements.

Lemma 2.1 [19]. Given the matrices X, Y, and Z of appropriate dimensions where X

=XT>0, and Z =ZT>0, then the following linear matrix inequality holds:(−X YT

Y −Z−1

)
< 0,

if there exists a positive constant a such that⎛
⎝−X αYT 0

αY −2αI Z
0 Z −Z

⎞
⎠ < 0.

Lemma 2.2 [20]. For any pair of symmetric positive definite constant matrix GÎRn×n

and scalar r>0, if there exists a vector function �[0,r]®Rn such that integrals∫ r

0
ϕT(s)Gϕ(s)ds and

∫ r

0
ϕ(s)ds are well definite, then the following inequality holds:

r
∫ r

0
ϕT(s)Gϕ(s)ds ≥

(∫ r

0
ϕ(s)ds

)T

G
(∫ r

0
ϕ(s)ds

)
.

Theorem 2.3. System (2.1) satisfying (2.3) and (2.4) is globally asymptotically stable

under the action of the static output feedback uk =
(
K̃
/

α
)
yk provided that there exist

a scalar a>0, and a real matrix K̃ , and positive definite matrices P > 0 and Q > 0 such

that the following linear matrix inequalities hold:

⎛
⎜⎜⎝

Q − P 0 α(AT + 2FTi ) + CTK̃TBT 0
0 −Q αAT

d + CT
dK̃

TBT 0
α(A + 2Fi) + BK̃C αAd + BK̃Cd −2αI P

0 0 P −P

⎞
⎟⎟⎠ < 0, 1 ≤ i ≤ v1,

⎛
⎜⎜⎝

Q − P 0 αAT + CTK̃TBT 0
0 −Q α(AT

d + 2TT
i ) + CT

dK̃
TBT 0

αA + BK̃C α(Ad + 2Ti) + BK̃Cd −2αI P
0 0 P −P

⎞
⎟⎟⎠ < 0, 1 ≤ i ≤ v2,

(2:5)
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where v1 and v2 are the numbers of the convex hull matrices of the Jacobian of f(xk)

and g(xk), respectively.

Proof. Consider the discrete-time nonlinear-time system (2.1) under the action of the

feedback uk = Kyk. Using the mean-value theorem, the closed-loop dynamics can be

written as

xk+1 = (A+BKC)xk+(Ad+BKCd)xk−d+
∫ 1

0

∂f (αk)
∂αk

∣∣
αk=(1−s)xkxkds+

∫ 1

0

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−d xk−dds . (2:6)

Choosing the Lyapunov-Krasovskii functional candidate as

Vk = xTkPxk +
d∑
i=1

(xTk−iQxk−i), (2:7)

we have

Vk+1 − Vk = xTk+1Pxk+1 +
d∑
i=1

(xTk+1−iQxk+1−i) − xTkPxk −
d∑
i=1

(xTk−iQxk−i)

= xTk+1Pxk+1 + xTkQxk − xTkPxk − xTk−dQxk−d

=
(
(A + BKC)xk + (Ad + BKCd)xk−d +

∫ 1

0

∂f (αk)
∂αk

∣∣
αk=(1−s)xkxkds +

∫ 1

0

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−d xk−dds

)T

×P
(
(A + BKC)xk + (Ad + BKCd)xk−d +

∫ 1

0

∂f (αk)
∂αk

∣∣
αk=(1−s)xkxkds +

∫ 1

0

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−dxk−dds

)
+xTkQxk − xTkPxk − xTk−dQxk−d

=

[
xTk

(
A + BKC +

∫ 1

0

∂f (αk)
∂αk

∣∣
αk=(1−s)xkds

)T

+ xTk−d

(
Ad + BKCd +

∫ 1

0

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−dds

)T
]

×P
[(

A + BKC +
∫ 1

0

∂f (αk)
∂αk

∣∣
αk=(1−s)xkds

)
xk +

(
Ad + BKCd +

∫ 1

0

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−dds

)
xk−d

]
+xTkQxk − xTkPxk − xTk−dQxk−d

=
(
xTk x

T
k−d

)
⎛
⎜⎜⎝

(
A + BKC +

∫ 1
0

∂f (αk)
∂αk

∣∣
αk=(1−s)xkds

)T

(
Ad + BKCd +

∫ 1
0

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−d ds

)T

⎞
⎟⎟⎠

×P
(
A + BKC +

∫ 1
0

∂f (αk)
∂αk

∣∣
αk=(1−s)xkds Ad + BKCd +

∫ 1
0

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−dds

)(
xk
xk−d

)

+
(
xTk x

T
k−d

) (Q − P 0
0 −Q

)(
xk
xk−d

)
.

Using Lemma 2.2, we have

Vk+1 − Vk ≤
∫ 1

0

⎧⎪⎪⎨
⎪⎪⎩
(
xTk x

T
k−d

)
⎛
⎜⎜⎝

(
A + BKC +

∂f (αk)
∂αk

∣∣
αk=(1−s)xk

)T

(
Ad + BKCd +

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−d

)T

⎞
⎟⎟⎠

×P
(
A + BKC +

∂f (αk)
∂αk

∣∣
αk=(1−s)xk Ad + BKCd +

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−d

)(
xk
xk−d

)}
ds

+
(
xTk x

T
k−d

) (Q − P 0
0 −Q

)(
xk
xk−d

)
.

Then, we can write that Vk+1-Vk<0, if the following holds

∫ 1

0

⎧⎪⎨
⎪⎩
⎛
⎜⎝ (A + BKC +

∂f (αk)
∂αk

∣∣
αk=(1−s)xk)

T

(Ad + BKCd +
∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−d)

T

⎞
⎟⎠P

×
(
A + BKC +

∂f (αk)
∂αk

∣∣
αk=(1−s)xk Ad + BKCd +

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−d

)
+
(
Q − P 0

0 −Q

)}
ds < 0,

(2:8)
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which is equivalent by the Schur complement lemma to the following matrix

inequality

∫ 1

0

⎛
⎜⎜⎜⎜⎝
Q − P 0 AT + CTKTBT +

(
∂f (αk)
∂αk

)T ∣∣
αk=(1−s)xk

∗ −Q AT
d + CT

dK
TBT +

(
∂g(τk−d)
∂τk−d

)T ∣∣
τk−d=(1−s)xk−d

∗ ∗ −P−1

⎞
⎟⎟⎟⎟⎠ ds

=
∫ 1

0

⎛
⎜⎜⎝

(Q − P)
/
2 0

(
AT + CTKTBT

)/
2 +

(
∂f (αk)
∂αk

)T ∣∣
αk=(1−s)xk

∗ −Q
/
2

(
AT
d + CT

dK
TBT

)/
2

∗ ∗ −P−1
/
2

⎞
⎟⎟⎠ ds

+
∫ 1

0

⎛
⎜⎜⎝

(Q − P)
/
2 0

(
AT + CTKTBT

)/
2

∗ −Q
/
2
(
AT
d + CT

dK
TBT

)/
2 +

(
∂g(τk−d)
∂τk−d

)T ∣∣
τk−d=(1−s)xk−d

∗ ∗ −P−1
/
2

⎞
⎟⎟⎠ ds < 0.

(2:9)

Since
∂f (αk)
∂αk

and
∂g(τk−d)
∂τk−d

are norm-bounded and continuous for all kÎZ+ and all

the matrices involved in (2.9) are real, then the integration in (2.9) is well defined.

Using the fact that

⎛
⎜⎜⎝

(Q − P)
/
2 0

(
AT + CTKTBT

)/
2 +

(
∂f (αk)
∂αk

)T ∣∣
αk=(1−s)xk

∗ −Q
/
2

(
AT
d + CT

dK
TBT

)/
2

∗ ∗ −P−1
/
2

⎞
⎟⎟⎠

∈ Co

⎧⎨
⎩
⎛
⎝ (Q − P)

/
2 0

(
AT + CTKTBT

)/
2 + FTi

∗ −Q
/
2

(
AT
d + CT

dK
TBT

)/
2

∗ ∗ −P−1
/
2

⎞
⎠ , 1 ≤ i ≤ v1

⎫⎬
⎭ ,

(2:10)

⎛
⎜⎜⎝

(Q − P)
/
2 0

(
AT + CTKTBT

)/
2

∗ −Q
/
2
(
AT
d + CT

dK
TBT

)/
2 +

(
∂g(τk−d)
∂τk−d

)T ∣∣
τk−d=(1−s)xk−d

∗ ∗ −P−1
/
2

⎞
⎟⎟⎠

∈ Co

⎧⎨
⎩
⎛
⎝ (Q − P)

/
2 0

(
AT + CTKTBT

)/
2

∗ −Q
/
2
(
AT
d + CT

dK
TBT

)/
2 + TT

i
∗ ∗ −P−1

/
2

⎞
⎠ , 1 ≤ i ≤ v2

⎫⎬
⎭ ,

after replacing the Jacobian matrix by its convex hull matrices, sufficient conditions

for fulfilling (2.9) are

⎛
⎝ (Q − P)

/
2 0

(
AT + CTKTBT

)/
2 + FTi

∗ −Q
/
2

(
AT
d + CT

dK
TBT

)/
2

∗ ∗ −P−1
/
2

⎞
⎠ < 0, 1 ≤ i ≤ v1,

⎛
⎝ (Q − P)

/
2 0

(
AT + CTKTBT

)/
2

∗ −Q
/
2
(
AT
d + CT

dK
TBT

)/
2 + TT

i
∗ ∗ −P−1

/
2

⎞
⎠ < 0, 1 ≤ i ≤ v2.

(2:11)
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(2.11) is equivalent to⎛
⎝ (Q − P) 0

(
AT + CTKTBT

)
+ 2FTi

∗ −Q
(
AT
d + CT

dK
TBT

)
∗ ∗ −P−1

⎞
⎠ < 0, 1 ≤ i ≤ v1,

⎛
⎝ (Q − P) 0

(
AT + CTKTBT

)
∗ −Q

(
AT
d + CT

dK
TBT

)
+ 2TT

i
∗ ∗ −P−1

⎞
⎠ < 0, 1 ≤ i ≤ v2.

(2:12)

Then, from the result of Lemma 2.1, we can get (2.12) are satisfied if conditions (2.5)

are verified. This ends the proof.

Similar to the proof of Theorem 2.3, we can easily get the following corollary for sys-

tem (2.1).

Corollary 2.4. Consider system (2.1) with g(xk-d)=0 System (2.1) satisfying (2.3) is

globally asymptotically stable under the action of the static output feedback

uk =
(
K̃
/

α
)
yk provided that there exist a scalar a > 0 and a real matrix K̃ , and positive

definite matrices P > 0 and Q > 0 such that the following linear matrix inequalities hold:

⎛
⎜⎜⎝

Q − P 0 α(AT + FTi ) + CTK̃TBT 0
0 −Q αAT

d + CT
dK̃

TBT 0
α(A + Fi) + BK̃C αAd + BK̃Cd −2αI P

0 0 P −P

⎞
⎟⎟⎠ < 0, 1 ≤ i ≤ v1, (2:13)

Remark 2.5. In [21], the stabilization problem for a class of discrete-time linear sys-

tems with time-delay is investigated by state feedback. But, the state vector is not often

available for feedback. In this article, the static output feedback is used and the system

is nonlinear. Compare to [21], the results obtained in this article have a greater range

of applications.

3. Guaranteed cost control via static output feedback
In this section, we consider the optimal control problem of system (2.1) under the

feedback uk = Kyk Our objective is to find the gain K such that for all initial conditions

jkÎRn,-d ≤ k ≤0

J∞ =
∞∑
k=0

(
xTkUxk + uTkRuk

)
< xT0Px0 +

d∑
i=1

(xT−iQx−i), (3:1)

where U =UT ≥ 0 and R = RT > 0 are some prescribed real matrices and P = PT,Q

=QT are positive definite matrices to be determined.

Theorem 3.1. Consider the system (2.1) and let UT ≥ 0, and R = RT > 0 be given

symmetric real matrices. If there exist scalars a1 > 0 and a2 > 0, and a matrix K, and

symmetric and positive definite matrices P > 0 and Q > 0 such that the following

matrix inequalities hold:
⎛
⎜⎜⎝
Q − P +U + CTKTRKC CTKTRKCd α1(AT + CTKTBT + 2FTi ) 0

CT
dK

TRKC −Q + CT
dK

TRKCd α1(AT
d + CT

dK
TBT) 0

α1(A + BKC + 2Fi) α1(Ad + BKCd) −2α1I P
0 0 P −P

⎞
⎟⎟⎠ < 0, 1 ≤ i ≤ v1,

⎛
⎜⎜⎝
Q − P +U + CTKTRKC CTKTRKCd α2(AT + CTKTBT) 0

CT
dK

TRKC −Q + CT
dK

TRKCd α2(AT
d + CT

dK
TBT + 2TT

i ) 0
α2(A + BKC) α2(Ad + BKCd + 2Ti) −2α2I P

0 0 P −P

⎞
⎟⎟⎠ < 0, 1 ≤ i ≤ v2,

(3:2)
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then system (2.1) is asymptotically stable under the static output feedback uk =Kyk,

and

J∞ =
∞∑
k=0

(
xTkUxk + uTkRuk

)
< xT0Px0 +

d∑
i=1

(xT−iQx−i),

for all initial conditions jkÎR
n-d ≤ k ≤ 0.

Proof. Choose the Lyapunov-Krasovskii functional candidate as

Vk = xTkPxk +
d∑
i=1

(xTk−iQxk−i).

For a given natural number N, we have

HN =
N∑
k=0

(
xTkUxk + uTkRuk

)− V0

=
N∑
k=0

(
xTkUxk + uTkRuk + Vk+1 − Vk

)− VN+1

≤
N∑
k=0

(
xTkUxk + (Cxk + Cdxk−d)

TKTRK(Cxk + Cdxk−d) + Vk+1 − Vk

)

=
N∑
k=0

⎧⎪⎪⎨
⎪⎪⎩
(
xTk xTk−d

)
⎛
⎜⎜⎝

(
A + BKC +

∫ 1
0

∂f (αk)
∂αk

∣∣
αk=(1−s)xkds

)T

(
Ad + BKCd +

∫ 1
0

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−dds

)T

⎞
⎟⎟⎠

× P
(
A + BKC +

∫ 1
0

∂f (αk)
∂αk

∣∣
αk=(1−s)xkds Ad + BKCd +

∫ 1
0

∂g(τk−d)
∂τk−d

∣∣
τk−d=(1−s)xk−dds

)(
xk
xk−d

)

+
(
xTk x

T
k−d

) (Q − P +U + CTKTRKC CTKTRKCd

CT
dK

TRKC −Q + CT
dK

TRKCd

)(
xk
xk−d

)}
.

This implies that if

⎛
⎝Q − P +U + CTKTRKC CTKTRKCd AT + CTKTBT + 2FTi

∗ −Q + CT
dK

TRKCd AT
d + CT

dK
TBT

∗ ∗ −P−1

⎞
⎠ < 0, 1 ≤ i ≤ v1,

⎛
⎝Q − P +U + CTKTRKC CTKTRKCd AT + CTKTBT

∗ −Q + CT
dK

TRKCd AT
d + CT

dK
TBT + 2TT

i
∗ ∗ −P−1

⎞
⎠ < 0, 1 ≤ i ≤ v2,

(3:3)

is verified then the static output feedback uk =Kyk minimizes the criterion (3.1).

From result of Lemma 2.1, we can get that (3.3) are satisfied if conditions (3.2) are ver-

ified. So, we get

J∞ =
∞∑
k=0

(
xTkU1xk + uTkRuk

)
< xT0Px0 +

d∑
i=1

(xT−iQx−i).

This ends the proof.

Corollary 3.2. Consider the system (2.1) and let UT ≥ 0 and R =RT > 0 be given

symmetric real matrices. Given scalars a1 > 0 and a2 > 0, if there exist a matrix K, and

symmetric and positive definite matrices P > 0 and Q > 0 such that the following linear

matrix inequalities hold:
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⎛
⎜⎜⎜⎜⎜⎜⎝

Q − P +U 0 α1(AT + CTKTBT + 2FTi ) 0 CTKT CTKT

∗ −Q α1(AT
d + CT

dK
TBT) 0 CT

dK
T CT

dK
T

∗ ∗ −2α1I P 0 0
∗ ∗ ∗ −P 0 0
∗ ∗ ∗ ∗ −2R−1 0
∗ ∗ ∗ ∗ ∗ −2R−1

⎞
⎟⎟⎟⎟⎟⎟⎠

< 0, 1 ≤ i ≤ v1,

⎛
⎜⎜⎜⎜⎜⎜⎝

Q − P +U 0 α2(AT + CTKTBT) 0 CTKT CTKT

∗ −Q α2(AT
d + CT

dK
TBT + 2TT

i ) 0 CT
dK

T CT
dK

T

∗ ∗ −2α2I P 0 0
∗ ∗ ∗ −P 0 0
∗ ∗ ∗ ∗ −2R−1 0
∗ ∗ ∗ ∗ ∗ −2R−1

⎞
⎟⎟⎟⎟⎟⎟⎠

< 0, 1 ≤ i ≤ v2,

(3:4)

then system (2.1) is asymptotically stable under the static output feedback uk = Kyk,

and

J∞ =
∞∑
k=0

(
xTkUxk + uTkRuk

)
< xT0Px0 +

d∑
i=1

(xT−iQx−i), (3:5)

for all initial conditions jkÎR
n,-d ≤ k ≤ 0.

Proof. By Theorem 3.1 and the Schur complement lemma, the condition of the cor-

ollary follows readily.

Remark 3.3. The study [19] considered the static output feedback and guaranteed

cost control for a class of discrete-time nonlinear systems. But, the time-delay system

did not deal with in [19]. In this article, we investigated the static output feedback sta-

bilization and output-feedback guaranteed cost controller design for a class of discrete-

time nonlinear systems with time-delay. So, the results obtained in this article have a

greater range of applications.

4. Illustrative examples
Example 1. Consider the following system

xk+1 =

⎛
⎝−0.15 −0.01 0

0.05 0.06 0
0 0 −0.01

⎞
⎠ xk +

⎛
⎝−0.03 −0.01 0

0.05 −0.08 0
0 −0.01 −0.03

⎞
⎠ xk−d

+

⎛
⎝0
1
0

⎞
⎠ uk +

⎛
⎜⎜⎜⎝

0

x(1)k

7(1 + x(1)
2

k )
0

⎞
⎟⎟⎟⎠ +

⎛
⎜⎝

1
2
sin x(2)k−d

0
0

⎞
⎟⎠ ,

(4:1)

yk =
(
0.01 0 0

)
xk +

(
0 0.01 0

)
xk−d,

where xTk =
(
x(1)k x(2)k x(3)k

)
.

One can easily verify that the vertices of the Jacobian of the system nonlinearity are

F1 =

⎛
⎝ 0 0 0

−1
/
56 0 0

0 0 0

⎞
⎠ , F2 =

⎛
⎝ 0 0 0
1
/
7 0 0

0 0 0

⎞
⎠ , T1 =

⎛
⎝0 −1

/
2 0

0 0 0
0 0 0

⎞
⎠ , T2 =

⎛
⎝0 1

/
2 0

0 0 0
0 0 0

⎞
⎠ .
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Let K =
1
α
K̃ = 1, α = 0.01, d = 1 After solving the LMIs (2.5) with respect to

their variables, we find

P =

⎛
⎝ 0.0102 0.0002 0
0.0002 0.0160 0

0 0 0.0153

⎞
⎠ , Q =

⎛
⎝0.0050 0 0

0 0.0121 0
0 0 0.0085

⎞
⎠ .

Under the action of the static output feedback, uk =yk, the state response of closed-

loop system (4.1) with x(-1) = (1 -1 1)T, x(0) = (-1 1 -1)T is shown in Figure 1, from

which one can see that the state vector is globally asymptotically stable.

Example 2. Consider the following system

xk+1 =

⎛
⎝−0.30 −0.1 0

0.2 0.06 0
0 0 −0.1

⎞
⎠ xk +

⎛
⎝−0.1 −0.1 0

0.2 −0.01 0
0 −0.12 −0.3

⎞
⎠ xk−d

+

⎛
⎝ 0
1.2
0

⎞
⎠ uk +

⎛
⎜⎜⎜⎝

0

x(1)k

7(1 + x(1)
2

k )
0

⎞
⎟⎟⎟⎠ +

⎛
⎜⎝

1
2
sin x(2)k−d

0
0

⎞
⎟⎠ ,

(4:2)

yk =
(
0.05 0 0

)
xk +

(
0 0.05 0

)
xk−d,

where xTk =
(
x(1)k x(2)k x(3)k

)
.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

S
ta

te
s

State responses

Figure 1 State trajectories of x(k) in system (4.1).
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One can easily verify that the vertices of the Jacobian of the system nonlinearity are

F1 =

⎛
⎝ 0 0 0

−1
/
56 0 0

0 0 0

⎞
⎠ , F2 =

⎛
⎝ 0 0 0
1
/
7 0 0

0 0 0

⎞
⎠ , T1 =

⎛
⎝0 −1

/
2 0

0 0 0
0 0 0

⎞
⎠ , T2 =

⎛
⎝0 1

/
2 0

0 0 0
0 0 0

⎞
⎠ .

Let

α1 = 4, α2 = 4, R = 5, U =

⎛
⎝1.5 0.2 2
0.2 2 −0.6
2 −0.6 5

⎞
⎠ . (4:3)

Using LMI Toolbox for (3.4), it is computed that there is a feasible solution and one

set of feasible solution is given by

P =

⎛
⎝6.8449 0.6611 0.2678

0.6611 6.2166 0.2628
0.2678 0.2628 7.0728

⎞
⎠ , Q =

⎛
⎝ 2.3875 0.1161 - 0.9952

0.1161 2.5594 0.6901
- 0.9952 0.6901 1.5301

⎞
⎠ , K = 1.1517. (4:4)

According to Corollary 3.2, then system (4.2) is asymptotically stable under the static

output feedback uk = 1.1517yk, and

J∞ =
∞∑
k=0

(
xTkUxk + uTkRuk

)
< xT0Px0 +

d∑
i=1

(xT−iQx−i),

for all initial conditions jkÎR
n,-d ≤ k ≤ 0, where U, R, P, and Q are given by (4.3)

and (4.4).

5. Conclusion
Both the problems of the static output feedback stabilization and output-feedback

guaranteed cost controller design for a class of discrete-time nonlinear systems with

time-delay are investigated in this article. The new static output feedback stabilization

conditions are proposed, which are independent of the time delay. We develop a quad-

ratic guaranteed cost control method for stabilization via static output feedback. Two

numerical examples are provided to show the applicability of the developed results.
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