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Abstract

In this article, we consider the existence of positive solutions of the (n - 1, 1)
conjugate-type nonlocal fractional differential equation{

Dα
0+x(t) + f (t, x(t)) = 0, 0 < t < 1, n − 1 < α ≤ n,
x(k)(0) = 0, 0 ≤ k ≤ n − 2, x(1) =

∫ 1
0 x(s)dA(s),

where a ≥ 2, Dα
0+ is the standard Riemann-Liouville derivative,

∫ 1

0
x(s)dA(s) is a

linear functional given by the Stieltjes integral, A is a function of bounded variation,
and dA may be a changing-sign measure, namely the value of the linear functional is
not assumed to be positive for all positive x. By constructing upper and lower
solutions, some sufficient conditions for the existence of positive solutions to the
problem are established utilizing Schauder’s fixed point theorem in the case in which
the nonlinearities f(t, x) are allowed to have the singularities at t = 0 and (or) 1 and
also at x = 0.
AMS (MOS) Subject Classification: 34B15; 34B25.

Keywords: upper and lower solutions, fractional differential equation, Schauder’s
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1 Introduction
In this article, we are studying the existence of positive solutions for the following sin-

gular nonlinear (n-1, 1) conjugate-type fractional differential equations with a nonlocal

term {
Dα

0+x(t) + f (t, x(t)) = 0, 0 < t < 1, n − 1 < α ≤ n,
x(k)(0) = 0, 0 ≤ k ≤ n − 2, x(1) =

∫ 1
0 x(s)dA(s),

(1:1)

where a ≥ 2, Dα
0+ is the standard Riemann-Liouville derivative, f: (0, 1) × (0, +∞) ®

[0, +∞) is continuous and f may be singular at x = 0 and t = 0, 1.

In the BVP (1.1),
∫ 1

0
x(s)dA(s) denotes the Riemann-Stieltijes integral, where A is a

function of bounded variation, that is dA can be a signed measure. In this work we do

not suppose that
∫ 1

0
x(s)dA(s) ≥ 0 for all x ≥ 0, and hence the BVP (1.1) has a wider
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range of applications as positive or negative values of the linear functional∫ 1

0
x(s)dA(s) are viable in some cases. But in most previous works of nonlocal bound-

ary value problems, some kind of positivity on the functional
∫ 1

0
x(s)dA(s) is often

required in order to obtain positive solutions of the problem, and in particular the

study of m-point boundary value problems with the boundary condition∫ 1

0
x(s)dA(s) =

∑m−2

i=1
μiu(ηi), μi > 0 is often required (see [1-4]). So from this point

of view, the BVP (1.1) not only includes the multi-point boundary value problem and

the integral boundary value problem (A(s) = s or dA(s) = h(s)ds) as special cases, but

also generalizes the multi-point boundary value problem and integral boundary value

problem for more general cases.

The nonlocal BVPs have been studied extensively. The methods used therein mainly

depend on the fixed-point theorems, the degree theory, the upper and lower solution tech-

niques, and the monotone iterations. Particularly, when a is an integer and∫ 1

0
x(s)dA(s) = μx(η) , where 0 < h <1 and 0 < μhn-1 <1, the authors of [5-8] established

the existence and multiplicity of positive solutions for the nth-order three-point BVP (1.1)

by applying the fixed-point theorems on cones. If
∫ 1

0
x(s)dA(s) =

∑m−2

i=1
μiu(ηi) , where

0 < h1 < h2 <· · · <hn-2 < 1, μi > 0 with 0 <
∑m−2

i=1
μiη

n−1
i < 1 , the nth-order m-point

BVP (1.1) has been studied in [1-3]. A more general equation with f depending on deriva-

tives and the boundary conditions with two nonlocal terms was studied by Zhang [4],

where f can be singular at t = 0 and/or t = 1 and be allowed to change sign. In addition,

the nonlocal integral boundary value problems also represent a very interesting and

important class of problems arising in physical, biological and chemical processes and

have attracted the attention of Khan [9], Gallardo [10], Karakostas and Tsamatos [11],

Ahmad et al. [12], Feng et al. [13] and the references therein. For more information about

the general theory of integral equations and their relation with boundary value problems,

we refer the readers to Corduneanu [14] and Agarwal and O’Regan [15].

The nonlocal condition given by a Riemann-Stieltjes integral with a signed measure

is due to Webb and Infante [16,17] and the articles contain several new ideas, and

gave a unified approach to many BVPs. Motivated by the studies of [16-18], Hao et al.

[19] studied the existence of positive solutions for the following nth-order singular

nonlocal boundary value problem{
x(n)(t) + a(t)f (t, x(t)) = 0, 0 < t < 1, n − 1 < α ≤ n,
x(k)(0) = 0, 0 ≤ k ≤ n − 2, x(1) =

∫ 1
0 x(s)dA(s),

(1:2)

where a may be singular at t = 0, 1, f may be singular at x = 0 but has no singularity

at t = 0, 1. The existence of positive solutions of the BVP (1.2) is obtained by means of

the fixed point index theory in cones. In [19], in order to overcome the singularity of f

at x = 0, the authors adopted the condition below :
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(H) f: [0, 1] × (0, ∞) ® [0, ∞) is continuous and for any 0 <r <R < +∞,

lim
m→∞ sup

x∈K̄R\Kr

∫
H(m)

q(s)f (s, x(s))ds = 0,

where H(m) =
[
0,

1
m

]
∪
[
m − 1
m

, 1
]
. This condition was also adopted by Wang et

al. [20] to study the existence and multiplicity of positive solutions for more general

fractional order BVP (1.1) by using fixed point theorem when f(t, x) has singularity at

x = 0. But we notice that the condition (H) used in [19,20] is a mixed condition invol-

ving integrability condition and supremum and limit condition, and is quite difficult to

verify. Thus, in this article, by finding a simple integrability condition, we establish the

existence of positive solutions for the BVP (1.1) when the nonlinearity f may be singu-

lar at both t = 0, 1 and x = 0 by utilizing different techniques [19,20], through estab-

lishing a maximal principle and constructing upper and lower solutions, instead of

using a fixed point theorem on cone, some sufficient conditions for the existence of

positive solutions are established via Schauder’s fixed point theorem.

2 Preliminaries and lemmas
For the convenience of the reader, we present here some definitions in fractional cal-

culus which are to be used in the later sections.

Definition 2.1. The fractional integral of order a >0 of a function x: (0, +∞) ® ℝ is

given by

D−α
0+ x(t) =

1
�(α)

∫ t
0(t − s)α−1x(s)ds

provided that the right-hand side is pointwise defined on (0, +∞).

Definition 2.2. The fractional derivative of order a >0 of a continuous function x:

(0, +∞) ® ℝ is given by

Dα
0+x(t) =

1
�(n − α)

(
d
dt

)(n) ∫ t
0(t − s)n−α−1x(s)ds,

where n = [a] + 1, [a] denotes the integer part of the number a, provided that the

right-hand side is pointwisely defined on (0, +∞).

Proposition 2.1 (see [21]). Let a >0, and f(x) is integrable, then

D−α
0+ D

α
0+f (x) = f (x) + c1xα−1 + c2xα−2 + · · · + cnxα−n,

where ci Î ℝ (i = 1, 2,..., n), and n is the smallest integer greater than or equal to a.
Proposition 2.2. The equality

Dα
0+D

−α
0+ f (x) = f (x), α > 0

holds for f Î L1(a, b).

Definition 2.3. A continuous function ψ(t) is called a lower solution of the BVP

(1.1), if it satisfies{−Dα
0+ψ(t) ≤ f (t, ψ(t)), 0 < t < 1, n − 1 < α ≤ n,

ψ(k)(0) ≥ 0, 0 ≤ k ≤ n − 2, ψ(1) ≥ ∫ 10 ψ(s)dA(s).
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Definition 2.4. A continuous function ψ(t) is called a upper solution of the BVP

(1.1), if it satisfies{−Dα
0+φ(t) ≥ f (t, φ(t)), 0 < t < 1, n − 1 < α ≤ n,

φ(k)(0) ≤ 0, 0 ≤ k ≤ n − 2, φ(1) ≤ ∫ 10 φ(s)dA(s).

Lemma 2.1 (see [22]). Given y Î L1(0, 1) and a >2, the problem{
Dα

0+x(t) + y(t) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n−2) = 0, x(1) = 0,
(2:1)

has the unique solution

x(t) =

1∫
0

G(t, s)y(s)ds, (2:2)

where G(t, s) is the Green function of the BVP (2.1) and is given by

G(t, s) =
1

�(α)

⎧⎨
⎩
[t(1 − s)]α−1, 0 ≤ t ≤ s ≤ 1,

[t(1 − s)]α−1 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1.
(2:3)

Lemma 2.2 (see [22]). The: function G(t, s) has the following properties:

(1)G (t, s) > 0, for t, s Î (0, 1).

(2)

tα−1(1 − t)s(1 − s)α−1 ≤ �(α)G(t, s) ≤ (α − 1)s(1 − s)α−1, for t, s ∈ [0, 1],

�(α)G(t, s) ≤ (α − 1)tα−1(1 − t), for t, s ∈ [0, 1].
(2:4)

By Lemma 2.1, the unique solution of the problem{
Dα

0+x(t) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n−2) = 0, x(1) = 1,
(2:5)

is ta-1. Defining GA(s) =
∫ 1

0
G(t, s)dA(t) , as in [18,20], we can get that the Green

function for the nonlocal BVP (1.1) is given by

H(t, s) =
tα−1

1 − C
GA(s) + G(t, s), (2:6)

where C =
∫ 1

0
tα−1dA(t) .

Lemma 2.3 Let 0 ≤ C <1 and GA(s) ≥ 0 for s Î [0, 1], then the Green function

defined by (2.6) satisfies:

(1) H(t, s) > 0, \forall t, s Î (0, 1).
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(2) There exists two constants c, d such that

ctα−1(1 − t)B(s) ≤ H(t, s) ≤ B(s), (2:7)

and

H(t, s) ≤ dtα−1, t, s ∈ [0, 1], (2:8)

where

B(s) = s(1 − s)α−1

�(α − 1)
+
GA(s)
1 − C , c =

1
α − 1

, d =
1

�(α − 1)
+

F
1 − C , F = max

0≤s≤1
GA(s).

Proof. (1) is obvious. For (2.7), see [20]; we only prove (2.8) here. First, notice that A

is a function of bounded variation and GA(s) ≥ 0 for s Î [0, 1], G(t, s) is continuous

on s, t Î [0, 1] and

G(t, s) ≤ (α − 1)(1 − t)tα−1

�(α)
≤ (α − 1)tα−1

�(α)
=

tα−1

�(α − 1)
.

it is then easy to get that there exists a constant F = max0≤s≤1GA(s) > 0 such that

GA(s) ≤ F , consequently, there exists a constant d such that

H(t, s) ≤ dtα−1, t, s ∈ [0, 1],

where

d =
1

�(α − 1)
+

F
1 − C .

□
Lemma 2.4 If x Î C([0, 1], ℝ) is such that

x(k)(0) = 0, 0 ≤ k ≤ n − 2, x(1) =
∫ 1
0 x(s)dA(s),

and Dα
0+x(t) ≤ 0 for any t Î (0, 1), Then

x(t) ≥ 0, t ∈ [0, 1].

Proof. The conclusion is obvious from Lemma 2.3, we omit the proof.

3 Main results
We make the following assumptions throughout the rest of this article:

(B0) A is a function of bounded variation, and GA(s) ≥ 0 for s Î [0,1],

0 ≤ C < 1, where C =
∫ 1

0
tα−1dA(t) .

(B1) f Î C((0, 1) × (0, ∞), [0, +∞)), and f(t, x) is decreasing in x.

(B2) For any l > 0, f(t, l) ≢ 0, and

0 <
∫ 1
0 f (s, λsα−1(1 − s))ds < +∞.
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From (B1) (B2) and

B(s) = s(1 − s)α−1

�(α − 1)
+
GA(s)
1 − C ≤ d, sα−1(1 − s) ≤ sα−1,

for any l >0, we get that

∫ 1
0 B(s)f (s, sα−1(1 − s))ds < +∞,

and

∫ 1
0 B(s)f (s, λsα−1)ds ≤ d

∫ 1
0 f (s, λsα−1(1 − s))ds < +∞,

which imply that they are well defined.

In what follows, we define two constants:

m = min

⎧⎨
⎩1, c

1∫
0

B(s)f (s, sα−1(1 − s))ds

⎫⎬
⎭ , M = max

⎧⎨
⎩1, d

1∫
0

f (s, sα−1(1 − s))ds

⎫⎬
⎭ ,

where c and d are defined in Lemma 2.3.

Theorem 3.1 Suppose (B0), (B1), (B2) and the (B3) below hold

B3
∫ 1

0
B(s)f

(
s,

M
m
sα−1

)
ds ≥ α − 1.

Then the BVP (1.1) has at least one positive solution w(t), which satisfies

tα−1(1 − t) ≤ w(t) ≤ M
m
tα−1.

Proof. Let E = C[0, 1], and

P =
{
x ∈ E : there exists positive number l x such that

x (t) ≥ lxtα−1 (1 − t) , t ∈ [0, 1]
}
.

(3:1)

Then P is nonempty since ta-1 (1-t) Î P. Now let us denote an operator T by

(Tx)(t) =

1∫
0

H(t, s)f (s, x(s))ds, for any x ∈ P. (3:2)

Then T is well defined and T (P) ⊂ P.

In fact, for any r Î P, by the Definition of P, there exists a positive number lr such

that r(t) ≥ lrt
a-1 (1-t) for any t Î [0, 1]. It follows from Lemmas 2.2-2.3 and (B1)-(B2)

that

(Tρ)(t) =
∫ 1

0
H(t, s)f (s, ρ(s))ds ≤

∫ 1

0
B(s)f (s, ρ(s))ds

≤
∫ 1

0
B(s)f (s, lρsα−1(1 − s))ds < +∞.

(3:3)

Let B = maxtÎ[0,1] r(t), then from (B2) and the continuity of f(t, x), we have∫ 1

0
B(s)f (s, B)ds > 0 . Consequently,
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∫ 1
0 B(s)f (s, ρ(s))ds ≥ ∫ 10 B(s)f (s, B)ds > 0.

Thus, by (2.7), we have

(Tρ)(t) ≥ ctα−1(1 − t)
∫ 1

0
B(s)f (s, ρ(s))ds = l′ρ t

α−1(1 − t), (3:4)

where

l′ρ = c
∫ 1
0 B(s)f (s, ρ(s))ds.

It follows from (3.3) and (3.4) that T is well defined and T (P) ⊂ P:

Next, we determine the upper and lower solutions of the BVP (1.1). In fact, by (B1)-

(B2) and (3.2), we know that the operator T is decreasing and continuous. Thus by

direct computations, we obtain⎧⎪⎨
⎪⎩

−Dα
0+(Tx)(t) = f (t, x(t)), 0 < t < 1,

(Tx)(k)(0) = 0, 0 ≤ k ≤ n − 2, (Tx)(1) =
∫ 1

0
(Tx)(s)dA(s).

(3:5)

By (2.7) and:(2.8), we have

mtα−1(1 − t) ≤ ctα−1(1 − t)
∫ 1

0
B(s)f (s, sα−1(1 − s))ds

≤
∫ 1

0
H(t, s)f (s, sα−1(1 − s))ds

≤ dtα−1
∫ 1

0
f (s, sα−1(1 − s))ds

≤ Mtα−1.

Let

a(t) =
1
m

∫ 1
0 H(t, s)f (s, sα−1(1 − s))ds,

then

tα−1(1 − t) ≤ a(t) =
1
m
T(tα−1(1 − t)) ≤ M

m
tα−1. (3:6)

Since the operator T is noncreasing relative to x, (3.6) and (B3) imply

(Ta) (t) ≤ T(tα−1(1 − t)) ≤ 1
m
T(tα−1(1 − t)) = a(t),

and

(Ta) (t) ≥ T
(
M
m
tα−1

)
=
∫ 1

0
H(t, s)f

(
s,

M
m
sα−1

)
ds

≥ ctα−1(1 − t)
∫ 1

0
B(s)f

(
s,

M
m
sα−1

)
ds

=
tα−1(1 − t)

α − 1

∫ 1

0
B(s)f

(
s,

M
m
sα−1

)
ds

≥ tα−1(1 − t),
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i.e.,

tα−1(1 − t) ≤ (Ta)(t) ≤ a(t) ≤ M

m
tα−1. (3:7)

Since ta-1(1-t) Î P, from (3.7), we obtain a(t), (Ta)(t) Î P. Thus, by (3.6), (3.7) and

the result that the operator T is nonincreasing with respect to x, we have

Dα
0+a(t) + f (t, a(t)) = − 1

m
f (t, tα−1(1 − t)) + f (t, a(t))

≤ − 1
m
f (t, tα−1(1 − t)) + f (t, tα−1(1 − t)) ≤ 0, t ∈ [0, 1].

(3:8)

Dα
0+(Ta) (t) + f (t, (Ta) (t)) = −f (t, a(t)) + f (t, (Ta) (t))

≥ −f (t, a(t)) + f (t, a(t)) = 0, t ∈ [0, 1].
(3:9)

Notice that (3.5) implies that a(t) = 1
mTt

α−1(1 − t), (Ta)(t) satisfy the boundary con-

ditions in the BVP (1.1). Thus by (3.8) and (3.9),

ψ(t) = (Ta)(t),φ(t) = 1
mTt

α−1(1 − t) = a(t) are the lower and upper solutions of the

BVP (1.1), respectively, and ψ(t), j(t) Î P.

Define the function F and the operator T_0 in E by

F(t, x) =

⎧⎨
⎩
f (t, ψ(t)), x < ψ(t),
f (t, x), ψ(t) ≤ x ≤ φ(t),
f (t, φ(t)), x > φ(t),

(3:10)

and

(T0x)(t) =
∫ 1
0 H(t, s)F(s, x(s))ds, ∀x ∈ E.

It follows from the assumption that F: (0, 1) × [0, +∞) ® [0, +∞) is continuous. Con-

sider the following boundary value problem⎧⎪⎨
⎪⎩

−Dα
0+x(t) = F(t, x), 0 < t < 1,

x(k)(0) = 0, 0 ≤ k ≤ n − 2, x(1) =
∫ 1

0
x(s)dA(s).

(3:11)

Obviously, a fixed point of the operator T0 is a solution of the BVP (3.11).

For all x Î E, it follows from Lemma 2.3 and (3.10) and ψ (t) ≥ ta-1 (1-t) that

(T0x)(t) ≤
∫ 1

0
B(s)F(s, x(s))ds ≤ d

∫ 1

0
f (s, ψ(s))ds

≤ d
∫ 1

0
f (s, sα−1(1 − s))ds < +∞.

So T0 is bounded. It is easy to see T0: E ® E is continuous from the continuity of H

and (B2).

Let Ω ⊂ E be bounded, and given ε >0 by setting

δ =
(

ε

2α(α − 1)

) 1
α − 1

[
2
(

1
�(α)

+
F

1 − C
) ∫ 1

0 f (s, sα−1(1 − s))ds
]−1

,
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then, for each x Î Ω, t1, t2 Î [0, 1], t1 < t2, and t2 - t1 < δ, one has

|(T0x)(t1) − (T0x)(t2)| < ε.

That is to say, T0(Ω) is equicontinuous.

In fact,

∣∣(T0x)(t1) − (T0x)(t2)
∣∣ = ∣∣∣∣

∫ 1

0
H(t2, s)F(s, x(s))ds −

∫ 1

0
H(t1, s)F(s, x(s))ds

∣∣∣∣
≤
∫ t1

0

∣∣H(t2, s) − H(t1, s)
∣∣ F(s, x(s))ds + ∫ 1

t2

∣∣H(t2, s) − H(t1, s)
∣∣ F(s, x(s))ds

+
∫ t2

t1

∣∣H(t2, s) − H(t1, s)
∣∣ F(s, x(s))ds

<

(
1

�(α)
+

F
1 − C

) ∫ t1

0

[
(tα−1
2 − tα−1

1 ) + (1 − s)α−1(tα−1
2 − tα−1

1 )
]
f (s, sα−1(1 − s))ds

+
∫ t2

t1

[
(tα−1
2 − tα−1

1 ) + (1 − s)α−1(tα−1
2 − tα−1

1 )
]
f (s, sα−1(1 − s))ds

+
∫ 1

t1

[
(tα−1
2 − tα−1

1 ) + (1 − s)α−1(tα−1
2 − tα−1

1 )
]
f (s, sα−1(1 − s))ds]

< 2
(

1
�(α)

+
F

1 − C
)
(tα−1
2 − tα−1

1 )
∫ 1

0
f (s, sα−1(1 − s))ds.

In the following, we divide the proof into two cases.

Case 1. δ ≤ t1 <t2 < 1.

∣∣(T0x)(t1) − (T0x)(t2)
∣∣ < 2

(
1

�(α)
+

F
1 − C

) ∫ 1

0
f (s, sα−1(1 − s))ds(tα−1

2 − tα−1
1 )

≤ 2
(

1
�(α)

+
F

1 − C
) ∫ 1

0
f (s, sα−1(1 − s))ds

α − 1
δ2−α

(t2 − t1)

≤ 2
(

1
�(α)

+
F

1 − C
) ∫ 1

0
f (s, sα−1(1 − s))ds(α − 1)δα−1

< ε.

Case 2.0 ≤ t1 <δ, t2 < 2δ.

∣∣(T0x)(t1) − (T0x)(t2)
∣∣ < 2

(
1

�(α)
+

F
1 − C

) ∫ 1

0
f (s, sα−1(1 − s))ds(tα−1

2 − tα−1
1 )

≤ 2
(

1
�(α)

+
F

1 − C
)∫ 1

0
f (s, sα−1(1 − s))dstα−1

2

≤ 2
(

1
�(α)

+
F

1 − C
)∫ 1

0
f (s, sα−1(1 − s))ds(2δ)α−1 < ε.

This implies that T0(Ω) is equicontinuous.

From the Arzela-Ascoli theorem, we get that T0: E ® E is completely continuous.

Thus, by using the Schauder fixed point theorem, T0 has at least one fixed point w

such that w = T0w.

Now we prove

ψ(t) ≤ w(t) ≤ φ(t), t ∈ [0, 1].

Let z(t) = j(t) - w(t), t Î [0, 1]. As j(t) is the upper solution of the BVP (1.1) and w

is a fixed point of T0, we have
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w(k)(0) = 0, 0 ≤ k ≤ n − 2, w(1) =
∫ 1

0
w(s)dA(s). (3:12)

From the Definition of F and (3.6), (3.7), we obtain

f (t, φ(t)) ≤ F(t, x(t)) ≤ f (t, ψ(t)), ∀x ∈ E, f (t, tα−1(1−t)) ≥ f (t, ψ(t)), ∀t ∈ [0, 1].

So

f (t, φ(t)) ≤ F(t, x(t)) ≤ f (t, tα−1(1 − t)),∀x ∈ E. (3:13)

Thus (3.7) and (3.13) imply

Dα
0+z(t) = Dα

0+φ(t) − Dα
0+w(t)

= − 1
m
f (t, tα−1(1 − t)) + F(t, w(t)) ≤ 0, ∀t ∈ [0, 1].

(3:14)

By (3.11)-(3.14) and Lemma 2.4, we know z(t) ≥ 0 which implies w(t) ≤ j(t) on [0, 1].

By the same way, it is easy to prove w(t) ≥ ψ(t) on [0, 1]. So we obtain

ψ(t) ≤ w(t) ≤ φ(t), t ∈ [0, 1]. (3:15)

Consequently, F (t, w(t)) = f(t, w(t)), t Î [0, 1]. Then w(t) is a positive solution of the

BVP (1.1).

Finally, by (3.6), (3.7) and (3.15), we have

tα−1(1 − t) ≤ ψ(t) ≤ w(t) ≤ φ(t) ≤ M
m
tα−1.

Corollary 3.1. Suppose the following conditions hold:

(C1) f Î C((0, 1) × [0, ∞), [0, +∞)), and f(t, x) is decreasing in x.

(C2) f(t, 0) ≢ 0 for any t Î (0, 1), and

0 <
∫ 1
0 B(s)f (s, 0)ds < +∞.

Then the BVP (1.1) has at least one positive solution w(t), and there exists a constant

Λ > 0 such that

0 ≤ w(t) ≤ �.

Proof. In fact, in the proof of Theorem 3.1, we replace the set P by

P1 = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}

and (3.6), (3.7) by

0 ≤ φ(t) = T0, 0 ≤ ψ(t) = (Tφ)(t) ≤ T0 = φ(t).

Clearly j(t), ψ(t) Î P1, and

Dα
0+φ(t) + f (t, φ(t)) = −f (t, 0) + f (t, T0) ≤ 0,

Dα
0+ψ)(t) + f (t, ψ(t)) = −f (t, φ(t)) + f (t, ψ(t)) ≥ 0, t ∈ [0, 1].

On the other hand, by Lemma 2.3,

φ(t) = T0 =
∫ 1
0 H(t, s)f (s, 0)ds ≤ ∫ 10 B(s)f (s, 0)ds = �.
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Thus the rest of proof is similar to those of Theorem 3.1.

Corollary 3.2. If f(t, x): [0, 1] × [0, ∞) ® [0, +∞) is continuous and decreasing in x,

and f(t, 0) ≢ 0 for any t Î [0, 1], then the BVP (1.1) has at least one positive solution w

(t), and there exists a constant Λ > 0 such that

0 ≤ w(t) ≤ �.

Example 3.1. (A 4-Point BVP with Coefficients of Both Signs) Consider the BVP

(1.1) with α = 5
2 , f (t, x) =

36
√

π
8√t3

4
√

(1−t)x
, and

A(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈
[
0,

1
2

)
,

2, t ∈
[
1
2
,
3
4

)
,

1, t ∈
[
3
4
, 1
]
.

From the given conditions, 0 ≤ C =
∫ 1

0
t

3
2 dA(t) =

√
2
2 − 3

√
3

8 ≈ 0.0575 < 1 , and the

BVP (1.1) is a fourth-order four-point BVP with coefficients of both signs⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D

5
2
0+x(t) +

36
√

π
8
√
t3

4
√
(1 − t)x(t)

= 0, 0 < t < 1,

x(0) = x′(0) = 0, x(1) = 2x
(
1
2

)
− x
(
3
4

)
.

(3:16)

Conclusion: The BVP (3.16) has at least one positive solution w(t) such that

(1 − t)t
3
2 ≤ w(t) ≤ 472t

3
2 .

Proof. We have

G(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
G1(t, s) =

[
t(1 − s)

] 3
2

�
( 5
2

) , 0 ≤ t ≤ s ≤ 1,

G2(t, s) =

[
t(1 − s)

] 3
2 − (t − s)

3
2

�
( 5
2

) , 0 ≤ s ≤ t ≤ 1.

and

GA(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2G2

(
1
2
, s
)

− G2

(
3
4
, s
)
, 0 ≤ s <

1
2
,

2G1

(
1
2
, s
)

− G2

(
3
4
, s
)
,

1
2

≤ s <
3
4
,

2G1

(
1
2
, s
)

− G1

(
3
4
, s
)
,

3
4

≤ s ≤ 1.

Thus 0 ≤ GA(s) < 1 , and (B0) holds.
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On the other hand, we know

B(s) = s(1 − s)
3
2

�
( 3
2

) +
GA(s)

1 −
√
2
2 + 3

√
3

8

, c =
2
3
, d =

1

�
( 3
2

) + 1

1 −
√
2
2 + 3

√
3

8

.

and

f (t, x) =
36

√
π

8
√
t3

4
√
(1 − t)x

,

thus (B1) holds. For any l > 0, clearly,

f (t, λ) =
36

√
π

8
√
t3

4
√

λ(1 − t)
�≡ 0,

and

0 <
∫ 1
0 f (s, λsα−1(1 − s))ds =

36
√

π
4
√

λ

∫ 1
0

1√
1 − s

ds =
72

√
π

4
√

λ
< +∞,

which implies that (B2) holds.

On the other hand, since �
( 3
2

)
=

√
π

2
, we have

c
∫ 1

0
B(s)f (s, sα−1(1 − s))ds =

2
3

∫ 1

0

⎛
⎝ s(1 − s)

3
2

�
(3
2

) +
GA(s)

1 −
√
2
2 + 3

√
3

8

⎞
⎠ 36

√
π

8
√
s3

4
√
(1 − s)2s

3
2

ds

≥ 2
3

∫ 1

0

s(1 − s)
3
2

�
( 3
2

) 36
√

π
8
√
s3

4
√
(1 − s)2s

3
2

ds = 48
∫ 1

0
s(1 − s)ds = 8,

d
∫ 1

0
f (s, sα−1(1 − s))ds = (

1

�
( 3
2

) + 1

1 −
√
2
2 + 3

√
3

8

)
∫ 1

0

36
√

π√
1 − s

ds

≤ 6√
π

∫ 1

0

36
√

π√
1 − s

ds = 472.

Consequently,

m = 1, M ≤ 472,
M
m

≤ 472,

and

∫ 1

0
B(s)f

(
s,

M
m
sα−1(1 − s)

)
ds ≥

∫ 1

0
B(s)f

(
s, 472s

3
2 (1 − s)

)
ds

≥
∫ 1

0

s(1 − s)
3
2

�
(3
2

) f
(
s, 472s

3
2 (1 − s)

)
ds ≥ 72

4
√
472

∫ 1

0
s(1 − s)ds

=
12

4
√
472

≥ 12
5

≥ α − 1 =
3
2
,

i.e., (B3) also holds.
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So, by Theorem 3.1, the BVP (3.16) has at least one positive solution w(t) such that

(1 − t)t
3
2 ≤ w(t) ≤ 472t

3
2 .

□
Remark 3.1. In Example 3.1, for any 0 <r <R < +∞, clearly

lim
m→∞ sup

x∈K̄R\Kr

∫
H(m)

q(s)f (s, x(s))ds

= lim
m→∞ sup

x∈K̄R\Kr

⎛
⎜⎝∫

1
m

0

36
√

π
8
√
s3

4
√
(1 − s)x(s)

ds +
∫ 1

m − 1
m

36
√

π
8
√
s3

4
√
(1 − s)x(s)

ds

⎞
⎟⎠ .

Since x(t) is a unknown function, it is difficult for us to verify whether it is equal to

0. But we see that the integrability condition (B2)-(B3) are easier to be checked than

(H) by a simple calculation.

Remark 3.2. In Example 3.1, the boundary condition x(1) = 2x
(1
2

)− x
(3
4

)
reveals

that positive or negative values of the linear functional, in the condition

x(1) =
∫ 1

0
x(s)dA(s) , are viable in some cases. This implies that we here removed the

nonnegative requirements of μi used in most of the literature, for example [1-4] and

other related literature on multi-point boundary-value problems.

Example 3.2. Consider the existence of positive solutions for the nonlinear fractional

differential equation⎧⎪⎨
⎪⎩D

5
2
0+x(t) +

t(1 − t)
3
2

3
√
x2 + 1

= 0, 0 < t < 1,

x(0) = x′(0) = 0, x(1) =
∫ 1
0 x(s)dA(s),

(3:17)

where A is a function of bounded variation, and GA(s) ≥ 0 for s ∈ [0, 1], 0 ≤ C < 1 ,

where C =
∫ 1

0
tα−1dA(t) .

Proof. Let

f (t, x) =
t(1 − t)

3
2

3
√
x2 + 1

,

then f(t, x): [0, 1] × [0, ∞) ® [0, +∞) is continuous and decreasing in x, and

f (t, 0) = t(1 − t)
3
2 �≡ 0 for any t Î [0, 1],

and� =
∫ 1

0
B(s)f (s, 0)ds = 2√

π

∫ 1

0
s2(1 − s)3ds+

F
1 − C

∫ 1

0
s(1 − s)

3
2 ds =

7
10

√
π
+

4F
35(1 − C) .

Then by Corollary 3.2, the BVP (3.17) has at least one positive solution w(t) such

that

0 ≤ w(t) ≤ 7
10

√
π

+
4F

35(1 − C) .

□
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