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Abstract
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1. Introduction
Fractional calculus is a generalization of the ordinary differentiation and integration to

arbitrary non-integer order. The subject is as old as the differential calculus and it has

been developed up to nowadays (see Kilbas et al. [1], Hilfer [2]). Fractional differential

and integral equations have recently been applied in various areas of Engineering,

Mathematics, Physics and Bio-engineering and so on. There has been a significant

development in ordinary and partial fractional differential and integral equations in

recent years; see the monographs of Baleanu et al. [3], Hilfer [2], Kilbas et al. [1],

Lakshmikantham et al. [4], Podlubny [5], and the articles by Abbas et al. [6-8], Vityuk

and Golushkov [9]. Recently interesting results of the stability of the solutions of var-

ious classes of integral equations of fractional order have obtained by Banaś et al.

[10,11], Darwish et al. [12], Dhage [13,14] and the references therein.

In this article, we established sufficient conditions for the existence and the attractiv-

ity of solutions of the following system of delay integro-differential equations of frac-

tional order of the form

cDr
θu(t, x) = f (t, x, Ir20,xu(t, x), u(t − τ1, x − ξ1), . . . , u(t − τm, x − ξm));

for (t, x) ∈ J := R+ × [0, b], (1)

u(t, x) = �(t, x); for (t, x) ∈ J̃ := [−T, ∞) × [−ξ , b]\(0, ∞) × (0, b], (2)
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{
u(t, 0) = ϕ(t); t ∈ [0, ∞),
u(0, x) = ψ(x); x ∈ [0, b],

(3)

Where b > 0, θ = (0, 0) ℝ+ = [0, ∞), τ i, ξi ≥ 0; i = 1..., m, T = max
i=1,...m

{τi},
cDr

θ,
cDr

θ is the Caputo fractional derivative of order r = (r1,r2) Î (0, ∞)×(0, ∞), Ir20,x is

the partial Riemann-Liouville integral of order r2 with respect to x, f : J × ℝm ® ℝ is

a given continuous function, � : ℝ+ ® ℝ, ψ : [0, b] ® ℝ are absolutely continuous

functions with limt®∞ �(t) = 0, and ψ(x) = �(0) for each x Î [0, b], and � : J̃ → R
n

is continuous with �(t) = F(t, 0) for each t Î ℝ+, and ψ(x) = F(0, x) for each x Î
[0, b].

This article initiates the question of local attractivity of the solution of problem (1)-

(3).

2. Preliminaries
In the following, we present briefly notations, definitions, and preliminary facts which

are used throughout this article. By L1([0, a] × [0, b]); a, b > 0, we denote the space of

Lebesgue-integrable functions u : [0, a] × [0, b] ® ℝ with the norm

||u||1 =

a∫
0

b∫
0

|u(t, x)|dxdt.

By BC := BC([−T, ∞)×[−ξ, b]) we denote the Banach space of all bounded and con-

tinuous functions from [−T, ∞) × [−ξ, b] into ℝ equipped with the standard norm

||u||BC = sup
(t,x)∈[−T,∞)×[−ξ ,b]

|u(t, x)|.

For u0 Î BC and h Î (0, ∞), we denote by B(u0, h), the closed ball in BC centered at

u0 with radius h.
Definition 2.1 [15]Let r Î (0, ∞) and u Î L1([0, a]×[0, b]),a, b > 0. The partial Rie-

mann-Liouville integral of order r of u(t, x) with respect to t is defined by the expression

Ir0,tu(t, x) =
1

�(ρ)

t∫
0

(t − s)ρ−1u(s, x)ds, for almost all (t, x) ∈ [0, a] × [0, b].

Analogously, we define the integral

Ir0,xu(t, x) =
1

�(ρ)

x∫
0

(x − s)ρ−1u(t, s)ds, for almost all (t, x) ∈ [0, a] × [0, b].

Definition 2.2 [9]Let r = (r1, r2) Î (0, ∞) × (0, ∞), θ = (0, 0) and u Î L1([0, a] × [0,

b]). The left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Irθu)(t, x) =
1

�(r1)�(r2)

t∫
0

x∫
0

(t − τ )r1−1(x − s)r2−1u(s, τ )dsdτ .
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In particular,

(Iθθu)(t, x) = u(t, x), (Iσθ u)(t, x) =

t∫
0

x∫
0

u(τ , s)dsdτ ; for almost all(t, x) ∈ [0, a]×[0, b],

where s = (1, 1). For instance, Irθu exists for all r1, r2 Î (0, ∞), when u Î L1([0, a] ×

[0, b]).

Note also that when u Î C([0, a] × [0, b]), then (Irθu) ∈ C([0, a] × [0, b]), moreover

(Irθu)(t, 0) = (Irθu)(0, x) = 0; t ∈ [0, a], x ∈ [0, b].

Example 2.3 Let l, ω Î (−1, ∞) and r = (r1, r2) Î (0, ∞) × (0, ∞), then

Irθ t
λxω =

�(1 + λ)�(1 + ω)
�(1 + λ + r1)�(1 + ω + r2)

tλ+r1xω+r2 , for almost all (t, x) ∈ [0, a] × [0, b].

By 1 − r we mean (1 − r1, 1 − r2) Î (0, 1] × (0, 1]. Denote by D2
tx :=

∂2

∂ t∂x
, the mixed

second order partial derivative.

Definition 2.4 [9]Let r Î (0, 1] × (0, 1] and u Î L1([0, a] × [0, b]). The Caputo frac-

tional-order derivative of order r of u is defined by the expression
cDr

θu(t, x) = (I1−r
θ D2

txu)(t, x).

The case s = (1, 1) is included and we have

(cDσ
θ u)(t, x) = (D2

txu)(t, x), for almost all (t, x) ∈ [0, a] × [0, b].

Example 2.5 Let l, ω Î (−1, ∞) and r = (r1, r2) Î (0, 1] × (0, 1], then

cDr
θ t

λxω =
�(1 + λ)�(1 + ω)

�(1 + λ − r1)�(1 + ω − r2)
tλ−r1xω−r2 , for almost all (t, x) ∈ [0, a]×[0, b].

Let ∅ ≠ Ω ⊂ BC, and let G : Ω ® Ω, and consider the solutions of equation

(Gu)(t, x) = u(t, x). (4)

Inspired by the definition of the attractivity of solutions of integral equations (see for

instance [10]), we introduce the following concept of attractivity of solutions for Equa-

tion (4).

Definition 2.6 Solutions of Equation (4) are locally attractive if there exists a ball B

(u0, h) in the space BC such that, for arbitrary solutions v = v(t, x) and w = w(t, x) of

Equation (4) belonging to B(u0, h) ∩ Ω, we have that, for each × Î [0, b],

lim
t→∞(v(t, x) − w(t, x)) = 0. (5)

When the limit (5) is uniform with respect to B(u0, h) ∩ Ω, solutions of Equation (4)

are said to be uniformly locally attractive (or equivalently that solutions of (4) are

asymptotically stable).

Lemma 2.7 [16]Let D ⊂ BC. Then D is relatively compact in BC if the following con-

ditions hold:

(a) D is uniformly bounded in BC,
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(b) The functions belonging to D are almost equicontinuous on ℝ+ × [0, b], i.e., equi-

continuous on every compact of ℝ+ × [0, b],

(c) The functions from D are equiconvergent, that is, given ε > 0, x Î [0, b] there cor-

responds T (ε, x) > 0 such that |u(t, x)-limt®∞u(t, x)| <ε for any t ≥ T (ε, x) and u Î D.

3. Main results
Let us start by defining what we mean by a solution of the problem (1)-(3).

Definition 3.1 A function u Î BC is said to be a solution of (1)-(3) if u satisfies

Equation

(1) on J, Equation (2) on J̃and condition (3) is satisfied.

Lemma 3.2 [6]Let f Î L1([0, a] × [0, b]); a, b > 0. A function u Î AC([0, a] × [0, b])

is a solution of problem⎧⎨
⎩
(cDr

θu)(t, x) = f (t, x); (t, x) ∈ [0, a] × [0, b],
u(t, 0) = ϕ(t); t ∈ [0, a], u(0, x) = ψ(x); x ∈ [0, b],
ϕ(0) = ψ(0),

if and only if u(t, x) satisfies

u(t, x) = μ(t, x) + (Irθ f )(t, x); (t, x) ∈ [0, a] × [0, b],

where

μ(t, x) = ϕ(t) + ψ(x) − ϕ(0).

Now, we shall prove the following theorem concerning the existence and the attrac-

tivity of a solution of problem (1)-(3).

Theorem 3.3 Assume that the function f satisfying the following hypothesis

(H) There exists continuous functions pi : ℝ+ × [0, b] ® ℝ+ such that(
1 +

m∑
i=0

|ui|
) ∣∣f (t, x, u0, u1, u2, . . . , um)

∣∣ ≤
m∑
i=0

|ui|pi(t, x);

for (t, x) Î ℝ+ × [0, b] and for ui Î ℝ; i = 0,..., m. Moreover, assume that

lim
t→∞ Irθpi(t, x) = 0; x ∈ [0, b]; i = 0, . . . , m.

Then the problem (1)-(3) has at least one solution in the space BC. Moreover, solu-

tions of problem (1)-(3) are uniformly locally attractive.

Proof. Set

�∗ := sup
(t,x)∈J̃

�(t, x),ϕ∗ := sup
t∈R+

ϕ(t) and p∗
i := sup

(t,x)∈R+×[0,b]
Irθpi(t, x); i = 0, . . . ,m.

From (H), we infer that p∗
i ; i = 0, . . . ,m are finite. Let us define the operator N such

that, for any u Î BC,

(Nu)(t, x) =

⎧⎨
⎩

�(t, x); (t, x) ∈ J̃,
ϕ(t)
+Irθ f (t, x, I

r2
0,xu(t, x), u(t − τ1, x − ξ1), . . . , u(t − τm, x − ξm)); (t, x) ∈ J.

(6)

Abbas et al. Advances in Difference Equations 2012, 2012:62
http://www.advancesindifferenceequations.com/content/2012/1/62

Page 4 of 10



The operator N maps BC into BC; Indeed the map N(u) is continuous on [−T, ∞) ×

[−ξ, b] for any u Î BC, and for each (t, x) Î J we have

|(Nu)(t, x)| ≤ |ϕ(t)|
+ |Irθ f (t, x, Ir20,xu(t, x), u(t − τ1, x − ξ1), . . . , u(t − τm, x − ξm))|

≤ |ϕ(t)| + 1
�(r1)�(r2)

t∫
0

x∫
0

(t − τ )r1−1(x − s)r2−1

×
(

|Ir20,su(τ , s)|p0(τ , s) +
m∑
i=1

|u(τ − τi, s − ξi)|pi(τ , s)
)

×
(
1 + |Ir20,su(τ , s)| +

m∑
i=1

|u(τ − τi, s − ξi)|
)−1

dsdτ .

≤ ϕ∗ +
m∑
i=0

p∗
i ,

and for (t, x) ∈ J̃ we have

|(Nu)(t, x)| = |�(t, x)| ≤ �∗.

Thus,

||N(u)||BC ≤ max

{
�∗,ϕ∗ +

m∑
i=0

p∗
i

}
:= η. (7)

Hence, N(u) Î BC. This proves that the operator N maps BC into itself.

By Lemma 3.2, the problem of finding the solutions of the problem (1)-(3) is reduced

to finding the solutions of the operator equation N(u)= u. Equation (7) yields that N

transforms the ball Bh := B(0, h) into itself. We shall show that N : Bh ® Bh satisfies

the assumptions of Schauder’s fixed point theorem [17]. The proof will be given in sev-

eral steps and cases.

Step 1: N is continuous.

Let {un}nÎN be a sequence such that un ® u in Bh. Then, for each (t, x) Î [−T, ∞)

×[−ξ, b], we have

|(Nun)(t, x) - (Nu)(t, x)|

≤ 1
�(r1)�(r2)

∫ t

0

∫ x

0
(t − τ )r1−1(x − s)r2−1

× |f (τ , s, Ir20,sun(τ , s), un(τ − τ1, s − ξ1), . . . , un(τ − τm, s − ξm))

− f (τ , s, Ir20,su(τ , s), u(τ − τ1, s − ξ1), . . . , u(τ − τm, s − ξm)))|dsdτ .

(8)

Case 1. If (t, x) ∈ J̃ ∪ ([0, T0] × [0, b]),T0 > 0, then, since un ® u as n ®∞ and f,

Ir20,ξ, are continuous, (8) gives

||N(un) − N(u)||BC → 0 as n → ∞.

Abbas et al. Advances in Difference Equations 2012, 2012:62
http://www.advancesindifferenceequations.com/content/2012/1/62

Page 5 of 10



Case 2. If (t, x) Î (T0, ∞) × [0, b], T0 > 0, then from (H) and (8), we get

|(Nun)(t, x) - (Nu)(t, x)|

≤ 2
�(r1)�(r2)

∫ t

0

∫ x

0
(t − τ )r1−1(x − s)r2−1

×
(∣∣Ir20,su(τ , s)∣∣ p0(τ , s) +

m∑
i=1

|u(τ − τi, s − ξi)|pi(τ , s)
)

×
(
1 + |Ir20,su(τ , s)| +

m∑
i=1

|u(τ − τi, s − ξi)|
)−1

dsdτ

≤
m∑
i=1

2
�(r1)�(r2)

t∫
0

x∫
0

(t − τ )r1−1(x − s)r2−1pi(τ , s)dsdτ

≤ 2
m∑
i=1

Iτθ pi(t, x).

(9)

Since un ® u as n ®∞ and t ®∞, then (9) gives

||N(un) − N(u)||BC → 0 as n → ∞.

Step 2: N(Bh) is uniformly bounded.

This is clear since N(Bh) ⊂ Bh and Bh is bounded.

Step 3: N(Bh) is equicontinuous on every compact subset [−T, a] × [−ξ, b] of [−T, a]

× [−ξ, ∞), a > 0.

Let (t1, x1), (t2, x2) Î [0, a] × [0, b], t1 <t2, x1 <x2 and let u Î Bh. Thus we have

|(Nu)(t2, x2) − (Nu)(t1, x1)| ≤ |ϕ(t2) − ϕ(t1)|

+
1

�(r1)�(r2)

t1∫
0

x1∫
0

[(t2 − τ )r1−1(x2 − s)r2−1 − (t1 − τ )r1−1(x1 − s)r2−1]

× |f (τ , s, Ir20,su(τ , s), u(τ − τ1, s − ξ1), . . . , u(τ − τm, s − ξm))|dsdτ

+
1

�(r1)�(r2)

t2∫
t1

x2∫
x1

(t2 − τ )r1−1(x2 − s)r2−1

× |f (τ , s, Ir20,su(τ , s), u(τ − τ1, s − ξ1), . . . , u(τ − τm, s − ξm))|dsdτ

+
1

�(r1)�(r2)

t1∫
0

x2∫
x1

(t2 − τ )r1−1(x2 − s)r2−1

× |f (τ , s, Ir20,su(τ , s), u(τ − τ1, s − ξ1), . . . , u(τ − τm, s − ξm))|dsdτ

+
1

�(r1)�(r2)

t2∫
t1

x1∫
0

(t2 − τ )r1−1(x2 − s)r2−1

× |f (τ , s, Ir20,su(τ , s), u(τ − τ1, s − ξ1), . . . , u(τ − τm, s − ξm))|dsdτ .
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Thus

|(Nu)(t2, x2) − (Nu)(t1, x1)| ≤ |ϕ(t2) − ϕ(t1)|

+
1

�(r1)�(r2)

t1∫
0

x1∫
0

[
(t2 − τ )r1−1(x2 − s)r2−1 − (t1 − τ )r1−1(x1 − s)r2−1

]

×
m∑
i=0

pi(τ , s)dsdτ +
1

�(r1)�(r2)

t2∫
t1

x2∫
1

(t2 − τ )r1−1(x2 − s)r2−1
m∑
i=0

pi(τ , s)dsdτ

+
1

�(r1)�(r2)

t1∫
t1

x2∫
x1

(t2 − τ )r1−1(x2 − s)r2−1
m∑
i=0

pi(τ , s)dsdτ

+
1

�(r1)�(r2)

t2∫
t1

x1∫
0

(t2 − τ )r1−1(x2 − s)r2−1
m∑
i=0

pi(τ , s)dsdτ .

From continuity of �, pi; i = 0,...,m and as t1 ® t2 and x1 ® x2, the right-hand side

of the above inequality tends to zero. The equicontinuity for the cases t1 <t2 < 0, x1
<x2 < 0 and t1 ≤ 0 ≤ t2, x1 ≤ 0 ≤ x2 is obvious.

Step 4: N(Bh) is equiconvergent.

Let (t, x) Î ℝ+ × [0, b] and u Î Bh, then we have

|(Nu)(t, x)| ≤ |ϕ(t)| +
∣∣∣∣ 1
�(r1)�(r2)

t∫
0

x∫
0

(t − τ )r1−1(x − s)r2−1

×f (τ , s, Ir20,su(τ , s), u(τ − τ1, s − ξ1), . . . , u(τ − τm, s − ξm))dsdτ
∣∣

≤ |ϕ(t)| + 1
�(r1)�(r2)

t∫
0

x∫
0

(t − τ )r1−1(x − s)r2−1
m∑
i=0

pi(τ , s)dsdτ

≤ |ϕ(t)| +
m∑
i=0

Irθpi(t, x).

Thus, for each x Î [0, b], we get

|(Nu)(t, x)| → 0, as t → +∞.

Hence,

|(Nu)(t, x) − (Nu)(+∞, x)| → 0, as t → +∞.

As a consequence of Steps 1-4 together with the Lemma 2.7, we can conclude that N

: Bh ® Bh is continuous and compact. From an application of Schauder’s theorem [17],

we deduce that N has a fixed point u which is a solution of the problem (1)-(3).

Now we investigate the uniform local attractivity for solutions of problem (1)-(3). Let

us assume that u0 is a solution of problem (1)-(3) with the conditions of this theorem.

Consider the ball B(u0, h*), where

η∗ : =
1

�(r1)�(r2)
sup
(t,x)∈J

⎧⎨
⎩

t∫
0

x∫
0

(t − τ )r1−1(x − s)r2−1

× |f (τ , s, Ir20,su(τ , s), u(τ − τ1, s − ξ1), . . . , u(τ − τm, s − ξm))

−f (τ , s, Ir20,su0(τ , s), u0(τ − τ1, s − ξ1), . . . , u0(τ − τm, s − ξm))|dsdτ ; u ∈ BC
}
.
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Taking u Î B(u0, h*), we have

|(Nu)(t, x) - u0(t, x)| = |(Nu)(t, x) - (Nu0)(t, x)|

≤ 1
�(r1)�(r2)

t∫
0

x∫
0

(t − τ )r1−1(x − s)r2−1

× |f (τ , s, Ir20,su(τ , s), u(τ − τ1, s − ξ1), . . . , u(τ − τm, s − ξm))

− f (τ , s, Ir20,su0(τ , s), u0(τ − τ1, s − ξ1), . . . , u0(τ − τm, s − ξm))|dsdτ
≤ η∗.

Thus we observe that N is a continuous function such that N(B(u0, h*)) ⊂ B(u0, h*).
Moreover, if u is a solution of problem (1)-(3), then

|u(t, x) − u0(t, x)| = |(Nu)(t, x) − (Nu0)(t, x)|

≤ 1
�(r1)�(r2)

∫ t

0

∫ x

0
(t − τ )r1−1(x − s)r2−1

× |f (τ , s, Ir20,su(τ , s), u(τ − τ1, s − ξ1), . . . , u(τ − τm, s − ξm))

− f (τ , s, Ir20,su0(τ , s), u0(τ − τ1, s − ξ1), . . . , u0(τ − τm, s − ξm))|dsdτ

≤ 2
�(r1)�(r2)

∫ t

0

∫ x

0
(t − τ )r1−1(x − s)r2−1

m∑
i=0

pi(τ , s)dsdτ

≤ 2
m∑
i=0

Iτθpi(t, x).

(10)

By using (10) and the fact that Irθpi(t, x) → 0as t ® ∞; i = 0,..., m we deduce that

lim
t→∞

∣∣u(t, x) − u0(t, x)
∣∣ = 0.

Consequently, all solutions of problem (1)-(3) are uniformly locally attractive.

4. An example
As an application and to illustrate our results, we consider the following system of

delay integro-differential equations of fractional order

cDr
θu(t, x) = f

(
t, x, Ir20,xu(t, x), u

(
t − 1, x − 1

4

)
, u

(
t − 2

3
, x − 1

5

))
;

for (t, x) ∈ J := [0, ∞) × [0, 1], (11)

u(t, x) = e−t ; for (t, x) ∈ J̃ := [−1, ∞) ×
[
−1
4
, 1

]
\(0, ∞) × (0, 1], (12)

{
u(t, 0) = e−t; t ∈ [0, ∞),
u(0, x) = 1; x ∈ [0, 1],

(13)

where r = (r1, r2) =
(1
4 ,

1
2

)
and

⎧⎪⎪⎨
⎪⎪⎩ f (t, x, u, v, w) =

xt
−3
4

(
|v| sin t + |w|e−

1
t

)
2 + |u| + |v| + |w| ; (t, x) ∈ (0, ∞) × [0, 1] and u, v, w ∈ R,

f (t, x, u, v, w) = 0; (t, x) ∈ {0} × [0, 1] and u, v, w ∈ R.

We have for each x Î [0, ∞), μ(t) = e-t ® 0 as t ® ∞.

Let us notice that the function f satisfies assumption (H), where

p0(t, x) = 0; (t, x) ∈ R+ × [0, 1],
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{
p1(t, x) = xt−

3
4 | sin t|; (t, x) ∈ (0, ∞) × [0, 1],

p1(0, x) = 0; x ∈ [0, 1],

and {
p2(t, x) = xt−

3
4 e−

1
t ; (t, x) ∈ (0, ∞) × [0, 1],

p2(0, x) = 0; x ∈ [0, 1].

Also, for each x Î 0[1], we get

Irθp0(t, x) = 0,

Irθp1(t, x) =
1

�(r1)�(r2)

t∫
0

x∫
0

(t − τ )r1−1(x − s)r2−1p1(τ , s)dsdτ

=
1

�( 14)�(
1
2)

t∫
0

x∫
0

(t − τ )−
3
4 (x − s)−

1
2 sτ−3

4 | sin τ |dsdτ

≤ 1

�( 14)�(
1
2)

t∫
0

x∫
0

(t − τ )−
3
4 (x − s)−

1
2 sτ−3

4 dsdτ

=
�( 14 )�(2)

�( 54)�(
5
2)

t−
1
2 x

3
2 → 0 as t → ∞,

and

Irθp2(t, x) =
1

�(r1)�(r2)

t∫
0

x∫
0

(t − τ )r1−1(x − s)r2−1p2(τ , s)dsdτ

=
1

�( 14 )�(
1
2)

t∫
0

x∫
0

(t − τ )
−3
4 (x − s)

−1
2 sτ

−3
4 e−

1
τ dsdτ

≤ 1

�( 14 )�(
1
2)

t∫
0

x∫
0

(t − τ )
−3
4 (x − s)

−1
2 sτ

−3
4 dsdτ

=
�( 14)�(2)

�( 54 )�(
5
2)

t
−1
2 x

3
2 → 0 as t → ∞.

Thus

lim
t→∞ Irθpi(t, x) = 0; x ∈ [0, 1]; i = 0, 1, 2.

Hence by Theorem 3.3, the problem (11)-(13) has a solution defined on

[−1, ∞) × [− 1
4 , 1] and all solutions are uniformly locally attractive on

[−1, ∞) × [− 1
4 , 1]
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