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Abstract

In this article we employ Krasnoselskii’s fixed point theorem to obtain new
biperiodicity criteria for neutral-type difference neural networks with delays. It is
shown that the neutral-type term can leads to biperiodicity results. That is
coexistence of a positive periodic sequence solution and its anti-sign periodic
sequence solution. We illustrate our novel approach the biperiodicity dynamics of
biperiodicity for neutral-type delay difference neural networks by two computer
numerical examples.
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1 Introduction
It is well known that neural networks with delays have a rich dynamical behavior that

have been recently investigated by Huand and Li [1] and the references therein. It is

naturally important that such systems should contain some information regarding the

past rate of change since they effectively describe and model the dynamic of the appli-

cation of neural networks [2-4]. As a consequence, scholars and researchers have paid

more attention to the stability of neural networks that are described by nonlinear delay

differential equations of the neutral type (see [4-8])

u̇i(t) = −ai(t)ui(t) +
m∑
j=1

bij(t)gj(uj(t)) +
m∑
j=1

ciju̇j(t − τ )

+
m∑
j=1

dij(t)gj

⎡⎣ t∫
−∞

hj(t − s)uj(s)ds

⎤⎦ + Ii(t), i ∈ N := {1, 2, · · · ,m}
(1:1)

Cheng et al. first investigated the globally asymptotic stability of a class of neutral-

type neural networks with delays [6]. Delay-dependent criterion has been attained in

[5] by using Lyapunov stability theory and linear matrix inequality. Recently a conser-

vative robust stability criteria for neutral-type networks with delays are proposed in [4]

by using a new Lyapunov-Krasovskii functional and a novel series compensation tech-

nique. For more relative results, we can refer to [4,7] and references cited therein.

Difference equations or discrete-time analogs of differential equations can preserve

the convergence dynamics of their continuous-time counterparts in some degree [9].

So, due to its usage in computer simulations and applications, these discrete-type or
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difference networks have been deeply discussed by the authors of [10-15] and extended

to periodic or almost periodic difference neural systems [16-21].

However, few papers deal with multiperiodicity of neutral-type difference neural net-

works with delays. Stimulated by the articles [22,23], in this article, we should consider

corresponding neutral-type difference version of (1.1) as follows:

ui(n + 1) = ai(n)ui(n) +
m∑
j=1

cij�uj(n − τ ) +
m∑
j=1

bij(n)gj(uj(n))

+
m∑
j=1

dij(n)gj

[ ∞∑
v=1

hj(v)uj(n − v)

]
+ Ii(n),

(1:2)

where i ∈ N := {1, 2, . . . ,m} . Our main aim is to study biperiodicity of the above

neutral-type difference neural networks. Some new criteria for coexistence of a peri-

odic sequence solution and anti-sign periodic one of (1.2) have been derived by using

Krasnoselskii’s fixed point theorem. Our results are completely different from mono-

periodicity existing ones in [16-20].

The rest of this article is organized as follows. In Section 2, we shall make some pre-

parations by giving some lemmas and Krasnoselskii’s fixed point theorem. In Section 3,

we gives new criteria for biperiodicity of (1.2). Finally, two numerical examples are

given to illustrate our results.

2 Preliminaries
We begin this section by introducing some notations and some lemmas. Let ST be the

set of all real T-periodic sequences defined on ℤ, where T is an integer with T ≥ 1.

Then ST is a Banach space when it is endowed with the norm∥∥u∥∥ = max
i∈N

{
sup

s∈[0,T]Z

∣∣ui(s)∣∣}.
Denote [a,b]ℤ: = {a, a + 1,...,b}, where a, b Î ℤ and a ≤ b. Let C((-∞, 0]ℤ, ℝ

m) be the

set of all continuous and bounded functions ψ(s) = (ψ1(s), ψ 2(s), ..., ψm(s))
T mapping

(-∞,0]ℤ into ℝm. For any given ψ Î C((-∞, 0]ℤ, ℝ
N), we denote by {u(n; ψ)} the

sequence solution of system (1.2). Next, we present the basic assumptions:

• Assumption (H1): Each ai(·), bij(·), dij(·), and Ii(·) are T-periodic functions defined

on ℤ, 0 <ai(n) < 1. The activation gj(·) is strictly increasing and bounded with

−g�

j = limv→−∞gj(v) < gj(v) < limv→+∞gj(v) = g�

j for all v Î ℝ. The kernel hj : N

® ℝ+ is a bounded sequence with
∑∞

v=1 hj(v) = 1, where i, j ∈ N .

For each i ∈ N and any n Î ℤ, we let

Gi(n, p) =
n+T−1∏
s=p+1

ai(s)

[
1 −

n+T−1∏
s=n

ai(s)

]−1

, p ∈ [n,n + T − 1] (2:1)

Since 0 <ai(n) < 1 for all n Î [0,T - 1], each Gi(n, p) is not zero and

mi := min{Gi(n, p) : n ≥ 0, p ≤ T} = Gi(n,n) = Gi(0, 0) > 0,

Mi := max{Gi(n, p) : n ≥ 0, p ≤ T} = Gi(n,n + T − 1) = Gi(0,T − 1) > 0.
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Lemma 2.1. For each i Î N and ∀p Î ℤ+,

P

[p−1∏
s=0

a−1
i (s)

]
� ui(p − τ ) + ui(p − τ ) �

[p−1∏
s=0

a−1
i (s)

]
=�
[p−1∏

s=0

a−1
i (s)ui(p − τ )

]

holds for any sequence solution {u(n)} of (1.2), where, S is a shift operator defined as

i ∈ N for i ∈ N and p Î ℤ+.

Proof.

S

[p−1∏
s=0

a−1
i (s)

]
� ui(p − τ ) + ui(p − τ ) �

[p−1∏
s=0

a−1
i (s)

]

=
p∏
s=0

a−1
i (s)

[
ui(p + 1 − τ ) − ui(p − τ )

]
+ ui(p − τ )

[ p∏
s=0

a−1
i (s) −

p−1∏
s=0

a−1
i (s)

]

=
p∏
s=0

a−1
i (s)ui(p + 1 − τ ) −

p−1∏
s=0

a−1
i (s)ui(p − τ )

=�
[p−1∏

s=0

a−1
i (s)ui(p − τ )

]
.

The proof is complete.

Lemma 2.2. Assume that (H1) hold. Any sequence
{u(n)} ∈ Sm

T := ST × ST × · · · × ST︸ ︷︷ ︸
m

is

a solution of (1.2) if and only if

ui(n) =
m∑
j=1

cijuj(n − τ ) +
n+T−1∑
p=n

Gi(n, p)

⎡⎣ m∑
j=1

bij(p)gj(uj(p))

+
m∑
j=1

dij(p)gj

( ∞∑
v=1

hj(v)uj(p − v)

)
+ Ii(p) −

m∑
j=1

cijuj(p − τ )(1 − ai(p))

⎤⎦ ,

(2:2)

where Gi(n, p) is defined by (2.1) for i ∈ N and p Î ℤ+.

Proof. Rewrite (1.2) as

�
[
ui(n)

n−1∏
s=0

a−1
i (s)

]
=

⎡⎣ m∑
j=1

cij � uj(n − τ ) +
m∑
j=1

bij(n)gj(uj(n))

+
m∑
j=1

dij(n)gj

( ∞∑
v=1

hj(v)uj(n − v)

)
+ Ii(n)

⎤⎦ n∏
s=0

a−1
i (s),

(2:3)

where i ∈ N and n Î ℤ+. Summing (2.3) from n to n + T - 1, we obtain

n+T−1∑
p=n

�
[
ui(p)

p−1∏
s=0

a−1
i (s)

]
=

n+T−1∑
p=n

⎡⎣ m∑
j=1

cij � uj(p − τ ) +
m∑
j=1

bij(p)gj(uj(p))

+
m∑
j=1

dij(p)gj

( ∞∑
v=1

hj(v)uj(p − v)

)
+ Ii(p)

⎤⎦ p∏
s=0

a−1
i (s).
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That is,

ui(n + T)
n+T−1∏
s=0

a−1
i (s) − ui(n)

n−1∏
s=0

a−1
i (s)

=
n+T−1∑
p=n

⎡⎣ m∑
j=1

cij � uj(p − τ ) +
m∑
j=1

bij(p)gj(uj(p))

+
m∑
j=1

dij(p)gj

( ∞∑
v=1

hj(v)uj(p − v)

)
+ Ii(p)

⎤⎦ p∏
s=0

a−1
i (s).

Since ui(n + T) = ui(n), we obtain

ui(n)

[
n+T−1∏
s=0

a−1
i (s) −

n−1∏
s=0

a−1
i (s)

]

=
n+T−1∑
p=n

⎡⎣ m∑
j=1

cij � uj(p − τ ) +
m∑
j=1

bij(p)gj(uj(p))

+
m∑
j=1

dij(p)gj

( ∞∑
v=1

hj(v)uj(p − v)

)
+ Ii(p)

⎤⎦ p∏
s=0

a−1
i (s).

(2:4)

It follows from Lemma 2.1 that

n+T−1∑
p=n

m∑
j=1

cij � uj(p − τ )
p∏
s=0

a−1
i (s) =

n+T−1∑
p=n

m∑
j=1

cij � uj(p − τ )S

[p−1∏
s=0

a−1
i (s)

]

=
n+T−1∑
p=n

m∑
j=1

cij

{
�
[
uj(p − τ )

p−1∏
s=0

a−1
i (s)

]
− uj(p − τ ) �

[p−1∏
s=0

a−1
i (s)

]}

=
m∑
j=1

cij

⎧⎨⎩
n+T−1∑
p=n

�
[
uj(p − τ )

p−1∏
s=0

a−1
i (s)

]⎫⎬⎭−
n+T−1∑
p=n

m∑
j=1

cijuj(p − τ ) �
[p−1∏

s=0

a−1
i (s)

]

=
m∑
j=1

cijuj(n − τ )

[
n+T−1∏
s=0

a−1
i (s) −

n−1∏
s=0

a−1
i (s)

]
−

n+T−1∑
p=n

m∑
j=1

cijuj(p − τ ) �
[
u−1∏
s=0

a−1
i (s)

]
.

Therefore, one gets from (2.4) that

ui(n)

[
n+T−1∏
s=0

a−1
i (s) −

n−1∏
s=0

a−1
i (s)

]
=

m∑
j=1

cijuj(n − τ )

[
n+T−1∏
s=0

a−1
i (s) −

n−1∏
s=0

a−1
i (s)

]

−
n+T−1∑
p=n

m∑
j=1

cijuj(p − τ )(1 − ai(p))
p∏
s=0

a−1
i (s) +

n+T−1∑
p=n

⎡⎣ m∑
j=1

bij (p)gj(uj(p))

+
m∑
j=1

dij(p)gj

( ∞∑
v=1

hj(v)uj(p − v)

)
+ Ii(p)

⎤⎦ p∏
s=0

a−1
i (s).

Dividing both sides of the above equation by
n+T−1∏
s=0

a−1
i (s) −

n−1∏
s=0

a−1
i (s) completes the

proof.

In what follows, we state Krasnoselskii’s theorem.

Lemma 2.3. Let M be a closed convex nonempty subset of a Banach space (B, ‖·‖).
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Suppose that C and B map M into B such that

(i) x, y ∈ M implies that Cx + By ∈ M ,

(ii) C is continuous and CM is contained in a compact set and

(iii) B is a contraction mapping.

Then there exists a z ∈ M with z = Cz + Bz.

3 Biperiodicity of neutral-type difference networks

Due to the introduction of the neutral term neutral
m∑
j=1

cij , we must construct two

closed convex subsets BL and BR in Sm
T , which necessitate the use of Krasnoselskii’s

fixed point theorem. As a consequence, we are able to derive the new biperiodicity cri-

teria for (1.2). That is there exists a positive T-periodic sequence solution in BR and

an anti-sign T-periodic sequence solution in BL. Next, for the case cij ≥ 0, we present

the following assumption:

• Assumption (H2): For each i, j ∈ N , cij ≥ 0, bii(n) > 0 and 0 < ĉi :=
∑m

j=1 cij < 1 ,

gj(·) satisfies gj(-v) = -gj(v) for all v Î ℝ. Moreover, there exist constants a > 0 and

b > 0 with a <b such that for all i ∈ N[
−1 − ĉi

miT
α + bii(n)gi(α)

]
− (1 − ai(n))ĉiβ > Pi,

−
[
−1 − ĉi

MiT
β + bii(n)gi(β)

]
+ (1 − ai(n))ĉiα > pi,

⎫⎪⎪⎬⎪⎪⎭ ∀n ∈ Z

where

Pi := sup
n∈Z

⎧⎨⎩∑
j	=i

∣∣bij(n)∣∣ g�

j +
m∑
j=1

∣∣dij(n)∣∣g�

j +
∣∣Ii(n)∣∣

⎫⎬⎭ , i ∈ N

Construct two subsets of ST as follows:

Bl := {w ∈ ST | − β ≤ w(n) ≤ −α}, Br := {w ∈ ST |α ≤ w(n) ≤ β}.

Obviously,B
L := Bl × Bl · · · × Bl︸ ︷︷ ︸

m
and BR := Br × Br · · · × Br︸ ︷︷ ︸

m
are two closed con-

vex subsets of Banach space Sm
T . Define the map BΣ : BΣ → Sm

T by

(BΣu)i(n) =
m∑
j=1

cijuj(n − τ ), i ∈ N

and the map CΣ : BΣ → Sm
T by

(CΣu)i(n) =
n+T−1∑
p=n

Gi(n, p)

⎡⎣ m∑
j=1

bij (p)gj(uj(p))

−
m∑
j=1

cijuj(p − τ )(1 − ai(p))

+
m∑
j=1

dij(p)gj

( ∞∑
v=1

hj(v)uj(p − v)

)
+ Ii(p)

⎤⎦ , i ∈ N

(3:1)
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where Σ = R or L. Due to the fact 0 < ĉi < 1,BΣ defines a contraction mapping.

Proposition 3.1. Under the basic assumptions (H1) and (H2), for each Σ, the operator

CΣ is completely continuous on B
∑
.

Proof. For any given Σ and u B
∑
, we have two cases for the estimation of (CΣu)i(n).

• Case 1: As Σ = R and u Î BR, ui(n) Î [a, b] holds for each i ∈ N and all n Î ℤ.

It follows from (3.1) and (H2) that

(CRu)i(n) ≤
n+T−1∑
p=n

Gi(n, p)

⎡⎣bii(p)gi(β) +∑
j	=i

∣∣bij(p)∣∣ g�

j −
m∑
j=1

cijα(1 − ai(p))

+
m∑
j=1

∣∣dij(p)∣∣ g�

j +
∣∣Ii(p)∣∣

⎤⎦
≤

n+T−1∑
p=n

Gi(n, p)
[−ĉi(1 − ai(p))α + bii(p)gi(β) + Pi

]
≤ TMi

1 − ĉi
MiT

β = (1 − ĉi)β

and

(CRu)i(n) ≥
n+T−1∑
p=n

Gi(n, p)

⎡⎣bii(p)gi(α) +∑
j	=i

∣∣bij(p)∣∣ g�

j −
m∑
j=1

cijβ(1 − ai(p))

−
m∑
j=1

∣∣dij(p)∣∣ g�

j +
∣∣Ii(p)∣∣

⎤⎦
≥

n+T−1∑
p=n

Gi(n, p)
[−ĉi(1 − ai(p))β + bii(p)gi(α) − Pi

]
≥ Tmi

1 − ĉi
miT

α = (1 − ĉi)α.

• Case 2: As Σ = L and u Î BL, ui(n) Î [-b, -a] holds for each i ∈ N and all n Î ℤ.

It follows from (3.1) and (H2) that

(CLu)i(n) ≥
n+T−1∑
p=n

Gi(n, p)

⎡⎣bii(p)gi(−β) −
∑
j	=i

∣∣bij(p)∣∣ g�

j −
m∑
j=1

cij(−α)(1 − ai(p))

−
m∑
j=1

∣∣dij(p)∣∣ g�

j − ∣∣Ii(p)∣∣
⎤⎦

≥
n+T−1∑
p=n

Gi(n, p)
[
ĉi(1 − ai(p))α − bii(p)gi(β) − Pi

]
≥ TMi

1 − ĉi
MiT

(−β) = −(1 − ĉi)β
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and

(CLu)i(n) ≥
n+T−1∑
p=n

Gi(n, p)

⎡⎣bii(p)gi(−α) +
∑
j	=i

∣∣bij(p)∣∣ g�

j −
m∑
j=1

cij(−β)(1 − ai(p))

+
m∑
j=1

∣∣dij(p)∣∣ g�

j − ∣∣Ii(p)∣∣
⎤⎦

≤
n+T−1∑
p=n

Gi(n, p)
[
ĉi(1 − ai(p))β − bii(p)gi(α) + Pi

]
≤ Tmi

1 − ĉi
miT

(−α) = −(1 − ĉi)α.

It follows from above two cases about the estimation of (CΣu)i(n) that∥∥CΣu
∥∥ ≤ (1 − min{ĉi})β ≤ β . This shows that CΣ (B

∑
) is uniformly bounded.

Together with the continuity of CΣ, for any bounded sequence {ψn} in B
∑
, we know

that there exists a subsequence {ψnk} in B
∑

such that {CΣ(ψnk)} is convergent in

CΣ(B
∑
). Therefore, CΣ is compact on B

∑
. This completes the proof.

Theorem 3.1. Under the basic assumptions (H1) and (H2), for each Σ, (1.2) has a T-

periodic solution uΣ satisfying uΣ Î B
∑
.

Proof. Let u, û ∈ BΣ. We should show that BΣu + CΣ û ∈ BΣ. For simplicity we only

consider the case Σ = R. It follows from (2.2) and (H2) that

(BRu)i(n) + (CRû)i(n) =
m∑
j=1

cijuj(n − τ )

+
n+T−1∑
p=n

Gi(n, p)

⎡⎣ m∑
j=1

bij (p)gj(ûj(p)) −
m∑
j=1

cijûj(p − τ )(1 − ai(p))

+
m∑
j=1

dij(p)gj

( ∞∑
v=1

hj(v)ûj(p − v)

)
+ Ii(p)

⎤⎦
≤

m∑
j=1

cijβ +
n+T−1∑
p=n

Gi(n, p)

⎡⎣bii(p)gi(β) +∑
j	=1

∣∣bij(p)∣∣ g�

j

−
m∑
j=1

cijα(1 − ai(p)) +
m∑
j=1

∣∣dij(p)∣∣g�

j +
∣∣Ii(p)∣∣

⎤⎦
≤ ĉiβ + TMi

1 − ĉi
MiT

β = β .

On the other hand,

(BRu)i(n) + (CRû)i(n) =
m∑
j=1

cijuj(n − τ )

+
n+T−1∑
p=n

Gi(n, p)

⎡⎣ m∑
j=1

bij (p)gj(ûj(p)) −
m∑
j=1

cijûj(p − τ )(1 − ai(p))

+
m∑
j=1

dij(p)gj

( ∞∑
v=1

hj(v)ûj(p − v)

)
+ Ii(p)

⎤⎦
≥

m∑
j=1

cijα +
n+T−1∑
p=n

Gi(n, p)

⎡⎣bii(p)gi(α) +∑
j	=1

∣∣bij(p)∣∣ g�

j

−
m∑
j=1

cijβ(1 − ai(p)) −
m∑
j=1

∣∣dij(p)∣∣g�

j +
∣∣Ii(p)∣∣

⎤⎦
≥ ĉiα + Tmi

1 − ĉi
miT

α = α.
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Therefore, all the hypotheses stated in Lemma 2.3 are satisfied. Hence, (1.2) has a T-

periodic solution uR satisfying uR Î BR. Almost the same argument can be done for

the case Σ = L. The proof is complete.

For the case cij < 0, we present the following assumption:

• Assumption (Ĥ2) : For each i, j ∈ N , cij ≤ 0 and −1 < ĉi :=
∑m

j=1 cij < 0 . There

exist constants a > 0 and b > 0 with a <b such that for all n Î ℤ⎧⎪⎪⎨⎪⎪⎩
(1 − ai(n))ĉiβ +

β − ĉiα
MiT

> Qi,

−(1 − ai(n))ĉiα +
ĉiβ − α

miT
> Qi.

where

Qi := sup
n∈Z

⎧⎨⎩
m∑
j=1

(
∣∣bij(n)∣∣ + ∣∣dij(n)∣∣)g�

j +
∣∣Ii(n)∣∣

⎫⎬⎭ .

Similarly as Proposition 3.1, we can obtain

Proposition 3.2. Under the basic assumptions (H1) and (Ĥ2) , for each Σ, the opera-

tor CΣ is completely continuous on B
∑
.

Proof For any given Σ and u Î B
∑
, we have two cases for the estimation of (CΣu)i

(n).

• Case 1: As Σ = R and u Î BR, ui(n) Î [a, b] holds for each i ∈ N and all n Î ℤ.

It follows from (3.1) and (Ĥ2) that

(CRu)i(n) ≤
n+T−1∑
p=n

Gi(n, p)

⎡⎣−
m∑
j=1

cijβ(1 − ai(p)) +Qi

⎤⎦ ≤ TMi
β − ĉiα
MiT

= β − ĉiα

and

(CRu)i(n) ≥
n+T−1∑
p=n

Gi(n, p)

⎡⎣−
m∑
j=1

cijα(1 − ai(p)) +Qi

⎤⎦ ≥ Tmi
α − ĉiβ
miT

= α − ĉiβ .

• Case 2: As Σ = L and u Î BL, ui(n) Î [-b, -a] holds for each i ∈ N and all n Î

ℤ. It follows from (3.1) and (Ĥ2) that

(CLu)i(n) ≥
n+T−1∑
p=n

Gi(n, p)

⎡⎣−
m∑
j=1

cij(−β)(1 − ai(p)) +Qi

⎤⎦ ≥ TMi
ĉiα − β

MiT
= ĉiα − β

and

(CLu)i(n) ≤
n+T−1∑
p=n

Gi(n, p)

⎡⎣−
m∑
j=1

cij(−α)(1 − ai(p)) +Qi

⎤⎦ ≥ Tmi
ĉiβ − α

miT
= ĉiβ − α.
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By a similar argument, we prove that CΣ is continuous and compact on B
∑
. This

completes the proof.

Theorem 3.2. Under the basic assumptions (H1) and (Ĥ2) , for each Σ, (1.2) has a T-

periodic solution uΣ satisfying uΣ Î B
∑
.

Proof. Let u, û ∈ BΣ. We should show that BΣu + CΣ û ∈ BΣ. For simplicity, we

only consider the case Σ = L. It follows from (2.2) and (Ĥ2) that

(BLu)i(n) + (CLû)i(n) =
m∑
j=1

cijuj(n − τ )

+
n+T−1∑
p=n

Gi(n, p)

⎡⎣ m∑
j=1

bij (p)gj(ûj(p)) −
m∑
j=1

cijûj(p − τ )(1 − ai(p))

+
m∑
j=1

dij(p)gj

( ∞∑
v=1

hj(v)ûj(p − v)

)
+ Ii(p)

⎤⎦
≤

m∑
j=1

cij(−β) +
n+T−1∑
p=n

Gi(n, p)

⎡⎣−
m∑
j=1

cij(−α)(1 − ai(p)) +Qi

⎤⎦
≤ −ĉiβ + Tmi

ĉiβ − α

miT
= −α.

On the other hand,

(BLu)i(n) + (CLû)i(n) =
m∑
j=1

cijuj(n − τ )

+
n+T−1∑
p=n

Gi(n, p)

⎡⎣ m∑
j=1

bij (p)gj(ûj(p)) −
m∑
j=1

cijûj(p − τ )(1 − ai(p))

+
m∑
j=1

dij(p)gj

( ∞∑
v=1

hj(v)ûj(p − v)

)
+ Ii(p)

⎤⎦
≥

m∑
j=1

cij(−α) +
n+T−1∑
p=n

Gi(n, p)

⎡⎣−
m∑
j=1

cij(−β)(1 − ai(p)) +Qi

⎤⎦
≥ −ĉiα + TMi

ĉiα − β

MiT
= −β .

Therefore, all the hypotheses stated in Lemma 2.3 are satisfied. Hence, (1.2) has a T-

periodic solution uL satisfying uL Î BL. By a similar argument, one can prove the case

Σ = R. This completes the proof.

4 Numerical examples
Example 1. Consider the following neutral-type difference neural networks with delays

ui(n + 1) = ai(n)ui(n) +
3∑
j=1

cij � uj(n − τ ) +
3∑
j=1

bij(n)gj(uj(n))

+
3∑
j=1

dij(n)gj

[ ∞∑
v=1

hj(v)uj(n − v)

]
+ Ii(n),

(4:1)
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where

a1(n) = a2(n) = a3(n) = a3(n) := exp(−0.1 − 0.01 cos 0.2πn),

I1(n) := 0.02 cos 0.2πn, I2(n) := 0.03 sin 0.2πn,

I3(n) := 0.2 sin 0.2πn, τ = 5, g(z) := g1(z) = g2(z) = tanh(z), m = 3,

C = (cij) =

⎛⎝ 0.2 0.1 0.05
0.1 0.25 0
0.05 0.1 0.2

⎞⎠ , h1(10) = h2(10) = h3(10) = 1,T = 10,

D(n) = (dij(n)) =

⎛⎝ 0 0.05 cos(0.2πn) 0
0.1 sin(0.2πn) 0 0

0 0 0.01 sin(0.2πn)

⎞⎠ ,

B(n) = (bij(n)) =

⎛⎝ 7 + sin(0.2πn) 0.1 sin(0.2πn) 0.01 sin(0.2πn)
0.1 cos(0.2πn) 7 + sin(0.2πn) 0
0.01 sin(0.2πn) 0 7 + sin(0.2πn)

⎞⎠ .

Obviously, the sigmoidal function tanh(z) is strictly increasing on ℝ with |tanh(z)| <

1. It is easy for us to check that (H1) holds. After some computations, we have

ĉ1 = ĉ2 = ĉ3 = 0.35, m1 = m2 = m3 = 0.6496,

M1 = M2 = M3 = 1.2720, P1 = 0.18, P2 = 0.23, P3 = 0.22.

Take a = 3, b = 160 and define

S1(n) := (1 − ai(n))ĉ1α −
[
−1 − ĉ1

MiT
β + bii(n)gi(β)

]
S2(n) :=

[
−1 − ĉi

miT
α + bii(n)gi(α)

]
− (1 − ai(n))ĉiβ

⎫⎪⎪⎬⎪⎪⎭
From Figure 1, we can check that assumption (H2) hold. By Theorem 3.1, there

exists a positive ten-periodic sequence solution of (4.1) and a negative ten-periodic

sequence solution. For the coexistence of positive periodic sequence solution and its

anti-sgn ones, we can refer to Figures 2 and 3. Phase view for biperiodicity dynamics

of (4.1), we can refer to Figure 4.

Example 2. Consider the following neutral-type difference neural networks with

delays

ui(n + 1) = ai(n)ui(n) +
2∑
j=1

cij � uj(n − τ ) +
2∑
j=1

bij(n)gj(uj(n)) + Ii(n), (4:2)

where

a1(n) := exp(−0.1 − 0.01 cos 0.2πn), a2(n) := exp(−0.2 − 0.1 sin 0.2πn),

I1(n) := 0.02 sin 0.2πn, I2(n) := 0.02 cos 0.2πn, τ = 5, g(z) := g1(z) = g2(z) = tanh(z),

C = (cij) =
(−0.1 − 0.2

−0.2 − 0.1

)
,T = 10, B(n) =

(
0.5 0.005 sin(0.2πn)

0.1 cos(0.2πn) 0.5

)
.

Obviously, (H1) holds. From some computations, we have

ĉ1 = ĉ2 = −0.3, m1 = 0.6496, m2 = 0.1912,

M1 = 1.2720, M2 = 0.8222, Q1 = 0.525, Q2 = 0.62.
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10 20 30 40 50 60 70 80 90
70

75

80

85

n

u

 

 
u

1
(n)

u
2
(n)

u
3
(n)

Figure 2 The existence of a positive T-periodic sequence solution of (4.1).
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Figure 3 The existence of a negative T-periodic sequence solution of (4.1).
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Let a = 1, b = 20. We can check assumption (Ĥ2) holds. From Theorem 3.2, there

exist a positive ten-periodic sequence solution and an anti-sgn ones of (4.2). For the

coexistence of a positive T-periodic sequence solution and its an anti-sgn ones of (4.2),

we can refer to Figure 5. Figure 6 shows phase view for biperiodicity dynamics of (4.2).

5 Remarks and open problems
To the best of authors’ knowledge, this is the first time when biperiodicity criteria for

neutral-type difference neural networks with delays

ui(n + 1) − ai(n)ui(n) =
m∑
j=1

cij � uj(n − τ ) +
m∑
j=1

bij(n)gj(uj(n))

+
m∑
j=1

dij(n)gj

[ ∞∑
v=1

hj(v)uj(n − v)

]
+ Ii(n), i ∈ N

have been studied.

We propose the following open problems for future research:

Our new assumptions (H2) and (Ĥ2) indicate that neutral term plays an important

role on the dynamics of biperiodicity. Such study has not been mentioned in the litera-

ture. However, there is still more to do. For example:

(i) If we relax the conditions cij ≤ 0 or cij ≥ 0 for all i, j ∈ N on the neutral term,

then is the existence of multiperiodic dynamics still exist?

(ii) Evidently, in our work Biperiodicity of neural networks depends on the bounded-

ness of activation functions. Can such requirement be relaxed and yet still obtain peri-

odic sequence solutions and whether they are always of anti-sign?
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Figure 5 Coexistence of a positive T-periodic solution and its an anti-sgn ones of (4.2).
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To discuss the sign of each cij and consider analytic properties of activation functions

is a possible way to investigate these problems.
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