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Abstract

In this article, we revise results obtained by Han et al.
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1. Introduction
Emden-Fowler type dynamic equations have some applications in the real world; see

the background details introduced by Hilger [1]. Hence [2] studied a class of third-

order Emden- Fowler neutral dynamic equations

(
r(t)(x(t) − a(t)x(τ (t)))�

2
)�

+ p(t)xγ (δ(t)) = 0 (1:1)

on a time scale T with sup T = ∞, where the authors assume the following hypoth-

eses hold.

(A1) g >0 is the quotient of odd positive integers;

(A2) r and p are positive real-valued rd-continuous functions defined on T such

that rΔ(t) ≥ 0;

(A3) a is a positive real-valued rd-continuous function defined on T such that 0 < a

(t) ≤ a0 <1 and limt®∞a(t) = a1;

(A4) the functions τ : T → T and δ : T → T are rd-continuous functions such that

τ(t) ≤ t, δ (t) ≤ t, and limt®∞τ(t) = limt®∞δ(t) = ∞.

A time scale T is an arbitrary nonempty closed subset of the real numbers ℝ. Since

we are interested in oscillatory behavior, we suppose that the time scale under consid-

eration is not bounded above and is a time scale interval of the form

[t0,∞)T := [t0,∞) ∩ T. For some concepts related to the notion of time scales; see [3].

Regarding the oscillation properties of (1.1) with a(t) = 0, Saker [4-7] established some

types of criteria, e.g., Hille-Nehari-type and Philos-type.
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To establish oscillation criteria for (1.1), [2] obtained various oscillation theorems by

using some lemmas, one of which we present below for the convenience of the reader.

Lemma 1.1. (See [2, Lemma 2.1]). Let z(t) := x(t) -a(t)x(τ(t)). Assume that (A1)-(A4)

hold and

(H) there exists {ck}k∈N0 ⊂ T such that lim
k→∞

ck = ∞ andτ (ck+1) = ck.

Assume also that x is an eventually positive solution of (1.1). If

∞∫
t0

�t
r(t)

= ∞, (1:2)

then there are only the following three cases for t ∈ [t1,∞)T, where t1 ∈ [t0,∞)T suf-

ficiently large:

Case (i). z(t) > 0, z�(t) > 0, z�
2
(t) > 0, z�

3
(t) < 0;

Case (ii). z(t) > 0, z�(t) > 0, z�
2

(t) > 0, z�
3

(t) < 0; limt→∞x(t) = 0;

Case (iii).

z(t) > 0, z�(t) < 0, z�
2

(t) > 0, z�
3

(t) < 0, lim
t→∞ z(t) = l ≥ 0, lim

t→∞x(t) = l/(1−a) ≥ 0.

We note that there exists a mistake in the above statements. First, the case (ii) does

not occur since zΔ >0 and z�
2

> 0 imply that limt®∞z (t) = ∞, and so z >0 eventually.

Second, the restrictive assumption (H) can be omitted. Hence the purpose of this arti-

cle is to revise the related results in [2].

2. Revised results
Now we use notation z as in Lemma 1.1 and present the following new lemmas.

Lemma 2.1. Let (1.2), (A1), (A2), and (A4) hold with (A3) replaced by (A3*) a is a

positive real-valued rd-continuous function defined on T

such that 0 < a(t) ≤ a0 <1. Suppose that x is an eventually positive solution of (1.1).

Then there are only the following three cases eventually:

Case (1). z > 0, z� > 0, z�
2

> 0,
(
rz�

2)�

< 0;

Case (2). z > 0, z� < 0, z�
2

> 0,
(
rz�

2)�

< 0;

Case (3). z < 0, z� < 0, z�
2

> 0,
(
rz�

2)�

< 0.

Proof. Assume that x is an eventually positive solution of (1.1). Then, we have by

(1.1) that (rz�
2
)� < 0, and hence rz�

2 is decreasing and of one sign. The condition

rz�
2

< 0 implies that there exist a t1 ∈ [t0,∞)T and a constant M >0 such that

r(t)z�
2

(t) ≤ −M, for t ∈ [t1, ∞)T,

which yields

z�
2

(t) ≤ − M

r(t)
, for t ∈ [t1, ∞)T.
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Integrating from t1 to t and letting t ® ∞, we have by (1.2) that

lim
t→∞ z�(t) = −∞.

Hence there exist a t2 ∈ [t1,∞)T and a constant M1 >0 such that

z�(t) ≤ −M1, fort ∈ [t2, ∞)T.

Integrating the above inequality from t2 to t and letting t ® ∞, we have

lim
t→∞ z(t) = −∞,

which yields z <0 eventually. Then, we get

z < 0, z� < 0, z�
2

< 0, (rz�
2

)� < 0. (2:1)

From (2.1) we have that limt®∞z (t) = -∞. Next we claim that x is bounded and (2.1)

does not occur. If not, there exists a sequence {tm}m∈N ∈ [t0,∞)T with tm ® ∞ as m ®
∞ such that

x(tm) = max{x(s) : t0 ≤ s ≤ tm} and lim
m→∞ x(tm) = ∞.

It follows from τ (t) ≤ t that

z(tm) = x(tm) − a(tm)x(τ (tm)) ≥ (1 − a0)x(tm),

which implies that limm®∞z (tm) = ∞, this contradicts the fact that limt®∞z (t) = - ∞.

Hence x is bounded, and so (2.1) does not hold.

If zΔ >0 andz�
2

> 0, then z >0. Thus, for z�
2

> 0 only the cases (1), (2), and (3) may

occur. The proof is complete. □
Lemma 2.2. Let 0 < a(t) ≤ a0 <1. If case (3) holds, then limt®∞x (t) = 0.

Proof. Assume that (3) holds. Then limt®∞z (t) ≤ 0. Next we claim that x is bounded.

Similar as in the proof of Lemma 2.1, we have that limm®∞z (tm) = ∞ which contra-

dicts the fact that limt®∞z (t) ≤ 0. Thus, x is bounded. Hence we can suppose that lim

supt®∞x (t) = x1, where 0 ≤ x1 < ∞. Then, there exists a sequence {tk}k∈N ∈ [t0,∞)T

with tk ® ∞ as k® ∞ such that limk®∞x (tk) = x1. Next we show that limt®∞x (t) = 0.

If not, then x1 >0. Pick ε = x1(1 - a0)/(2a0), we find that x(τ(tk)) < x1 + ε eventually.

Moreover,

0 = lim
k→∞

z(tk) ≥ lim
k→∞

(x(tk) − a0(x1 + ε)) =
x1(1 − a0)

2
> 0.

This is a contradiction. The proof is complete. □

3. Discussions
In this article, we establish Lemmas 2.1 and 2.2 which improve Lemma 1.1 used in [2].

Using these lemmas and methods given in [2,4-7], one can renew those results of [2]

and present some other new results. In particular, new results only require that 0 < a

(t) ≤ a0 <1 rather than (H), 0 < a(t) ≤ a0 <1, and limt®∞ a(t) = a1. The details are left

to the reader.

To achieve new results, we are forced to require that 0 < a(t) ≤ a0 <1. The question

regarding the oscillatory properties of (1.1) without this assumption remains open at

the moment.
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