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Abstract

This article studies a new criterion for the induced l∞ stability of fixed-point state-
space digital filters without overflow oscillations and instability due to finite word
length effects. The criterion not only guarantees exponential stability but also
reduces the effect of external interference to an induced l∞ norm constraint. We
present a numerical example, which demonstrates the effectiveness of the proposed
criterion.

1 Introduction
When designing a linear time-invariant digital filter using a fixed-point arithmetic, one

encounters quantization and overflow nonlinearities. The presence of these nonlineari-

ties may result in the instability of designed filters. The zero-input limit cycles, which

are undesirable, may possibly occur due to these nonlinearities. The quantization and

overflow nonlinear-ities may interact with each other. However, if the number of quan-

tization steps is large, quantization effects may be decoupled when investigating the

effects of overflow. Several researchers have studies stability criteria for digital filters

employing saturation overflow arithmetic [1-8].

In the hardware implementation of high-order digital filters, they are usually split

into some biquad filters before hardware implementation. Then, there may exist inter-

ferences between these biquad filters. These interferences lead to malfunction as well

as destruction in the last [9,10]. However, most existing stability criteria for digital fil-

ters are only available under specific conditions without external interference, while in

unfavorable environments with external interference, unfortunately, we cannot use

these existing stability criteria any more. Therefore, it is important to study an alterna-

tive criterion that can overcome the shortcomings of existing stability criteria for digi-

tal filters.

There always exist model uncertainties and external disturbances in real physical sys-

tems. In recent years, this had led to an interest in the induced l∞ approach [11,12].

The induced l∞ approach is an effective tool to treat several dynamic systems because

we can obtain general stability results using only inputs and outputs measurements.

Now, the following question arises: is there an induced l∞ stability condition for digital

filters with external interference and saturation arithmetic? However, as far as we are
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aware, for the induced l∞ stability for digital filters with external interference and

saturation arithmetic, there are no results published in the literature so far.

This article studies a new stability criterion for fixed-point state-space digital filters

with external interference and saturation arithmetic via the induced l∞ stability

approach. This criterion is a new contribution in fields of digital filters. Under the pro-

posed criterion, the digital filter is exponentially stable and the induced l∞ norm from

the external interference to the state vector is reduced to an interference attenuation

level. For a fixed scalar variable, we represent this criterion in terms of linear matrix

inequalities (LMIs), which can be solved efficiently via existing numerical algorithms

such as interior point algorithms [13,14].

This article is organized as follows. In Section 2, a new criterion for the induced l∞
stability of fixed-point state-space digital filters is proposed. In Section 3, a numerical

example is given, and finally, conclusions are presented in Section 4.

2 New induced l∞ stability criterion
The digital filter under consideration is described by:

x(r + 1) = f (y(r)) + w(r)

= [f1(y1(r))f2(y2(r)) · · · fn(yn(r))]T + [w1(r)w2(r) · · ·wn(r)]T ,
(1)

y(r) = [y1(r)y2(r) · · · yn(r)]T
= Ax(r),

(2)

z(r) = [z1(r)z2(r) · · · zp(r)]T
= Hx(r),

(3)

where x(r) Î Rn is the state vector, z(r) Î Rp is a linear combination of the states, w

(r) Î Rn is the external interference, A Î Rn×n is the coefficient matrix, and H Î Rp×n

is a known constant matrix. The following saturation nonlinearities:

fi(yi(r)) =

⎧⎨
⎩
1, if yi(r) > 1
yi(r), if − 1 ≤ yi(r) ≤ 1
−1, if yi(r) < −1

(4)

are under consideration for i = 1, 2, ..., n. Note that the saturation nonlinearities are

confined to the sector [0, 1], i.e.,

fi(0) = 0, 0 ≤ fi(yi(r))
yi(r)

≤ 1, i = 1, 2, ...,n. (5)

In this article, given a level g > 0, we find a new induced l∞ stability criterion such

that the digital filter (1)-(3) with w(r) = 0 is exponentially stable and

sup
r≥0

{
zT(r)z(r)

}
< γ 2 sup

r≥0

{
wT(r)w(r)

}
(6)

under zero-initial conditions for all nonzero w(r). The parameter g is called the

induced l∞ norm bound or the interference attenuation level. In this case, the digital

filter (1)-(3) is said to be exponentially stable with induced l∞ performance g.
In the following theorem, we present a new induced l∞ stability criterion for digital

filters.

Ahn and Lee Advances in Difference Equations 2012, 2012:51
http://www.advancesindifferenceequations.com/content/2012/1/51

Page 2 of 7



Theorem 1. For a given level g > 0, if we assume that there exist a symmetric positive defi-

nite matrix P, a positive definite diagonal matrix M, positive scalars δ, l, and μ such that
⎡
⎣ δATA − P − λP MA 0

ATM P − δI − 2M P
0 P P − γ I

⎤
⎦ < 0, (7)

⎡
⎣λP 0 HT

0 (γ − μ)I 0
H 0 γ I

⎤
⎦ > 0, (8)

then the digital filter (1)-(3) is exponentially stable with induced l∞ performance g.
Proof. Consider the following Lyapunov function: V(x(r)) = xT(r)Px(r). Along the tra-

jectory of the digital filter (1), we have

�V(x(r)) = V(x(r + 1)) − V(x(r))

=
[
f (Ax(r)) + w(r)

]T
P

[
f (Ax(r)) + w(r)

] − xT(r)Px(r)

= f T(Ax(r))Pf (Ax(r)) + f T(Ax(r))Pw(r) + wT(r)Pf (Ax(r)) + wT(r)Pw(r)

− xT(r)Px(r) + 2f T(Ax(r))M[Ax(r) − f (Ax(r))] − 2f T(y(r))M[y(r) − f (y(r))].

From (5), it is clear that

f T(Ax(r))f (Ax(r)) =
∥∥f (Ax(r))∥∥2 ≤ ∥∥Ax(r)∥∥2 = (Ax(r))TAx(r). (9)

Then, for a positive scalar δ, we have

δ[xT(r)ATAx(r) − f T(Ax(r))f (Ax(r))] ≥ 0. (10)

If we use (10), we obtain a new upper bound for ΔV(x(r)) as

�V(x(r)) ≤ f T(Ax(r))Pf (Ax(r)) + f T(Ax(r))Pw(r) + wT(r)Pf (Ax(r)) + wT(r)Pw(r)

− xT(r)Px(r) + 2f T(Ax(r))M[Ax(r) − f (Ax(r))] − 2f T(y(r))M[y(r) − f (y(r))]

+ δ[xT(r)ATAx(r) − f T(Ax(r))f (Ax(r))]

=

⎡
⎣ x(r)
f (Ax(r))
w(r)

⎤
⎦

T ⎡
⎣ δATA − P + λP MA 0

ATM P − δI − 2M P
0 P P − μI

⎤
⎦

⎡
⎣ x(r)
f (Ax(r))
w(r)

⎤
⎦

− λxT(r)Px(r) + μwT(r)w(r) + �(r),

(11)

where F(r) = -2fT(y(r))M[y(r) - f(y(r))]. Note that F(r) is nonpositive in view of (4). If

the matrix inequality (7) is satisfied, we have

�V(x(r)) < −λxT(r)Px(r) + μwT(r)w(r)

= −λV(x(r)) + μwT(r)w(r).
(12)

Hence ΔV(x(r)) < 0 holds, whenever V(x(r)) ≥ μ

λ
wT(r)w(r). Since V(x(0)) = 0 under

the zero-initial condition, this shows that V(x(r)) cannot exceed the value
μ

λ
wT(r)w(r)

xT(r)Px(r) = V(x(r)) <
μ

λ
wT(r)w(r) (13)
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for r ≥ 0. It follows from (13) that

1
γ
xT(r)HTHx(r) − γwT(r)w(r)

=
1
γ
xT(r)HTHx(r) − (γ − μ)wT(r)w(r) − μwT(r)w(r)

<
1
γ
xT(r)HTHx(r) − (γ − μ)wT(r)w(r) − λxT(r)Px(r).

(14)

The matrix inequality (8) gives

1
γ

[
HT

0

]
[H0] <

[
λP 0
0 (γ − μ)I

]
. (15)

Pre- and post-multiplying (15) by [xT(r) wT(r)] and [xT(r) wT(r)]T, respectively, yields

1
γ
xT(r)HTHx(r) − (γ − μ)wT(r)w(r) − λxT(r)Px(r) < 0, (16)

which ensures

1
γ
xT(r)HTHx(r) − γwT(r)w(r) < 0 (17)

from (14). Thus, we have

zT(r)z(r) = xT(r)HTHx(r)

< γ 2wT(r)w(r).
(18)

Taking the supremum over r ≥ 0 leads to (6).

Next, we show that, under the conditions (7) and (8), the filter (1)-(3) with w(r) = 0

is exponentially stable. V(x(r)) satisfies the following Rayleigh inequality [15]:

λmin(P)
∥∥x(r)∥∥2 ≤ V(x(r)) ≤ λmax(P)

∥∥x(r)∥∥2, (19)

where lmax(·) and lmin(·) are the maximum and minimum eigenvalues of the matrix.

When w(r) = 0, we have

�V(x(r)) < −λV(x(r)) = −λxT(r)Px(r) ≤ −λmin(P)
∥∥x(r)∥∥2 (20)

from (12). According to Theorem 3.1 of [16], (19) and (20) guarantee the exponential

stability of the digital filter (1)-(3). This completes the proof.

Corollary 1. If w(r) is bounded as wT(r)w(r) <c, the conditions (7) and (8) guarantee

that x(r) is bounded as

∥∥x(r)∥∥ <

√
μχ

λmin(P)λ
, r ≥ 0. (21)

Proof. From (13), we have

λmin(P)
∥∥x(r)∥∥2 ≤ xT(r)Px(r) = V(x(r)) <

μ

λ
χ . (22)

Thus, we obtain the relation (21). This completes the proof.

Remark 1. Recently, an H∞(or energy-to-energy) stability criterion for fixed-point

state-space digital filters with saturation arithmetic and external interference was
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proposed in [17]. In contrast to this study, the induced l∞ stability criterion can handle

the worst-case peak value of the state vector for all bounded peak values of the distur-

bance signals.

Remark 2. For a fixed positive scalar l, (7) and (8) are LMIs. We can apply various

convex optimization algorithms to check whether these LMIs are feasible. In order to

solve these LMIs, this article used MATLAB LMI Control Toolbox [14].

Remark 3. The l∞ induced norm [11,12]is defined as

‖Tzw‖l∞ =

√
supr≥0

{
zT(r)z(r)

}
√
supr≥0

{
wT(r)w(r)

}

where Tzw is a transfer function matrix from w(r) to z(r). For a given level
γ > 0, ‖Tzw‖l∞ < γcan be restated in the equivalent form (6). If we define

L(r) =
sup0≤k≤r{zT(k)z(k)}
sup0≤k≤r{wT(k)w(k)} , (23)

the relation (6) can be represented by L(∞) <g2. In the following section, through the

plot of L(r), L(∞) <g2 is verified.

3 Numerical example
Consider a second-order filter (1)-(3) with

A =
[
0.25 0.5
−0.5 0.8

]
, H =

[
0.1 0
0 0.1

]
, w(r) = 0.5

[
cos(2r)
2 sin(r)

]
. (24)

Let the induced l∞ performance be specified by g = 0.3. In addition, we fix l = 1.

Solving (7) and (8) by the convex optimization technique of MATLAB software gives
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Figure 1 The plot of L(r).
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Figure 1 shows the plot of L(r), which is defined in (23). This figure verifies L(∞) <g2 = 0.09,

which means that the induced l∞ norm from w(r) to z(r) is reduced within the induced l∞
norm bound g. Figure 2 represents the state trajectories of the digital filter (1)-(3) when (x1
(0), x2(0)) = (20,-15.8). It is clear that stability criteria in existing studies [1-8] fail in the filter

given by (1)-(3) with the parameters (24). On the other hand, the proposed criterion (7) and

(8) verifies the exponential stability result with induced l∞ performance in this example.

4 Conclusion
This article studies a new criterion for the induced l∞ stability of fixed-point state-

space digital filters with external interference and saturation overflow arithmetic. It is

shown that the criterion can ensure to reduce the effect of the external interference to

a prescribed attenuation level. Thus, it can overcome the disadvantages of existing sta-

bility criteria. For a fixed scalar variable, this criterion is represented in terms of LMIs

and, hence, computationally tractable. Finally, a numerical example shows the useful-

ness of the proposed stability criterion.
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