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Abstract

In this article we obtain two sequence of infinitely many periodic solutions for
discrete second order Hamiltonian systems with an oscillating potential. One
sequence of solutions are local minimizers of the functional corresponding to the
system, the other sequence are minimax type critical points of the functional.

1 Introduction
Discrete problems arise in the study of combinatorial analysis, quantum physics, che-

mical reactions, population dynamics, and so forth. Besides, they are also natural con-

sequences of the discretization of continuous problems. On the other hand, the critical

point theory has been a powerful tool in dealing with the existence and multiplicity

results. Thus, discrete problems have been studied by many scholars via critical point

theory. For example, Pankov and Zakharchenko used a variational method known as

Nehari manifolds and a discrete version of the Lions concentration-compactness prin-

ciple in [1] to establish existence results of nontrivial standing wave solutions for

discrete nonlinear Schrödinger equation. Lately in [2], Pankov and Rothos employed

Nehari manifolds approach and the Mountain Pass argument to demonstrate the exis-

tence of solutions in the discrete nonlinear Schrödinger equation with saturable nonli-

nearity. While for discrete Hamiltonian systems, Yu and Guo established a variational

structure and introduced variational technique to the study of periodic solutions in

[3-5].

The aim of this article is to apply the critical point theory to deal with the problem

of infinitely multiplicity of periodic solutions for the following discrete second order

Hamiltonian systems:{
�2u(t − 1) + ∇F(t, u(t)) = 0, t ∈ Z[1,T]
u(0) = u(T),

(1)

where Δu(t) := u(t + 1) - u(t), Δ2u(t) = Δ(Δu(t)), and ∇F(t, x) denotes the gradient of

F with respect to the second variable. Systems (1) can be considered as a discrete ana-

log of the following Hamiltonian systems:
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{−ü(t) = ∇F(u(t)),
u(0) − u(T) = u̇(0) − u̇(T) = 0,

where ü(t) denotes the second derivative of u with respect to t. Throughout of this

article F will be called potential function, (·, ·) and | · | denote the inner product and

norm in RN respectively. A basic assumption we make on F is that F satisfies the fol-

lowing sublinear condition:

(Fa) F(t, x) Î C1 (RN, R) for any t Î Z[0, T] and F is T-periodic in the first variable.

Moreover there exist f, g : Z[0, T] ® R+ and 0 <a < 1 such that∣∣∇F(t, x)
∣∣ ≤ f (t)|x|α + g(t) for any t ∈ Z[0,T] and x ∈ RN.

After the initial work of Yu and Guo, there appeared many results about Hamilto-

nian systems, such as [6-9]. Among these articles, the results in [5,6] have a close rela-

tion with the one in this article: they also considered (1) with sublinear or

subquadratic potential. Especially, an existence result was obtained under the sublinear

condition (Fa) and a partially coercive assumption:

|x|−2α

T∑
t=0

F(t, x) → ∞ as |x| → ∞ for all t ∈ Z[0,T]. (2)

But until now, no multiplicity results are obtained under subquadratic or sublinear

condition.

On the other hand, the multiplicity problem was considered in [3,7-9]. When one

study the multiplicity problem, an effective method is index theory. The index measure

the size of subset which is invariant under some group action, such as Zp action (for

explicit definition, see [10]). If the functional is also invariant under this group action,

The multiplicity of critical points can be obtained form the multiplicity of index. Guo

and Yu [7] used the above mentioned Zp index theory to show that there are at least

T - 1 distinct ZT-orbits for (1) when the potential function is autonomous and super-

quadratic, and at least 2(T - 1) distinct ZT-orbits when moreover the potential function

is even. They also obtained a result about the lower bounds for the number of T-peri-

odic solutions for the asymptotically linear potential case. Their approach was based

on Zp index theory introduced in [10], so the autonomous condition is essential. How-

ever, infinitely many kinds of results can not be obtained form this method, since the

index of the whole space if finite. For superquadratic system (1) where the potential

may depend on time, Guo et al. obtained at least two nontrivial solutions in [3,9].

Later Xue and Tang obtained the same result under a more general superquadratic

condition in [8].

Until now, as the authors knows there are no results of infinitely many kinds

appeared for system (1). In this article, we are going to give some sufficient conditions

to ensure (1) has infinitely many periodic solutions. Roughly speaking, instead of coer-

cive assumption (2), we suppose F has a suitable oscillating behavior at infinity:

lim sup
r→∞

inf
x∈RN ,|x|=r

T∑
t=0

F(t, x) = +∞, (3)
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lim inf
R→∞

sup
x∈RN ,|x|=R

|x|−2α

T∑
t=0

F(t, x) = −∞. (4)

Then we obtain two sequence of infinitely many periodic solutions by minimax

methods. One sequence of solutions is local minimizer of the functional � correspond-

ing to system (1), and the other are minimax type critical points of �. The explicit

form of � will be given in Section 2. The idea in this article was inspired by Habets et

al. [11] and Zhang and Tang [12], where Dirichlet type and periodic type boundary

value problem for continuous systems were studied.

The following are main results:

Theorem 1.1 Assume that F satisfies (Fa), (3) and (4). Then

(a) there exists a sequence {un} of solutions of (1) such that {un} is a critical point of �

and limn®∞ �(un) = +∞;

(b) there exists a sequence {u∗
n}of solutions of (1) such that {u∗

n}is a local minimum of

� and limn→∞ϕ(u∗
n) = −∞ .

In the rest of this article, we first give some preliminaries in Section 2, then give the

proof of Theorem 1.1 in Section 3.

2 Preliminaries
In this section, we first introduce some notations. Let R, Z, N be the sets of real num-

bers, integers and natural numbers, respectively. For a, b Î Z and c Î R, Z [a, b]

denotes the discrete interval {a, a + 1,..., b} when a <b and [c] denote the largest inte-

ger less than c. In order to apply critical point theory, we then introduced the varia-

tional structure corresponding to system (1). For any given positive integer T, the

linear space HT is defined by

HT = {u : Z → RN|u(t) = u(t + T) for all t ∈ Z}.

HT can be equipped with inner product

〈u, v〉 =
T∑
t=0

(u(t), v(t)),

and the corresponding norm reads as

‖u‖ =

(
T∑
t=0

∣∣u(t)∣∣2
) 1

2

.

It is easy to see that HT is a finite dimensional Hilbert space and is linear homeo-

morphic to RNT. Define another norm ∥ · ∥∞ by

‖u‖∞ = max
t∈Z[0,T]

u(t).

Since HT is finite dimensional, this norm is equivalent with ∥ · ∥:

1√
T

‖u‖ ≤ ‖u‖∞ ≤ ‖u‖ .
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Consider the functional defined on HT

ϕ(u) =
1
2

T∑
t=0

∣∣�u(t)
∣∣2 −

T∑
t=0

F(t, u(t)), ∀u ∈ HT .

One can easily check that u Î HT is a critical point of � if and only if u is a solution

of (1).

The following lemma give a new decomposition of HT according to spectra of opera-

tor Δ2 with periodic boundary condition.

Lemma 2.1 [[8], Lemma 1] As a subspace of HT, Nk is is defined by

Nk := {u ∈ HT | − �2u(t − 1) = λku(t)},

where λk = 2 − 2 cos kω, ω = 2π
2 , k ∈ Z [0, [T2 ]]. Then we have:

(a) Nk⊥Nj for any k ≠ j and j, k ∈ Z [0, [T2 ]] .

(b) HT = ⊕[T2 ]

k=0
.

Set V = N0 and W = ⊕[T2 ]

k=1Nk
. Then it is easy to see HT = V ⊕ W and

T∑
t=0

∣∣�u(t)
∣∣2 ≥ λ1 ‖u‖ for any u ∈ W.

The element u of V is just the eigenvector corresponding to l0 = 0 which satisfy u(t)

= u(0) for t Î Z [0, T].

Now we introduce a minimax theorem which include many well know results. This

theorem not only asserts the existence of a Palais Smale sequence, but also gives the

location information of the Palais Smale sequence. This will play an important role in

our proof of Theorem 1.1.

Proposition 2.1 [[13], Corollary 4.3] Let K be a compact metric space, K0 ⊂ K a

closed set, X a Banach space, c Î C (K0, X) and let us define the complete metric space

M by

M = {g ∈ C(K,X)|g(s) = χ(s), ∀s ∈ K0}

with the usual distance d. Let � Î C1(X, R) and let us define

c = inf
g∈M

max
s∈K

ϕ(g(s)), c1 = max
s∈χ(K0)

ϕ(s).

If c >c1, then for each sequence {fk} ⊂ M such that maxK � (fk) ® c, there exists a

sequence {vk} ⊂ X such that

ϕ(vk) → c, dist(vk, fk(K)) → 0,
∥∥ϕ′(vk)

∥∥ → 0

as k ® ∞.
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3 Proof of Theorem 1.1
In this section we give the proof of Theorem 1.1. Before that, we need to establish

some basic lemmas.

Lemma 3.1 Suppose (Fa) holds, then � is coercive in the subspace W, that is �(u) ®
∞ as ∥u∥ ® ∞ in W.

Proof: For any u Î W, it follows from (Fa) that

ϕ(u) =
1
2

T∑
t=0

∣∣�u(t)
∣∣2 −

T∑
t=0

F(t, u(t))

≥ 1
2

λ1‖u‖2 −
T∑
t=0

(f (t)
∣∣u(t)∣∣α+1 + g(t)

∣∣u(t)∣∣)
≥ 1

2
λ1‖u‖2 − ‖u‖α+1

∞
T∑
t=0

f (t) − ‖u‖∞
T∑
t=0

g(t)

≥ 1
2

λ1‖u‖2 − ‖u‖α+1
T∑
t=0

f (t) − ‖u‖
T∑
t=0

g(t).

Since a < 1, we have �(u) ® ∞ as ∥u∥ ® ∞ in W.

Lemma 3.2 Suppose (3) holds. Then there exists a positive sequence {an} such that

lim
n→∞ an = +∞ and lim

n→∞ sup
u∈V,‖u‖=an

ϕ(u) = −∞.

Proof. For u Î V, we have u(0) = u(1) = ... = u(T), ∥u∥2 = T|u(0)|2 and

ϕ(u) = −
T∑
t=0

F(t, u(t)) = −
T∑
t=0

F(t, u(0)).

By (3) there exists a sequence {dn} such that

lim
n→∞ inf

x∈RN ,|x|=dn

T∑
t=0

F(t, x) = +∞.

So if we choose an =
√
Tdn , then we have

sup
u∈V,‖u‖=an

ϕ(u) = sup
u∈V,‖u‖=an

−
T∑
t=0

F(t, u(0)) = − inf
u(0)∈RN ,|u(0)|=dn

T∑
t=0

F(t, u(0)) → −∞

as n ® ∞.

Lemma 3.3 Suppose (Fa) and (4) hold. Then there exists a positive sequence {bm}

such that

lim
m→∞ bm = +∞ and lim

m→∞ inf
u∈Hbm

ϕ(u) = +∞,

where Hbm = {u ∈ V| ‖u‖ = bm} ⊕ W .
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Proof. For any u ∈ Hbm , let u = ū + ũ with ū ∈ V and ũ ∈ W . It follows form (Fa) that∣∣∣∣∣
T∑
t=0

F(t, u(t)) −
T∑
t=0

F(t, ū(t))

∣∣∣∣∣ =
∣∣∣∣∣∣

T∑
t=0

1∫
0

(∇F(t, ū(0) + sũ(t)), ũ(t))

∣∣∣∣∣∣
≤

T∑
t=0

(f (t)
∣∣ū(0) + ũ(t)

∣∣α + g(t))
∣∣ũ(t)∣∣

≤ 2
T∑
t=0

f (t)(ū(0)α + ũ(t)α
∣∣ũ(t)∣∣) + T∑

t=0

g(t)
∣∣ũ(t)∣∣

≤ 2(ū(0)α +
∥∥ũ∥∥α

∞))
∥∥ũ∥∥∞

T∑
t=0

f (t) +
∥∥ũ∥∥∞

T∑
t=0

g(t)

≤ 2
(

λ1

8

∥∥ũ∥∥2 + 8
λ1

‖ū‖2α

)
+

∥∥ũ∥∥1+α
T∑
t=0

f (t) +
∥∥ũ∥∥ T∑

t=0

g(t)

≤ λ1

4

∥∥ũ∥∥2 + C
∥∥ũ∥∥1+α + C

∥∥ũ∥∥ + C‖ū‖2α .

Substitute the above inequality into �(u), we have

ϕ(u) =
1
2

T∑
t=0

∣∣�u(t)
∣∣2 −

T∑
t=0

F(t, u(t))

=
1
2

T∑
t=0

∣∣�ũ(t)
∣∣2 −

(
T∑
t=0

F(t, u(t)) −
T∑
t=0

F(t, ū(t))

)
+

T∑
t=0

F(t, ū(t)

≥ λ1

4

∥∥ũ∥∥2 − C
∥∥ũ∥∥1+α − C

∥∥ũ∥∥ + ‖ū‖2α

(∑T
t=0 F(t, ū(t))

‖ū‖2α
+ C

)
.

The sum of the first three terms is bounded form below. On the other hand, it fol-

lows form (F-) there exists sequence em ® ∞ such that

lim
m→∞ sup

x∈RN ,|x|=em
|x|−2α

T∑
t=0

F(t, x) = −∞.

Hence, if we choose bm =
√
Tem , we have

lim
m→∞ inf

u∈Hbm

ϕ(u) = +∞.

After the above preparations we give the proof of our main result.

Proof of Theorem 1.1 Denote the ball in V with radius an by Ban . Then we define a

family of maps

�n = {γ ∈ C(Ban ,H)|γ |Ban
= Id|Ban

}

and corresponding minimax values

cn = inf
γ∈�n

max
u∈Ban

ϕ(γ (u))

for each n. By Lemma 3.1, the functional � is coercive on W, then there exists a con-

stant M such that infuÎW �(u) ≥ M. On the other hand, it is well know that Ban and W
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are linked (see [[14], Theorem 4.6]), i.e., for any γ ∈ �n, γ (Ban) ∩ W �=� 0 . It follows
that maxu∈Ban

ϕ(γ (u)) ≥ infu∈Wϕ(u) for any g Î Γn. Hence we have cn ≥ infuÎW �(u) ≥

M. In view of Lemma 3.2,

cn > max
u∈∂Ban

ϕ(u)

holds for large values of n, where ∂Ban denote the boundary of Ban in V : {u Î V|∥u∥
= an}.

For such n, there exists a sequence {gk} ⊂ Γn such that

max
u∈Ban

ϕ(γk(u)) → cn as k → ∞.

Applying Proposition 2.1 with X = H,K = Ban , K0 = ∂Ban , χ = Id , we know there

exists a sequence {vk} ⊂ H such that

ϕ(vk) → cn, dist(vk, γk(Ban)) → 0,
∥∥ϕ′(vk)

∥∥ → 0 (5)

as k ® ∞. If we can show {vk} is bounded, then from the fact that H is finite dimen-

sional we know there is a subsequence, which is still be denoted by {vk} such that vk
converge to some point un. By the continuity of � and �’, we know �(un) = cn and

�’(un) = 0. That is, un is a critical point of �.

Now, let us show the sequence {vk} is bounded. For large enough k, by (5), we have

cn ≤ max
u∈Ban

ϕ(γk(u)) ≤ cn + 1,

and we can find wk ∈ γk(Ban) such that ∥vk - wk∥ ≤ 1. By Lemma 3.3, we can find a

large enough m such that bm >an and inf
u∈Hbm

ϕ(u) > cn + 1 . This implies that γk(Ban)

can not intersect the hyperplane Hbm for each k. Let wk = w̄k + w̃k ∈ V with w̄k ∈ V

and w̃k ∈ W . Then ‖w̄k‖ < bm for each k. Besides, by (Fa), it is obvious that

cn + 1 ≥ ϕ(wk) =
1
2

T∑
t=0

∣∣�wk(t)
∣∣2 −

T∑
t=0

F(t,wk(t))

≥ 1
2

λ1
∥∥w̃k

∥∥2 −
T∑
t=0

(f (t)
∣∣wk(t)

∣∣α+1 + g(t)
∣∣wk(t)

∣∣)
≥ 1

2
λ1

∥∥w̃k
∥∥2 − 4

T∑
t=0

f (t)(
∣∣w̄k(0)

∣∣α+1 + ∣∣w̃k(t)
∣∣α+1) −

T∑
t=0

g(t)(
∣∣w̄k(0)

∣∣ + ∣∣w̃k(t)
∣∣)

≥ 1
2

λ1
∥∥w̃k

∥∥2 − 4
∥∥w̃k

∥∥α+1
T∑
t=0

f (t) − ∥∥w̃k
∥∥ T∑

t=0

g(t) − 4bα+1
m

T∑
t=0

f (t) − bm
T∑
t=0

g(t).

(6)

This implies that
∥∥w̃k

∥∥ is bounded too. From ‖wk‖ ≤ C(‖w̄k‖ +
∥∥w̃k

∥∥) we know wk is

bounded. Hence {vk} is bounded. From previous discussion we know that the accumu-

lation point un of {vk} is a critical point and cn is critical value of �. In order to prove

part (a), we still have to show

lim
n→∞ cn = +∞. (7)

Note that if we choose large enough n such that an >bm, then γ (Ban) intersect the

hyperplane Hbm for any g Î Γn. It follows that
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max
u∈Ban

ϕ(γ (u)) ≥ inf
u∈Hbm

ϕ(u).

This inequality and Lemma 3.3 implies (7).

Next we prove part (b) of Theorem 1.1. For fixed m Î N, define the subset Pm of H

by

Pm = {u = ū + ũ ∈ H|ū ∈ V, ‖ū‖ ≤ bm, ũ ∈ W}.

It follows form (6) that � is bounded form below on Pm. Let us set

μm = inf
u∈Pm

ϕ(u)

and choose a minimizing sequence {uk} in Pm, that is,

ϕ(uk) → μm as m → ∞.

From (6) we know that {uk} is bounded in H. Then there exists a subsequence, which

is still be denoted by {uk} such that uk → u∗
m as k ® ∞. Form the fact that Pm is a

closed subset of H and that � is continuous we know u∗
m ∈ Pm and

μm = lim
k→∞

ϕ(uk) = ϕ(u∗
m).

If we can show u∗
m is in the interior of Pm, then u∗

m is a critical point of �. Let

u∗
m = ū∗

m + ũ∗
m with ū∗

m ∈ V and ũ∗
m ∈ W . If an <bm, then ∂Ban ⊂ Pm . This implies that

ϕ(u∗
m) = inf

u∈Pm
ϕ(u) ≤ sup

u∈∂Ban

ϕ(u).

It follows from Lemma 3.2 that ϕ(u∗
m) → −∞ as m ® ∞. By Lemma 3.3 we have

ū∗
m �= bm for large values of m, which means that u∗

m is in the interior of Pm, and u∗
m is

a critical point of � with ϕ(u∗
m) → −∞ as m ® ∞. The proof of Theorem 1.1 is

finished.

Example 1 Now we give an example of potential function which satisfies condition

(Fa), (3) and (4). For simplicity, we drop the dependence in t:

F(x) = |x|1+α sin(log(1 + |x|)).

Note that F is continuously differentiable and its gradient reads as

∇F(x) = |x|α−1 sin(log(1 + |x|))x + |x|α cos(log(1 + |x|))
1 + |x| x.

Then it is easy to see F satisfies condition (Fa), (3) and (4). A routine application of

Theorem 1.1 shows that system (1) with potential function F has infinitely many peri-

odic solutions.
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