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Abstract

This article concerns the existence of mild solutions for the fractional
integrodifferential equations of neutral type with finite delay and nonlocal conditions
in a Banach space X. The existence of mild solutions is proved by means of measure
of noncompactness. As an application, the existence of mild solutions for some
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1 Introduction

The fractional differential equations have received increasing attention during recent
years and have been studied extensively (see, e.g., [1-10] and references therein) since
they can be used to describe many phenomena arising in viscoelasticity, electrochemis-
try, control, porous media, electromagnetic, etc.

Moreover, the Cauchy problem for various delay equations in Banach spaces has
been receiving more and more attention during the past decades (see, e.g.,
[2,3,6,7,10-12]).

As in [5,8,13-15] and the related references given there, we pay attention to the non-
local condition because in many cases a nonlocal condition v(0) + g(v) = v, is more
realistic than the classical condition v(0) = vy in treating physical problems. To the
author’s knowledge, few articles can be found in the literature for the solvability of the
fractional order delay integrodifferential equations of neutral type with nonlocal
conditions.

In this article, we concern with the following nonlocal neutral delay fractional inte-
grodifferential equations

t
DIW() —h(tw)=Av()+f (V) + / a(tsv)ds, tel0,T],
0
v =g O +¢ (), tel[-r0],

(1.1)

where T >0, 0 < g <1, 0 < r <. The fractional derivative is understood here in the
Caputo sense. X is a separable Banach space. A is a closed operator. Here /: [0, T] x C
([-r, 0], X) > X, f [0, T] x C([-r, 0], X) > X, a: A x C([-r, 0], X) > X(A = {(¢, s) € [0,
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11 x [0, T]: t = s}), g C([-1, 0], X) = C([-r, 0], X), ¢ € C([-1, O], X), where C([a, b], X)
denotes the space of all continuous functions from [a, b] to X.

For any continuous function v defined on [-r, 7] and any ¢ € [0, 7], we denote by v,
the element of C([-r, 0], X) defined by v,(0) = v(¢t + 0), 8 € [-r, 0].

This article is organized as follows. In Section 2, we recall some basic definitions and
preliminary results. In Section 3, we give the existence theorem of mild solution of
(1.1) and its proof. In the last section, an example is given to show an application of
the abstract result.

2 Preliminaries

Throughout this article, we denote by X a separable Banach space with norm || - ||, by
L(X) the Banach space of all linear and bounded operators on X, and by C([a, 4], X)
the space of all X-valued continuous functions on [a, b] with the supremum norm as
follows:

Ixl[05] = Il ([ap]x) = suP {Ix @ : ¢ € [a,b]}, foranyx e C([a,b],X).

Moreover, we abbreviate [ull1p(jo,,r+) with [|ul,, for any u € L? ([0, T], RY).

In this article, A is the infinitesimal generator of an uniformly bounded analytic
semigroup of linear operators {S(¢)}=o in X. We will assume that 0 € p(A) (p(A) is the
resolvent set of X) and that

IS(®)] <M, forall t €0, T].

Under these conditions it is possible to define the fractional power (-A)% 0 < o <1,
as closed linear operator on its domain D(-A). Recall the knowledge in [16], we have
(1) there exists a constant M, >0 such that

[ =A™ < Mo.
(2) for any o € (0, 1), there exists a positive constant C,, such that

o Ca
[asol = o

Let us recall the following known definitions. For more details see [9].
Definition 2.1. [9] The fractional integral of order g with the lower limit zero for a
function fe ACI0, =) is defined as

1 t
If (1) = /(t—s)qflf(s)ds, t>0, 0<qg<1,
)

provided the right side is point-wise defined on [0, ), where I'(-) is the gamma
function.

Definition 2.2. [9] Riemann-Liouville derivative of order g with the lower limit zero
for a function fe€ ACI0, =) can be written as

t
1 d
Lryq — _ 4
Df (t) F(l—q)dt/(t I (s)ds, t>0, 0<q<1.
0
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Definition 2.3. [9] The Caputo derivative of order ¢ for a function fe AC[0, =) can
be written as

‘DIf 1)="DT(f(t) —f(0)), t>0, 0<gq<1L. (1)

Remark 2.4. (1) Iffit) € C'[0, c), then
‘DIf (1) = r (11_ 9 O/(t — )7 (5)ds=T""f' (1), t>0, 0<gq<1.

(2) The Caputo derivative of a constant is equal to zero.

We will need the following facts from the theory of measures of noncompactness
and condensing maps (see, e.g., [17,18]).

Definition 2.5. Let E be a Banach space and (A, >)a partially ordered set. A function
B : P(E) — Ais called a measure of noncompactness (MNC) in E if

B(co () =B () forevery Q eP(E),

where P(E) denotes the class of all nonempty subsets of E.
A MNC B is called:

(i) monotone, if Qo, Q1 € P(E), Qo € Q; implies f(Q) < B (Qy);
(ii) nonsingular, if B({ag} U Q) = B(Q) for every aq LE Qe PE);
(iii) invariant with respect to union with compact sets, if B ({D} U Q) = B(Q) for
every relatively compact set D € E, Q) € P(E).

If Ais a cone in a normed space, we say that the MNC [3 is
(iv) algebraically semiadditive, if B(Qo + Q1) < B(Qo) + B(Q4) for each Qp, Oy Lp
(E);

(v) regular, if B(Q) = 0 is equivalent to the relative compactness of
(vi) real, if Ais [0, + ) with the natural order.

As an example of the MNC possessing all these properties, we may consider the
Hausdorff MNC

X (Q) =inf{e > 0:Q has a finite ¢ - net} .

Now, let G : [O, fl] — P (E) be a multifunction. It is called:

(i) integrable, if it admits a Bochner integrable selection

g: [0, fl] —E, g(t)eG(t)forae.te [O, fl],

(ii) integrably bounded, if there exists a function ¢ € L' ([0, I~1] ,E) such that
IG@I :=supfligll:9e GO} <P (1) ae te [0, fl] :

We present the following assertion about y-estimates for a multivalued integral [[18],
Theorem 4.2.3].
Proposition 2.6. For an integrable, integrably bounded wmultifunction

G: [O, fl] — P (X) where X is a separable Banach space, let
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x(G®)<q@®), foraete [O, fl] ,

where q € L} ([O, fl]) Then x (/I G(s) ds) < /I q(s)ds for all t € [O, fl]
0 0

Let E be a Banach space, § a monotone nonsingular MNC in E.

Definition 2.7. A continuous map §: Y C E — E is called condensing with respect to
a MNC B (or B-condensing) if for every bounded set Q0 S Y which is not relatively com-
pact, we have

BE () % B ().

The following fixed point principle (see, e.g., [17,18]) will be used later.

Theorem 2.8. Let 90be a bounded convex closed subset of E and §: 20 — 20 a -
condensing map. Then FixF = {x : x = § (x)} is nonempty.

Theorem 2.9. Let V C E be a bounded open neighborhood of zero and §:V — E a
B-condensing map satisfying the boundary condition

X # AT @)

for all x € 0V and 0 < ) < 1. Then Fix§ is a nonempty compact set.

We state a generalization of Gronwall’s lemma for singular kernels [[19], Lemma
7.1.1].

Lemma 2.10. Let x, y: [0, T] — [0, + =) be continuous functions. If y(-) is nondecreas-
ing and there are constants a > Qand 0 < & <1 such that

t
x(t) <y + a/ (t —5)Sx(s) ds,
0

then there exists a constant v = k(&) such that

t

x(@®) <y@®+ Ka/ (t— s)*gy(s) ds, foreachte[0,T].
0

According to Definitions 2.1-2.3, we can rewrite the nonlocal Cauchy problem (1.1)
in the equivalent integral equation

t
1
v(t) =g (0) +¢(0) +h(t,v) —h(0,¢+gW)+ / (t =9 Av () +f (5, 15)
r (a)
0 (2.1)
+k (V) (s)]ds, te[0,T],

v =gw®+¢ @), te[-10]
provided that the integral in (2.1) exists, where

t

k() (t) = /a (t, s, v5) ds

0

and 4(0, ¢ + g(v)): = h(0, p(0) + g(v)(0)), 0 € [-r, 0].

Page 4 of 23
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Set
o0 o0

V(L) = / e My (1) dt, hv) = / e Mh(t, ) dt,

8 (=}

0
fn = / e M (L) dt, W) = / e ™Mk (v) (1) dt.
0

0

Using the similar method in [1], formally applying the Laplace transform to (2.1), we have
- 1 - 1 1 [~ ]
v =, @M@+ @ —h(0.¢+gW))+hO)+  AVG)+ |f ) +w) |,

then

(A=A v =21 () (0)+¢ (0) —h(0,¢ +g 1)) + AhO) + | ) +w)

thus
D) =T (= A) T () (0) + ¢ (0) —h (0,6 +gW))) + 21 (AT —A) TR ()
+ (A=A [f () +iv (,\)]

-1 /e_mss (5) (g(W) (0) + ¢ (0) — 1 (0, ¢ + g ())) ds (2.2)
0

+hoy+ / eSS (s) R (1) ds + / ¢ 55 (s) [f ) +ﬁ}(k)]ds
0 0

provided that the integral in (2.2) exists.
We consider the one-sided stable probability density in [4] as follows:

wy (o) = Z( Dt te it ("q+1) sin (nrq), o €(0,00),

whose Laplace transform is given by

[0}

/e_)“’wq (o)do =e™, qe(0,1). (2.3)

0
Then, using (2.3), we have

e e}

At / ¢S (5) (§ () (0) + ¢ (0) —h (0,9 + g (v))) ds
0
~ [ GT1e=00"s (1) (g (1) (0) + 6 (0) — (0, + g @) de

/ ( *“””) 1) (8 ) (0) + ¢ (0) =1 (0, +g (v)) dt (2.4)
0

= [ / e M owy(0)S (1) (§() (0) + ¢ (0) —h (0,4 + g (v))) dodt
0 0

/ |:/wq(0)5( > g (0) +¢ (0) — (0,¢+g(v)))do:| dt
0
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and

o]

e 8 (s) f () ds

0
=/‘e_(“)qqr‘7_18(r‘*) ([ e Mf (tv) dt) dr

0 0
= / / e gt wy (o) S (79) (/ e M (t, 1) dt) dodr

0 0 0
/e zzrq (@)S <a'i> (/ e Mf(t, vt)dt) dodo (2.5)
0

0
( fe el o )S<(r t)q)f(t vt)drdt)
( /e w (7= ?ql q(o)s<(f )f(t v[)dtdr)
0
e ‘|:q//(t—a?q_lwq(g)5<(taq ) (S,us)dadsj| dt
00

t
Similarly, we have

=q

=q

=q

\8 0\8 0\8

f
/

0\8 -

/ eSS (s) W (\) ds
0 (2.6)

=/ﬂ‘ |:q/f =9 o (0)S<(t 9 )k(v) ) dods:| dt
ol o4
0 0 0

and

/ e AS (s)h (L) ds
Ooo 2.7)

t oo _ 471 B q
=/e’“ |:q// =9 @y (a)AS(U ) )h(s,vs)dads dt
ol gl
00

0
Thus, from (2.4)-(2.7), we obtain

170»)—/ |:/1Uq(0)3< ) 8§ (0)+¢(0) —h(0,¢+g))do +h(tv)

t _ -1

; qff(t R )AS((t )>h(s v,) dods
t oo . a- 1

+ q// ¢ 5) q(o)s<(t )f(s,vs)d(rds

0 0

t oo g1 o
+q/f (t qu) @y (U)S((t a,:) )k(y) (s) d0d5:| dt

00

Page 6 of 23
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We invert the last Laplace transform to obtain

i ﬂ
v(t)=/zzr,,(a)8< q)( ) (0) + ¢ (0) —h (0,9 +g(v)))do +h(t,v)

_ 91
+q//(t S @, (0 )AS(O )>h(s vs) dods
_ 91 Y
+qf/ =) wq(cr)8<(t ) )f(s,vs)dcrds
ol o4
0 0
t oo _ q—l _ q
+qf/ t=9) wq(0)8<(t ) )k(v) (s) dods
ol o4
0 0

=/gq (©)S(t70) (g () (0) + ¢ (0) — h (0, + g (v))) do + h (t, vy)
0
t oo
+qf/a(t—s)”_1§q (@) AS ((t — )%0) h (s, v5) dods
t oo
+qf/a(t—s)‘7—1§q (@) S ((t = 5)70) f (s, v5) dods
00

t oo
+qf/a(t—s)‘7—1§q (@) S ((t = 9)70) k (v) (5) dods,
0 0

where &, is a probability density function defined on (0, ) such that
1 _1— 1 1
&,(o):qa qwq(o ‘7)20.

For any z € X, we define operators {Q(t)}s0 and {R(£)},-0 by

Qz= / £ (0)S (t”o) zdo,
0

R(t)z= q/ot”’lé‘q (0)S (t”o) zdo .

Then from above induction, we can give the following definition of the mild solution
of (1.1).
Definition 2.11. A continuous function v: [-r, T] — X is a mild solution of (1.1) if the
function v satisfies the equation
v(t) = Q (1) (§®) (0) + ¢ (0) —h (0,4 +8W))) + h(t,v)
+fAR(t—s)h(s vs)ds+fR(t—s) [f G v5) + k() ()] ds, t € [0,T],

v(t) = g(U)(t)+¢(t) te[-r0].

Page 7 of 23
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Remark 2.12. (i) Noting that fooo &;(0)do =1, we obtain
IRMI =M. (2.8)

(ii) According to [4], direct calculation gives that

r r! ra
/a“gq (o) do = / i@ do = ((1 :;V)), Ve (1],
0 0

then, we can obtain

M
IROI< ™M w1 s (2.9)

(1 + q)
(iii) For any o € (0, 1), we have
CT (2 —a)

A\ q(1—a)—1
[(=AR@®| < qt P14 q(1—a) t>0. (2.10)

Indeed, for any z € X we can see that

[(=A)*R @) z|| = ||q / ot g, (0) (—A)*S (t"0) zdo
0

r 19

4-1 o
< qt / 76 @) ool
0

C.T (2 —a)

= qr9(1—a)—1
a I'(1+q(1—a)

llzll -

3 Main results

We will require the following assumptions.
(Hf) (1) £ [0, T] x C([-r, 0], X) — X satisfies f{, w): [0, T] — X is measurable for all
we C([-r, 0], X) and fit,): C([-r, 0], X) — X is continuous for a.e. t € [0, T], and there

1
exists a positive function u (-) € L* ([0, T], R*) <p > ; > 1) such that
o

If @ w)] < 1@ llwl o

for almost all ¢t e [0, T].
(2) There exists a nondecreasing function 11 € L?([0, T], R") such that for any
bounded set D € C([-r, 0], X),

(D) =n® sup xDE), ae el

(Hh) (1) &: [0, T] x C([-r, 0], X) — X is continuous and there exists constants & € (0,
1) and M, L, >0 such that # € D((-A)*) and for any ¢ € C([-r, 0], X) the function (-A)
“h(-, ¢) is strongly measurable and satisfies

” (=A)h(t, (/’)” <M (||</’||[—r,0] + 1) , (3.1)
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and for t;,t € [0, T], ¢, ¢ € C([—1,0],X),
[(=A)h (11, ) = (=A)*h(t2, @) | < Ln (11 — 2l + lp — Gll—r,07) - (3.2)
(2) There exists M, >0 such that for any bounded set D < C([-r, 0], X),

x (AR, D)) <M, sup x (D)), ae. t€l[0,T].
9el-r,0]

(Ha) (1) a: A x C([-r, 0], X) = X and a(t, s, -): C([-r, 0], X) — X is continuous for a.e.
(t, s) € A, and for each w € C([-r, 0], X), the function a(,, w): A — X is measurable.
Moreover, there exists a function m: A — R" with sup, fotm (t,s)ds :=m* < o0
such that

la(t s w) <m(s) lwli—op

for almost all (¢ s) L A.
(2) For any bounded set D < C([-r, 0],X) and 0 < s < ¢ < T, there exists a function
A — R such that

x(a(ts D)) =¢( 5)9 sup x (D(®)),

€[—r,0]

where SUp fé ¢(t,s)ds:=¢" < o0
te[0,T]
(Hg) (1) There exists a continuous function L, : [-r, 0] — R" such that
g ) @ —g W) O <Ly @ Iy () —v, O, te[-r,0].

(2) The function g(v)(-): [-r, 0] = C([-r, 0], X) is equicontinuous and uniformly
bounded, that is, there exists a constant N >0 such that

lgl,_, o = Nforallve C(~r,01,X).

Theorem 3.1. Assume that (Hf), (Hh), (Ha) and (Hg) are satisfied, if
1

M q-
(I)Mo-max{Ml,Lmr" LT P luly <1

(1 + q)
(2) L; (1 + MMoM;3 + M) + MogM; < l,
p—1
where | ._ ( p—1 ) p and L = tes[l_lfo] Ls®) Then the mild solutions set of
47 Nepg —1 '
problem (1.1) is a nonempty compact subset of the space C([-r, T}, X).
Proof. Define the operator F : C([—r,T],X) — C([—r, T], X) in the following way:

g(v) (t)+¢(t)l te [_T,O],
Q) (§W) (0) +¢ (0) —h(0,¢+8 1)) +h(t,v)

+ [AR(t —s)h (s, v)ds + [R(t — ) [f (5,v5) + k(v) ()] ds, t € [0, T].
0 0

(Fv) (1) =

It is clear that the operator F is well defined.
The operator F can be written in the form F = Zlil F;, where the operators

Fi,i=1,2 are defined as follows:

Page 9 of 23
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g(v) (t)+¢(t), te[_r!O]l

F1 ® = {Q(t) (8 W) (0) + b (0) — h (0, +g())) +h(t,u), t € [0,T],

0, te[-r0],
- L t
(Fav) (0 = IfAR(t—s)h(s,vs)ds+fR(t—s)[f(s,v5)+k(v)(s)]ds,te [0,T].
0 0

Let {v"},.en be a sequence such that v — v in C([-r, T], X) as n — . By the conti-
nuity of g and /1, we can see that F; is continuous.
Moreover, noting (2.10), we have

t t

/AR(t—s)h(s,v?)ds—/AR(t—s)h(s,vs)ds

0 0

t
< / [(=A'" R —=9)| [(=A*h (s, v)) = (—A)*h (s, v5) | ds
0

t

Lo =l [ (€=t

0

<67C1_af‘ (1+a)
r (1 + qot)

<C1,D,F (1+a)

= ar (1 N qa) LT ||1)" — 1/||[7T,T] — 0, asn— oo.

Since f satisfies (Hf)(1) and a satisfies (Ha)(1), for almost every t € [0, 7] and (% s) €
A, we get

f(t' V?) - ft,v), asn — oo,
d(t,S,U:l) g a(tlSIUS)I asn — oQ.

Noting that v" — v in C([-r, T], X), we can see that there exists ¢ >0 such that ||V” -
V" [, 71 < € for n sufficiently large. Therefore, we have

If (e.0F) = f oo

IA

1O ] oy + 1 @ w0

IA

w0 = vl o+ 200 @ el
w® (e + 21l )

IA

and similarly,

la(ts ) —asv)| <ms) (e+2lvli_ ).
t

t
/a (t,s, V) ds — /a (t,s,v)ds| <m* (e +2[vll_p1y) -
0 0
It follows from the Lebesgue’s dominated convergence theorem that

t t

/a(t,s,vf)ds—/a(t,s,vs)ds — 0, as n— oo,
0 0

Page 10 of 23
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and

t

/R(t—s) [f(s,vs)”+/a(s,t,v:)dr - |:f(s, v5+/a(s,t,v,)dr:| ]ds

0 0 0

SF(?Aj 0 z)/(t—s)ql |:Hf(s, )" — f(s, v +~0/ la(s, T, v2) —a(s,t,vr)Hdri| ds

—0, as n— oo.

Therefore, we obtain that
lim || Fov" — Fovllj_, 1) = 0. (3.3)
n—oo

Now, from (3.3), we can see that F is continuous.

Let y be a Hausdorff MNC in X, we consider the measure of noncompactness f§ in

the space C([-r, T], X) with values in the cone Rf of the following way: for every
bounded subset Q < C([-r, T], X),

B(2) = (W(£2), mod.(£2)),
where mod (Q) is the module of equicontinuity of Q given by:

mod,(2) = lim 1sup max [v(t1) — v(©2)|,
veQ Ih—t

W(Q) = sup x(R(t))+ sup (6_” sup X(Q(S))>/

te[~r,0] te[0,T] se[0,t]

where L >0 is a constant chosen so that

C1al (L4 a) oMy, Ma) sup / (t=s)* e ds = 1y < 1, (3-4)
I'(1+qo) welor] )
M / -1 —L(t—s)
t—s $)+*)e ds=1L, <1, (3.5)
r'(1+q) teIOTl ( ) ’

gM

_ 1 —L(t—s)
1+ q) tE[OT]/(t )T (s) + m*)e ds=13 < 1. (3.6)

Noting that for any y e LY([0, T], X), we have

t

lim sup/ e M9y (5)ds = 0

L—+00 te [0 T]

so, we can take the appropriate L to satisfy (3.4)-(3.6).
Next, we show that the operator F is B-condensing on every bounded subset of C

(- 11, X).
Let Q < C([-r, T], X) be a nonempty, bounded set such that

B(F(£2)) = B(XQ). (3.7)

Page 11 of 23
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Firstly, we estimate W(Q). For t € [-r, 0], v, v, € Q, we have

’

lg(w)(®) = g(2) ()| =< Lg [v1(1) = va(2)
then

sup x(8(2)(1) < L, sup]x(Q(t)),

te[—r,0] te[—r,0

therefore,

sup x((F1R)(1)) = sup x(8(2)(1)) < Lg sup x((1)).

te[—r,0] te[—r,0] te[—r,0]

For t € [0, T], one gets

QM) |8(v1)(0) — 8(12)(0) | < ML [[v1(0) — v2(0)

thus, we have
x(Q(1)8(£2)(0)) = MLy x (2(0)) < ML, ¥ (<).
Moreover, we see that

x(=Q(1)h(0, ¢ +8(%2))
<M - x((=A)"*(-=A)*h(0, ¢ + 8(£2)))
<MMoM; sup x(g(2)(s))

se[—r,0]

<MMoM>L; sup x(%(s))

se[—r,0]
SMMOMZLZ\I'(Q).
For t € [0, T], noting that

sup x(Q(t+0))= sup x(2(s))

0e[—r,0] se[t—r,t]

< sup x(2(s))+ sup x(S2(s))

se[—r,0] se[0,t]

< e“( sup x(Q(s)) +e M sup x(Q(s))

se[—r,0]

< (Q),
then we have

x(h(t, ) = x ((=A)(=A)*h(t, )

<MoMy sup x(Q(t+6))
0e[—r,0]

< MoM,e" (),

where Q, = {v, : v € Q}. Therefore

sup (eI sup x(h(s, %)) | < MoMW ().
te[0,T] se[0,t]

5€[0,t]

)

(3.8)

(3.9

(3.10)

(3.11)

(3.12)
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Now, from (3.8)-(3.10), and (3.12), we can see

te[—r,0] 5€[0,t]

Y(F12) = sup x((F192)(1) + SBPT] (e“ sup X((flﬁ)(s))>

<L} sup x(R(1) + (MMoMoL + ML + MoM) W (R2) (3.13)

te[—r,0]

< [LZ(l + MMM, +M) +MOM2]\I’(Q)

For any ¢ € [0, T], we set

A1(RQ)(¢) = l/AR(t—s)h(s, v )ds 1 v € Q] .

0

We consider the multifunction s € [0, £] ¥ G(s),

G(s) = {AR(t — s)h(s, vs) : v € Q}.

Obviously, G is integrable, and from (Hh)(1) it follows that it is integrably bounded.
Moreover, noting that (Hh)(2) and (3.11), we have the following estimate for a.e. s €
[0, t]:

1(G) = x({(=4)“R(t = 5)(~A)h(s, 1) v e 2})
= x((=A)'“R(t = 5)(~A)*h(s, )

4dCi1—oT'(1 + ) qa—1
< t—s M, su Q(s+0
(1 +qa) (t—s) zee[f,o]X( (s+0))

_ dC1_oT(1 + @)

M(1eqey TM (@),

Applying Proposition 2.6, we have

t t
x(A1(R)(0) = x /G(s)ds < "Cllj"r(l +“)M2/(t—s)q“*1ebds.w(Q).
(1+qa)
0 0
Therefore,

sup (6“ sup X(AI(Q)(S))>

te[0,T] se[0,t]
t
(3.14)
<qC17aF(1 + a)Mz sup / (t _ S)qafle—L(t—s)ds . \I’(Q)

I'(1+qa) telo] )

=L,V (Q).

Similar to above induction, if we set

A (Q)(t) = {/R(t —)[f(s vs) + k(v)(s)]ds : v € Q} ,

0

then we can see that the multifunction s € [0, t] — 6(5),

G(s) = {R(t = 9)[f (s, vs) + R(v)(5)] : v € Q)

Page 13 of 23
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is integrable, and from (Hf)(1), (Ha)(1) it follows that it is integrably bounded. More-
over, noting that (Hf)(2), (Ha)(2), Proposition 2.6 and (3.11), we have the following
estimate for a.e. s € [0, £]:

X = 4= 5@,

+q)

furthermore,

sup <6“ sup x (A2(2)(s)) f(t—S)" '[n(s) + ¢*le ™ ds - w(Q)

qM
te[0,T] sel0,f] - F(l +q) ¢ e[0T|

= Lu(Q).

(3.15)

Now, it follows from (3.14) and (3.15) that ¥ (F,Q) < E %lLi\D(Q). Then, noting
i=
(3.13) and choose L;(i = 1, 2) such that

2
W(FQ) < |:LZ(1 + MMM, + M) + MM, + ZLi:| W(Q) < LY¥(Q), (3.16)
i=1

where 0 < T < 1.
From (3.7), we have ¥(Q) = 0. Next, we will prove mod (Q) = 0.

Let 0 > 0, t, tr € [0, T] such that 0 < |t; - t,| < J and v € Q, we obtain
|h(tr, vy) = Bt v,) | < [(=A) | | (=A)* (h(tr, v1,) = h(t2, v,)) |
=MoLy (It = 2l + v = v, )

=MoLy <|t1—t2|+ sup Hu(t1+9)—v(t2+9)”>
0e[—r,0], It —t2|<8

- Mol (m O _v(52)||> |

s182€[=7,T] Is1—s21<8

Moreover, noting that (Hg)(2) and the continuity of S(¢) in the uniform operator
topology for ¢ >0 we have

mod,(F122) < MoLymod ().

ForO0< t, < t; < Tand ve Q, we have

5t 153

/AR(tl — s)h(s, vs)ds—/AR(tz — s)h(s, vs)ds

0 0

/||A(R(t1 -5 - R(tz—s))h(s,vs)|}ds+f H( —A) R —5)H|( AYh(s, 1) ds

t o

<q// ”[(tl —8)"7" = (t2 — )" [&(0)AS((t1 — 5)0)h(s, vs) || dords

+ qof 0/ (s — 57, (0) |AGS((11 — 5)70) — S((t2 — 5)70))h(s, v.) | dods

Ci_oT(1+ @)
)0
+ My (Il + 1) (01 — £2) ol'(1 +qa)
=Il + Iz + I3.
Noting that s — AS((t;-s)70) & (s, vs) is integrable on [0, ¢;), then I; — 0, as t, — ;.
In view of the fact that {S(t)},-0 is an analytic semigroup, then for s € [0, t), o € (0,

o), the operator function s — AS((t - s)?0) is continuous in the uniform operator

Page 14 of 23
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topology in [0, £) and noting that s — /(s, v;) is integrable on [0, £], I, — 0, as t, — £;.
Obviously I3 — 0, as t, — £;.
Moreover, nothing that

IF s v) [ + [ [ < (ls) + m*) vl —r.m,

we have

ty 5]

/R(ﬁ —9)|f (s, vs) + k(v)(s)]ds— / R(tz — )If (s, vs) + k(v)(s)]ds

0 0

t

f NRG = )| [ (s 1) + k(@) (s) | ds

5]

5/ [[R(t; —s) — R(t2 — 9)][f (s, vs) + k(v)(s)] | ds +
0
<q1ll-om [ [ [ =9 = =9 ot - 70| ) + middods (3.17)
0 0

o [ [ ot =9 o) st — o) = s((e — o))+ m*)dads}
0 0

aMIIvll -1

(1) t/ (t1 — $)77 (u(s) + m*)ds.

Clearly, the first term on the right-hand side of (3.17) tends to 0 as t, — ;. The sec-
ond term on the right-hand side of (3.17) tends to 0 as £, — £; as a consequence of
the continuity of S(£) in the uniform operator topology for ¢ >0. It is easy to see that
the third term on the right-hand side of (3.17) tends to 0 as £, — £;.

Thus, the set {(F,v)(-) : v € Q} is equicontinuous, then mod,(F,<) = 0.

Since

2
mod (FQ) < Y mod,(Fif2) < MoLymod,(S),

i=1
then mod.(Q) = 0, which yields from (3.7). Hence
B(£2) = (0,0).

The regularity property of § implies the relative compactness of Q.
Now, it follows from Definition 2.7 that F is -condensing.
Choose

- - Ci_oT(1
N+ M(N + [¢(0)] + MoM; (N + 1)) + MM, + (L+a) ) e
al'(1 + qa)

> ’
P 1 — MM,

where N := N + o ll|—ro0p

Consider the set

B, = {ve C([-n, LX) : vl < o}
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Let us introduce in the space C([-r, T], X) the equivalent norm defined as
.= sop 10+ sp (¢4 s 169 )
te[—r,0] te[0,T] se[0,t]
Noting

| (=AY h(t,v)| < M (nvn[no] + sup [Ju(s)] + 1)
5€[0,t]

(3.18)
< My (uuu[r,o] vt sup u(s) ||) oMy
s€[0,t]

<My ("lvll. +1),
and

|h(e v = [ (=A) " (=A)*h(t, v)|
< MoM (e"|lvl. + 1),

for t € [0, T], wehave

|Q(1)(8(¥)(0) + $(0) — h(0, ¢ + g(v))) + h(t, vi) |
<M(N + || ¢(0)]| + MoM; (N + 1)) + MoM, (e [[vl, + 1),

then

1Fvlle

<N+ sup. <e“ sup. Q) (8(¥)(0) + #(0) — h(0, ¢ + g(v))) + s, vs)||)
te|o, se(0,t

<N+ M(N + [ ¢(0)] + MoM; (N + 1)) + MM, (JIv] + 1).

Moreover, for t € [0, T], from (2.10) and (3.18) we have

t

/AR(t — s)h(s, vs)ds

0

ds (3.19)

< / (=AY R(t — )(~4)"h(s, 1)
0

<qC1,aF(1 +a)

t
_ \de—1 Ls
I'(1+ga) Ml/(t $)* 7 (e" vl + 1)ds,
0

and from (2.9), (Hf)(1) and (Ha)(1) we get

t

/R(t —9)[f (s, vs5) + k(v)(s)]ds

0

= F(?Af q) 0/ (1= )" ((s) + ) (”“”[—r,o] * sup [v(x) H) ds (3.20)

qgM

=r(1+4q) L/ (t=9)7 (n(s) + m*)(eLs||v||C)d5:| .
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Therefore, from (3.19) and (3.20), we obtain

N N

fAR(s — 0)h(r,v;)dr+ / R(s — O)[f(z, v) + k(v)(7)]dr

t€[0,T) se(0,t] o

[ Fovll. = sup (e“ sup

|

—o(1
<qC1 o ( +Ol) M; sup /([ )qot l(e—Lt s)”v” +2_L[)d5
I'(1+qe) 1€[0,T]

q * t—s
F0+q)mmn/kf—ﬂqluuﬂ+nzxe“ llvllc)ds

<qC1_D,F(1+ ) Cl_aF(1+a)

M|Vl su / ¢ — )Pl gg M;T™
I'(1 +qe) ! Cxe[opT] (t=3) al(1+qa)
M 1 —L(t—s)
+ lvllc su f t— )97 (u(s) + m*)e ds.
g e 2 [ =9 )

Let L — + o, we obtain

Ci—oI'(1 +@)

IFavlle < oT(1 + o)

(3.21)

Hence

IFvile <IFwvlle + 1Favle
<N + M(N + ||¢(0) | + MoM; (N + 1)) + MM (llvlic + 1)
Cio'(1 + @)

M T
al'(1 + qa) !

<p.

Now, we show that there exists some p >0 such that B, C B,. According to Theo-
rem 2.8, problem (1.1) has at least one mild solution.

Next, for § (0,1] we consider the following one-parameter family of maps
IT:[0,1] x C([-1, T], X) = C([-r, T]. X)
(6,v) — T (8,v) = 8F(v).

We will prove that the fixed point set of the family I,
FixIT={v e H(/S\, v) for somed € (0,11}

is a priori bounded.
Noting that the Holder inequality, we have

pgo — 1 1
qa
/ (t - S)qailll(s)ds = Zp,q -t p el = Zp,q -T p. el
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Let v € FixIl, for t € [0, T], we have

lv@)] < Q) (@)(0) + #(0) = h(0, ¢ + W) + |t v1) | +/ |AR(t — $)h(s, vs) | ds
0

+/ [R(¢ = $)[f (s, vs) + (v)(s)] | ds
0

<M(N + | ¢(0)])) + MMoM; (N + 1) + MoM: (Il ll_.0) + 1)

qM1C]_aF(1 +C{)
I'(1+qa)

F(1+q) /(1*5)‘7 ! (,U«(S)Ilvsll[ r,0] +/m(5 ) llvellj - ro|df) ds (3.22)

0

t
/ (t = Y (sl yoy + 1)ds

<M(N + ||¢(0)||) +MM0M1(KI+ 1) + MoM; (KI+ sup ||v(s)|| + l)

s€[0,t]

t

qA/hC]_al"(1+a)/ gt

+ t—s N+ sup |v(z)]| + 1) ds
F(l"'qa) 5 ( ) reps || ( )”

+ qjl:/l(quil;;) (t =)™ (u(s) + m*) (F” Tse‘ll(ﬂ] |"(f)||> ds

<ap +ay sup |v(s)]| +a2/(t—s)”°‘ Usup ||u(7)] ds,
7€[0,s]

se[0,t]

where

M]lear(l + Ol) Tqa

al'(1 +qa) (N+1)

ao =M(N + [¢(0) | + (M + 1)MoM; (N + 1) +
1
qM " ~  Mm*T9
ra +q)l”"’T il N+ al'(1 +q)
1

a; =MoM M l qup lleell
= + ,
1 oM1 F(l+q) p.q Mllre

GM1C1_oT(1 +a) gMm*T90-2)

“2% ra+q) " ora+g

We denote ¥ (1) = Szl[lopt] &) Let 7 e [0, t] such that 7 (t) = |v(7)|. Then, by (3.22),

we can see
(1) < ao+ a7 (1) + az / (t — )17 (s)ds.

By Lemma 2.10, there exists a constant x = k(ga) such that

a kaga a kaga, T
py< o T /(t @ tds< o =
1—a 1—a; qa(l—al)

Hence SUP lv@®| < w,
te[0,T]
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Consequently
Wz < W0l o) + IWlljor < N+ .
Now we consider a closed ball
Bg = {v e C([-r, T],X) : |vll|,7; <R} C C([-1, T]. X).

We take the radius R >0 large enough to contain the set FixII inside itself. Moreover,
from the proof above, F : B — C([—r, T], X) is B-condensing and it remains to apply
Theorem 2.9. O

If we assume p(-) L ([0, 71, R*) in (Hf)(1), then we have

Theorem 3.2. Assume that (Hf), (Hh), (Ha) and (Hg) are satisfied, if

(1) My - max{M,; L,} <1,

2) L;(l + MMoM; + M) + MoM; < 1

*

where Lg = Sup_Lg

te[—r,0]
compact subset of the space C([-r, T], X).

From the proof in Theorem 3.1, we can see that Theorem 3.2 holds.

(). Then the mild solutions set of problem (1.1) is a nonempty

4 Application

In this section, let X = L*([0, 7]), we consider the following integrodifferential problem:

q b4 2
’ P&@_wfw@ﬂww054=iﬂ@@

At o 1+1u(0,y)]
t 0
+t - sin (Ju; (0, x) |)+f(t—s)‘§ [ y2(®)-sin us (91,36) ') dods, 4.1)
0 - $3

u(t,0)=u(tm)=0,

u(0,x) =fc(x,y)sin(1+ |u(9,y) |)dy+u0 @,x), —-r<6<0,
0

where t € [0, 1], r >0, x € [0, 7] and u,(6, x) = u(t + 6, x). y1 : [0, ] x [0, 7] > R, v
: [-r, 0] > Rand c(x, y) € L*([0, 1] x [0, 7], R) are functions to be specified later.
To treat the above problem, we define

D (A) = H* ([0, 7]) N Ho' ([0, 7 ]),
Au=—u.
The operator -A is the infinitesimal generator of an analytic semigroup {7(¢)},»o on
X. Moreover, A has a discrete spectrum, the eigenvalues are n”, n € N, with the corre-

sponding normalized eigenvectors o, (x) = \/2 sin (nx) and the following properties
T

are satisfied:
o0
(a) if we D(A), then Aw = Z n% (w, wp) p.
n=1
(b) Foreachw € X, T (t) = ZD: exp (—n’t) (®, wn) wy and IT()Il < 1 for ¢ > 0.
1 1
(c) For each we X,A_?.a) _ Z‘X’ 1 (@, wp) 0y In particular, ||[A 2| =1.
n=1n
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1
(d) A% is given by 22, _ Zool 1 (@, wp) @, With domain
n=

1 o0
D(Az) = {weX:Zn(w,wn)a)n GX}.

n=1

We assume that the following conditions hold.
(1) The function 9; : [0, ] x [0, 7] — R is continuously differential with ;(0, y) = v,
(m, y) = 0 for y € [0, ] and

1
|:]T/ﬂ (8)/18(;:' y))zd)/dxj| : < 00.

(2) The function v, : [-r, 0] = R is a continuous function, and ly2 (0)|dO < oo.
—r
(3) The function c(x, y), x, y € [0, ], is measurable and there exists a constant N
such that

[le@nlar=n.
0

For x € [0, ] and ¢ € C([-r, 0], X), we set
v(t) (x) =u(t,x),
¢ () (x) =up (6,x),0 € [-1,0],

Ly e® ()
h ) I/h(xy)w i
) =e [ 1eip@ ()

’

b2

2 (9 (0)) (x) = /c(x,y) sin (1 + |¢ (0) (v)|) dy.

0
ft, @) () =/t-sin(lp (®) ®)]),
2 0
a(t,s, @) (x)=(t—s)_3 /Vz (9),sin<|‘p(9)l(x)|)del
s3

—r

where &/t € LP ([0, 1], R*) (p > ;)

Then the above Equation (4.1) can be reformulated as the abstract (1.1).
For t € [0, 1], we can see

If o] <Vt Nl o
For any ¢, ¢ € C([—r,0],X),

If & @) @) —f(t. @) @] <Vt llg ©) (x) — & ©) @Il
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Therefore, for any bounded set D < C([-r, 0], X), we have

X(f(,D)) <¥t- sup x(D®), telo1].

—-r<6<0

Noting that

[ L)) e®
ht o), o /n [/m(xy)w my
(h(t, @), wn) wy (x) (6 J 1+|¢(9)(y)| y | ax

0

e[ [0 (rixye® ) 2
n <0/ ax < 1+ |g0(9)( )| )dy \/n cos(nx)>

and
1 00
A2kt )| = D _n(h(t ), o) @
n=1
1 1
an (x, [ 2
[yl [feoms
0 0
< Millell—,o
and
1 1
A2h(t;, ) —A2h(t2, )
= Zn<h(t1/¢)_h(t21¢)lw‘ﬂ)w
n=1
1
2
2
<\/ |: 8)’1 X,y )) dydx:| lt1 — b
1

/ / (7 )”Wx} {/ v O @@(y))zdyr

0
<Ly (|t1 — |+ e —@li-a).

1 1

[ ]

can see that for any bounded set D < C([-r, 0], X) and t € [0, 1],

1
X (A2h(t,D)) <Ly, sup x(D(®)).

0e[—r,0]
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Moreover,

0
2 0
lla(t s @) @l (I—S)_3/V2 (9)-Sin<|¢( )1(x)|)d9

2 53

IA

0
2 1
(t—s5)"3s"3 / ly2 ) 1d6 - ll@ll 0,
—r

2 1 (0
where m (t,s) = (t —s) 3s 3 |2 (0)|d6 . Then, we obtain

—r

t 0 t 2 1 21 0
sup [ m(t,s)ds = [ |y2 (6)|d6 - sup f(t—s)_35_3ds=B(3,3) - [ ly2(0)Id6

tel0,110 tel0,110
and

0
2 1
lla(t,s ) (x) —a(t,s @) @ 5(1—5)73573/|V2 O llg ©) (x) — @ (6) (%) db.

Hence, for any bounded set D < C([-r, 0], X), we have
x(at,s, D)) <¢(s) sup x (D)),

—r<6<0
_2 1y
where C(t,s):=(t—s)35 3 [" |y(0)|do
21
sup [y¢ (t,5)ds=B (3, 3>.f3 [v2 (0)]d6.
te[0,1]

For ¢, ¢ € C([-1,0],X),6 € [—r,0], we can get

T 1/2

130) @) — 8@ W] < //cz(x,y)dydx o=l =Lg-llo — @l
0

0

Moreover,
ls@ @l = [ en)ldy=n.
0

Suppose further that there exist constants M*, M’ € (0, 1) such that
p—1 1

) 1 (217—2) p (k )p vy
h+F(q) pg—2 k+p =M

(2) Ly @+Ly) + Ly < M,
then (4.1) has a mild solution by Theorem 3.1.
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