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Abstract

For a class of fifth degree nilpotent system, the shortened expressions of the first
eight quasi-Lyapunov constants are presented. It is shown that the origin is a center
if and only if the first eight quasi-Lyapunov constants are zeros. Under a small
perturbation, the conclusion that eight limit cycles can be created from the eight-
order weakened focus is vigorously proved. It is different from the usual Hopf
bifurcation of limit cycles created from an elementary critical point.
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1 Introduction and statement of the main results
Two main open problems in the qualitative theory of planar analytic differential systems

are characterizing the local phase portrait at an isolated critical point and the determina-

tion and distribution of limit cycles. Recall that a critical point is said to be of focus-center

type if it is either a focus or a center. In what follows, this problem is called the focus-cen-

ter problem or the monodromy problem, which is usually done by the blow-up procedure.

Of course, if the linear part of the critical point is non-degenerate (i.e., its determinant

does not vanish) the characterization is well known. The problem has also been solved

when the linear part is degenerate but not identically null, see [1-3].

On the other hand, once we know that a critical point is of focus-center type, one comes

across another classical problem, usually called the center problem or the stability problem,

that is of distinguishing a center from a focus. The Poincaré-Lyapunov theory was devel-

oped to solve this problem in the case where the critical point is non-degenerate, see [4,5].

From a theoretical viewpoint, the study of this problem for a concrete family of differential

equations goes through the calculation of the so-called Lyapunov constants, which gives

the necessary conditions for center, see [6,7]. To completely solve the stability problem of

polynomial systems of a fixed degree, although the Hilbert basis theorem asserts that the

number of needed Lyapunov constants is finite, which is the number is still open.

Probably the most studied degenerated critical points are the nilpotent critical points.

For these points, zero is a double eigenvalue of the differential matrix, but it is not iden-

tically zero. Nevertheless, given an analytic system with a nilpotent monodromic critical

point it is not an easy task to know if it is a center or a focus. Analytic systems having a

nilpotent critical point at the origin were studied by Andreev [1] in order to obtain their

Wu et al. Advances in Difference Equations 2012, 2012:45
http://www.advancesindifferenceequations.com/content/2012/1/45

© 2012 Wu et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:wuyusen82714@yahoo.com.cn
http://creativecommons.org/licenses/by/2.0


local phase portraits. However, Andreev’s results do not distinguish between a focus and

a center. Takens [8] provided a normal form for nilpotent center of foci. Moussu [3]

found the C∞ normal form for analytic nilpotent centers. Berthier and Moussu in [9]

studied the reversibility of the nilpotent centers. Teixeira and Yang [10] analysed the

relationship between reversibility and the center-focus problem for systems

ẋ = −y + X(x, y),

ẏ = x + Y(x, y),
(1:1)

and

ẋ = y + X(x, y),

ẏ = Y(x, y),
(1:2)

where X(x, y) and Y(x, y) are real analytic functions without constant and linear

terms, defined in a neighborhood of the origin.

It is well known that the dynamical behavior of a dynamical system depends on its

parameters. As these parameters are varied, changes may occur in the qualitative struc-

ture of the solutions for certain parameter values. These changes are called bifurcations

and the parameter values are called a bifurcation set. For a given family of polynomial

differential equations usually the number of Lyapunov constants needed to solve the

center-focus problem is also related with the so-called cyclicity of the point, i.e., the

number of limit cycles that appear from it by small perturbations of the coefficients of

the given differential equation inside the family considered (see [11] for cases where

this relation does not exist). A classical way to produce limit cycles is by perturbing a

system which has a center, in such a way that limit cycles bifurcate in the perturbed

system from some of the periodic orbits of the period annulus of the center of the

unperturbed system.

For a planar dynamical system, if the origin is an elementary critical point and the

linearized system at the origin has a simple pair of pure imaginary eigenvalues ±iω,

ω > 0, then, under a small perturbation of the parameters, a small amplitude limit

cycle can be created in a small neighborhood of the origin. This local change of the

phase portraits is called Hopf bifurcations.

If the origin is not an elementary critical point, when the parameters are changed, what

happens in a small neighborhood of the origin? This bifurcation phenomena is called the

bifurcation of multiple critical point. To the best of our knowledge, there are essentially

three different ways, the normal form theory [6], the Poincaré return map [12] and Lyapu-

nov functions [13], of studying the center-focus problem of nilpotent critical points, see

for instance [3,14,15]. On the other hand, the three tools mentioned above have been also

used to generate limit cycles from the critical point, see for instance [15-17], respectively.

In [18,19] it is proved that any analytic nilpotent center is limit of an analytic linear

type center, i.e., given any nilpotent center of a system X0, there always exists a one-

parametric perturbation Xμ which has a center for any μ ≠ 0 such that for μ ® 0 we

have that Xμ ® X0. Therefore, any nilpotent center can be detected using the same

methods that for a nondegenerate center, for instance the Poincaré-Liapunov method.

Here we are glad to highlight the work of Liu and Li [20], where a new definition of

the focal value, quasi-Lyapunov constant, are given for the three-order nilpotent criti-

cal point. Meanwhile, the equivalence of quasi-Lyapuonv constant with focal value is
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proved. A linear recursive formula to compute quasi-Lyapunov constants is also pre-

sented. Afterward, they proved that if the three-order nilpotent origin is a m-order

weakened focus, then, by a small perturbation for the unperturbed system, there exist

m limit cycles in a neighborhood of the origin. At the same time, the origin becomes

an elementary critical point and two complex singular points.

Let N(n) be the maximum possible number of limit cycles bifurcating from nilpotent

critical points for analytic vector fields of degree n. The authors of [16] got N(3) ≥ 2,

N(5) ≥ 5, N(7) ≥ 9; The authors of [15] got N(3) ≥ 3, N(5) ≥ 5; For a family of Kukles

system with six parameters, the authors of [17] got N(3) ≥ 3. The authors of [21,22]

got N(3) ≥ 7 and N(3) ≥ 8, respectively.

The aim of this article is to use the integral factor method introduced in [20], in

order to compute what will be called quasi-Lyapunov constants (see Section 2) for a

three-order nilpotent critical point in the following quintic system:

dx
dt

= y + a50x
5y + a41x

4y + a32x
3y2 + a14xy

4 + a05y
5,

dy
dt

= −2x3 + b21x
2y + b12xy

2 + b03y
3.

(1:3)

In addition, by applying them we give the center condition and lower bound for the

cyclicity of the origin, i.e., N(5) ≥ 8.

Our main results are summarized in the following two theorems:

Theorem 1.1. System (1.3) has a center at the origin if and only if

b21 = b03 = a32 = a14 = a50 = 0. (1:4)

Consider the following perturbed system of (1.3)

dx
dt

= δx + y + a50x
5 + a41x

4y + a32x
3y2 + a14xy

4 + a05y
5,

dy
dt

= 2δy − 2x3 + b21x
2y + b12xy

2 + b03y
3.

(1:5)

When 0 <δ ≪ 1, in a small neighborhood of the origin, system (1.5) has exact three

critical points: O(0, 0), (x1, y1) and (x2, y2), where O(0, 0) is an elementary critical

point, another two critical points are complex with

x1,2 = ±iδ + o(δ), y1,2 = ∓iδ2 + o(δ2), (1:6)

when δ ® 0, three critical points coincide to become the three-order nilpotent criti-

cal point O(0, 0) of system (1.3).

Theorem 1.2. Assume that the origin of system (1.3) is an eight-order weakened nil-

potent focus. Then, under a small perturbation of system (1.3), for a small parameter δ,

in a neighborhood of the origin of system (1.5), there exist 8 limit cycles enclosing the

elementary node O(0, 0).

Theorems 1.1 and 1.2 will be proved in Sections 3 and 4, respectively.

2 Preliminaries
In this section, we summarize some definitions and results about the center-focus pro-

blem of three-order nilpotent critical points of the planar dynamical systems that we

shall use later on. For more details and proofs about these results see [20].
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In canonical coordinates the Lyapunov system with the origin as a nilpotent critical

point can be written in the form:

dx
dt

= y +
∞∑

i+j=2

aijx
iyj = X(x, y),

dy
dt

=
∞∑

i+j=2

bijxiyj = Y(x, y).

(2:1)

Suppose that the function y = y(x) satisfies X(x, y) = 0, y(0) = 0. Lyapunov proved

(see for instance [23]) that the origin of system (2.1) is a monodromic critical point (i.

e., a center or a focus) if and only if

Y(x, y(x)) = αx2n+1 + o(x2n+1), α < 0,[
∂X
∂x

+
∂Y
∂x

]
y=y(x)

= βxn + o(xn),

β2 + 4(n + 1)α < 0,

(2:2)

where n is a positive integer. The monodromy problem in the case of a nilpotent sin-

gular point was also solved in [24].

Definition 2.1. Let y = f(x) = -a20x
2 + o(x2) be the unique solution of the function

equation X(x, f(x)) = 0, f(0) = 0 at a neighborhood of the origin. If there are an integer

m and a nonzero real number a, such that

Y(x, f (x)) = αxm + o(xm), (2:3)

we say that the origin is a high-order singular point of system (2.1) with the multipli-

city m.

By using the results in [23], we attain the following conclusion.

Lemma 2.1. The origin of system (2.1) is a three-order singular point which is a sad-

dle point or a center, if and only if b20 = 0, (2a20 - b11)
2 + 8b30 < 0.

When the condition in Lemma 2.1 holds, we can assume that

a20 = μ, b20 = 0, b11 = 2μ, b30 = −2. (2:4)

Otherwise, by letting (2a20 - b11)
2 + 8b30 = -16l2, 2a20 + b11 = 4lμ and making the

transformation ξ = λx, η = λy + 1
4 (2a20 − b11)λx2, we obtain the mentioned result.

From (2.4), system (2.1) becomes the following real autonomous planar system

dx
dt

= y + μx2 +
∞∑

i+2j=3

aijx
iyi = X(x, y),

dy
dt

= −2x3 + 2μxy +
∞∑

i+2j=4

bijxiyj = Y(x, y).

(2:5)

Write that

X(x, y) = y +
∞∑
k=2

Xk(x, y), Y(x, y) =
∞∑
k=2

Yk(x, y), (2:6)
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where for k = 1, 2, ...,

Xk(x, y) =
∑
i+j=k

aijx
iyj, Yk(x, y) =

∑
i+j=k

bijx
iyj. (2:7)

By using the transformation of generalized polar coordinates

x = r cos θ , y = r2 sin θ , (2:8)

system (2.5) becomes

dr
dt

=
cos θ[sin θ(1 − 2cos2θ) + μ(cos2θ + 2sin2θ)]

1 + sin2θ
r2 + o(r2),

dθ
dt

=
−r

2(1 + sin2θ)(cos4θ + sin2θ)
+ o(r).

(2:9)

Thus, we have

dr
dθ

=
− cos θ[sin θ(1 − 2cos2θ) + μ(cos2θ + 2sin2θ)]

2(cos4θ + sin2θ)
r + o(r). (2:10)

Let

r = r̃(θ , h) =
∞∑
k=1

νk(θ)hk (2:11)

be a solution of (2.10) satisfying the initial condition r|θ = 0 = h, where h is small and

ν1(θ) = (cos4θ + sin2θ)
−1
4 exp

(−μ

2
arctan

sin θ

cos2θ

)
,

ν1(kπ) = 1, k = 0, ±1, ±2, . . . .

(2:12)

Because for all sufficiently small r, we have dθ/dt < 0. In a small neighborhood, we

can define the successor function of system (2.5) as follows:

�(h) = r̃(−2π , h) − h =
∞∑
k=2

νk(−2π)hk. (2:13)

We have the following result:

Lemma 2.2. For any positive integer m, ν2m+1(-2π) has the form

ν2m+1(−2π) =
m∑
k=1

ς
(m)
k ν2k(−2π), (2:14)

where ς
(m)
k

is a polynomial of νj(π), νj(2π), νj(-2π), (j = 2, 3, ..., 2m) with rational

coefficients.

It is different from the center-focus problem for the elementary critical points, we

know from Lemma 2.2 that when k > 1 for the first non-zero νk(-2π), k is an even

integer.

Definition 2.2. (1) For any positive integer m, ν2m(-2π) is called the m-th focal value

of system (2.5) in the origin.
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(2) If ν2(-2π) ≠ 0, then, the origin of system (2.5) is called 1-order weakened focus. In

addition, if there is an integer m > 1, such that ν2(-2π) = ν4(-2π) = ... = ν2m-2(-2π) = 0,

but ν2m(-2π) ≠ 0, then, the origin is called a m-order weakened focus of system (2.5).

(3) If for all positive integer m, we have ν2m(-2π) = 0, then, the origin of system (2.5) is

called a center.

Definition 2.3. Let fk, gk be two bounded functions with respect to μ and all aij, bij, k

= 1, 2, .... If for some integer m, there exist ξ
(m)
1 , ξ (m)

2 , . . . , ξ (m)
m−1, which are continuous

bounded functions with respect to μ and all aij, bij, i = 1, 2, ..., such that

fm = gm +
(
ξ
(m)
1 f1 + ξ

(m)
2 f2 + · · · + ξ

(m)
m−1fm−1

)
. (2:15)

We say that fm is equivalent to gm, denoted by fm ~ gm.

If f1 = g1 and for all positive integers m, fm ~ gm, we say that the function sequences

{fm} and {gm} are equivalent, denoted by {fm} ~ {gm}.

We know from Lemma 2.2 and Definition 2.2 that for the sequence {νk(-2π)}, k ≥ 2,

we have ν2k+1(-2π) ~ 0, k = 1, 2, ....

We next state the results concerning with bifurcation of limit cycles of system (2.5).

Consider the perturbed system of (2.5)

dx
dt

= δx + X(x, y),
dy
dt

= 2δy + Y(x, y), (2:16)

where X(x, y), Y(x, y) are given by (2.6). Clearly, when 0 < |δ| ≪ 1, in a neighbor-

hood of the origin, there exist one elementary node at the origin and two complex cri-

tical points of system (2.16) at (x1, y1) and (x2, y2), where

x1,2 =
−δ

μ ± i
+ o(δ), y1,2 =

±iδ2

(μ ± i)2
+ o(δ2). (2:17)

When δ ® 0, one elementary node and two complex critical points coincide to

become a three-order critical point. Let

r = r̃(θ , h, δ) = ν0(θ , δ) +
∞∑
k=1

νk(θ , δ)hk, (2:18)

be a solution of system (2.16) satisfying the initial condition r|θ = 0 = h, where h is

sufficiently small and

ν0(0, δ) = 0, ν1(0, δ) = 1, . . . , νk(0, δ) = 0, k = 2, 3, . . . . (2:19)

We have that

ν0(θ , δ) = A(θ)δ + o(δ), (2:20)

where

A(θ) =
−ν1(θ , 0)

2

θ∫
0

(1 + sin2θ)dθ

ν1(θ , 0)(cos4θ + sin2θ)
. (2:21)

Hence, when 0 <h ≪ 1, |θ| < 4π, δ = o(h), r̃(θ , h, δ) = ν1(θ , 0)h + o(h) and

ν0(−2π , δ) = A(−2π)δ + o(δ), (2:22)
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where

A(−2π) =
1
2

2π∫
0

1 + sin2θ

(cos4θ + sin2θ)
3
4

exp
(

μ

2
arctan

sin θ

cos2θ

)
dθ > 0. (2:23)

Consider the system

dx
dt

= δx + y +
∞∑

k+j=2

akj(γ )xkyj,

dy
dt

= 2δy +
∞∑

k+j=2

bkj(γ )xkyj,

(2:24)

where g = {g1, g2, ..., gm-1} is (m-1)-dimensional parameter vector. Let

γ0 = {γ (0)
1 , γ (0)

2 , . . . , γ (0)
m−1} be a point at the parameter space. Suppose that for ∥g - g0∥

≪ 1, the functions of the right hand of system (2.24) are power series of x, y with a

non-zero convergence radius and have continuous partial derivatives with respect to g.
In addition,

a20(γ ) ≡ μ, b20(γ ) ≡ 0, b11(γ ) ≡ 2μ, b30(γ ) ≡ −2. (2:25)

For an integer k, letting ν2k(-2π, g) be the k-order focal value of the origin of system

(2.24)δ = 0.

Theorem 2.1. If for g = g0, the origin of system (2.24)δ = 0 is a m-order weak focus,

and the Jacobin

∂(ν2, ν4, . . . , ν2m−2)
∂(γ1, γ2, . . . , γm−1)

∣∣∣∣
γ=γ0

�= 0, (2:26)

then there exist two positive number δ* and g*, such that for 0 < |δ| <δ*, 0 < ∥g - g0∥
<g*, in a neighborhood of the origin, system (2.24) has at most m limit cycles which

enclose the origin (an elementary node) O(0, 0). In addition, under the above conditions,

there exist γ̃ , δ̃, such that when γ = γ̃, δ = δ̃, there exist exactly m limit cycles of (2.24)

in a small neighborhood of the origin.

We give the following key results, which define the quasi-Lyapunov constants and

provide a way of computing them.

Theorem 2.2. For system (2.5), one can construct successively a formal series

M(x, y) = y2 +
∞∑

k+j=3

ckjx
kyj, (2:27)

such that

∂

∂x

(
X

Ms+1

)
+

∂

∂y

(
Y

Ms+1

)
=

1
Ms+2

∞∑
m=1

(2m − 4s − 1)λmx
2m+4, (2:28)

i.e., (
∂X
∂x

+
∂Y
∂y

)
M − (s + 1)

(
∂M
∂x

X +
∂M
∂y

Y
)
=

∞∑
m=1

λm(2m − 4s − 1)x2m+4. (2:29)
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where s is a given positive integer,

c30 = 0, c40 = 1, (2:30)

and

{ν2m(−2π)} ∼ {σmλm}, (2:31)

with

σm =
1
2

2π∫
0

(1 + sin2θ)cos2m+4θ

(cos4θ + sin2θ)
2 ν2m−1

1 (θ)dθ > 0. (2:32)

We see from (2.27) and (2.30) that when (2.8) holds, M = y2 + x4 + o(r4).

Definition 2.4. For system (2.5), lm is called the m-th quasi-Lyapunov constant of the

origin.

Theorem 2.3. For any positive integer s and a given number sequence

{c0β }, β ≥ 3, (2:33)

one can construct successively the terms with the coefficients cab satisfying a ≠ 0 of the

formal series

M(x, y) = y2 +
∞∑

α+β=3

cαβx
αyβ =

∞∑
k=2

Mk(x, y), (2:34)

such that

∂

∂x

(
X

Ms+1

)
+

∂

∂y

(
Y

Ms+1

)
=

1
Ms+2

∞∑
m=5

ωm(s,μ)xm, (2:35)

where for all k, Mk(x, y) is a k-homogeneous polynomial of x, y and sμ = 0.

Now, (2.35) can be written by(
∂X
∂x

+
∂Y
∂y

)
M − (s + 1)

(
∂M
∂x

X +
∂M
∂y

Y
)
=

∞∑
m=3

ωm(s,μ)xm. (2:36)

It is easy to see that (2.36) is linear with respect to the function M, so that we can

easily find the following recursive formulae for the calculation of cab and ωm(s, μ).

Theorem 2.4. For a ≥ 1, a + b ≥ 3 in (2.34) and (2.35), cab can be uniquely deter-

mined by the recursive formula

cαβ =
1

(s + 1)α
(Aα−1,β+1 + Bα−1,β+1). (2:37)

For m ≥ 1, ωm(s, μ) can be uniquely determined by the recursive formula

ωm(s,μ) = Am,0 + Bm,0, (2:38)

where

Aαβ =
α+β−1∑
k+j=2

[k − (s + 1)(α − k + 1)]akjcα−k+1,β−j ,

Bαβ =
α+β−1∑
k+j=2

[j − (s + 1)(β − j + 1)]bkjcα−k,β−j+1.

(2:39)
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Notice that in (2.39), we set

c00 = c10 = c01 = 0,

c20 = c11 = 0, c02 = 1,

cαβ = 0, if α < 0 or β < 0.

(2:40)

We see from Theorem 2.4 that, by choosing {cab}, such that

ω2k+1(s,μ) = 0, k = 1, 2, . . . , (2:41)

we can obtain a solution group of {cab} of (2.41), thus, we have

λm =
ω2m+4(s,μ)
2m − 4s − 1

. (2:42)

Clearly, the recursive formulae presented by Theorem 2.4 is linear with respect to all

cab. Accordingly, it is convenient to realize the computations of quasi-Lyapunov con-

stants by using computer algebraic system like Mathematica.

3 Proof of Theorem 1.1
Now we start the preparation of the proof of Theorem 1.1. Obviously, the origin of

system (1.3) is a three-order nilpotent critical point which is a center or a focus.

Straightforward computation by using the recursive formulae shown in Theorem 2.4

and computer algebraic system Mathematica gives the following result. For detailed

recursive formulae, please see Appendix.

Theorem 3.1. The first eight quasi-Lyapunov constants of the origin of system (1.3)

are as follows:

λ1 =
1
3
b21,

λ2 ∼ 1
5
(5a50 + 6b03),

λ3 ∼ 1
21

(6a32 − a50b12),

λ4 ∼ 1
135

(36a14 − 45a41a50 − 8a50b212),

λ5 ∼ 1
693

a50(80a250 − 201a41b12 − 40b312),

λ6 ∼ 1
10530

a50(5400a05 + 90a241 + 1551a41b212 + 280b412),

λ7 ∼ − 1
3742200

a50b12(3541005a241 + 1107732a41b212 + 83680b412),

λ8 ∼ − 1
2246933520

a41a50(1506240a241 − 231634641a41b212 − 4194300b412),

(3:1)

where in the above expression of lk, we have already let l1 = l2 = ... = lk-1 = 0, k = 2,

3, 4, 5, 6, 7, 8.

Lemma 3.1. To guarantee the origin of system (1.3) is a center, the necessary condi-

tion is that a50 = 0.

Proof. From (3.1), we have l5 = 0 if and only if a50 = 0 or

80a250 − 201a41b12 − 40b312 = 0. (3:2)
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Notice the expressions of l7 and l8, we calculate the following resultant:

Resultant[λ7/a50,λ8/a50, a41] =
3633949684618013

71987660827238130975000
b1512. (3:3)

Consequently, using (3.2) l7 = l8 = 0 yields a50 = 0, as we wanted to prove.

It follows easily from Theorem 3.1 and Lemma 3.1 that

Theorem 3.2. The first eight quasi-Lyapunov constants of the origin of system (1.3)

are zeros if and only if condition (1.4) is satisfied.

On the other hand, when condition (1.4) holds, system (1.3) goes over to

dx
dt

= y(1 + a41x
4 + a05y

4),

dy
dt

= −x(2x2 − b12y
2),

(3:4)

the vector field defined by system (3.4) is symmetrical with respect to the origin.

Therefore, we have

Theorem 3.3. The origin of system (1.3) is a center if and only if the first eight quasi-

Lyapunov constants vanish, i.e., this situation happens if and only if condition (1.4)

holds.

All the above discussion allows to finish the proof of Theorem 1.1.

4 Proof of Theorem 1.2
We proceed to show that 8 limit cycles can be bifurcated in this instance. We found

that the highest possible order for a weakened focus at the origin is eight. First of all,

we need to find the conditions under which the nilpotent origin of system (1.3) is a

eight-order weakened focus.

From the fact l1 = l2 = l3 = l4 = l5 = l6 = l7 = 0, l8 ≠ 0, the following statement

holds.

Theorem 4.1. The origin is a weakened focus of maximum order eight for system

(1.3). It is of order eight if and only if one of the following four sets of conditions holds:

a41 =
2(−92311 + 3

√
32272369)

1180335
b212, a50 =

1
10

√
1684063 + 201

√
32272369

157378
b
3
2
12,

b21 = 0, b03 = − 1
12

√
1684063 + 201

√
32272369

157378
b
3
2
12,

a32 =
1
60

√
1684063 + 201

√
32272369

157378
b
5
2
12, a14 =

(37823 + 9
√
32272369)

√
1684063 + 201

√
32272369

157378
14164020

b
7
2
12,

a05 = −8189365715 + 1597749
√
32272369

1114552569780
b412, b12 > 0;

(4:1)

a41 =
2(−92311

√
32272369)

1180335
b212, a50 = − 1

10

√
1684063 + 201

√
32272369

157378
b
3
2
12,

b21 = 0, b03 =
1
12

√
1684063 + 201

√
32272369

157378
b
3
2
12,

a32 = − 1
60

√
1684063 + 201

√
32272369

157378
b
5
2
12, a14 = −

(37823 + 9
√
32272369)

√
1684063 + 201

√
32272369

157378
14164020

b
7
2
12,

a05 = −8189365715 + 1597749
√
32272369

1114552569780
b412, b12 > 0;

(4:2)
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a41 =
2(−92311 − 3

√
32272369)

1180335
b212, a50 =

1
10

√
1684063 − 201

√
32272369

157378
b
3
2
12,

b21 = 0, b03 = − 1
12

√
1684063 − 201

√
32272369

157378
b
3
2
12,

a32 =
1
60

√
1684063 − 201

√
32272369

157378
b
5
2
12, a14 =

(37823 − 9
√
32272369)

√
1684063 − 201

√
32272369

157378
14164020

b
7
2
12,

a05 =
−8189365715 + 1597749

√
32272369

1114552569780
b412, b12 > 0;

(4:3)

a41 =
2(−92311 − 3

√
32272369)

1180335
b212, a50 = − 1

10

√
1684063 − 201

√
32272369

157378
b
3
2
12,

b21 = 0, b03 =
1
12

√
1684063 − 201

√
32272369

157378
b
3
2
12,

a32 = − 1
60

√
1684063 − 201

√
3227236

157378
b
5
2
12, a14 =

(−37823 + 9
√
32272369)

√
1684063 − 201

√
32272369

157378
14164020

b
7
2
12,

a05 =
−8189365715 + 1597749

√
32272369

1114552569780
b412, b12 > 0.

(4:4)

Proof. Observe that l5 = l7 = 0, l8 ≠ 0, we get

80a250 − 201a41b12 − 40b312 = 0, (4:5)

and

3541005a241 + 1107732a41b212 + 83680b412 = 0, (4:6)

with a50b12a41 ≠ 0.

More explicitly, (4.5) can be put in the form

a250 =
1
80

b12(201a41 + 40b212). (4:7)

The equivalent expression of (4.6) is

3541005
(
a41
b212

)2

+ 1107732
a41
b212

+ 83680 = 0. (4:8)

By solving the Equation (4.8), we obtain that

a41 =
2(−92311 ± 3

√
32272369)

1180335
b212. (4:9)

Hence (4.5) is simplified as

a250 =
1684063 ± 201

√
32272369

15737800
b312, (4:10)

where
1684063 + 201

√
32272369

15737800
≈ 0.179563 > 0,

1684063 − 201
√
32272369

15737800
≈

0.0344525 > 0
,

then b12 > 0.

The fact l1 = l2 = l3 = l4 = l6 = 0 follows that

b21 = 0, b03 = −5
6
a50, a32 =

1
6
a50b12, a14 =

1
36

a50(45a41 + 8b212),

a05 = − 1
5400

(90a241 + 1551a41b212 + 280b412).
(4:11)

Wu et al. Advances in Difference Equations 2012, 2012:45
http://www.advancesindifferenceequations.com/content/2012/1/45

Page 11 of 13



Without loss of generality, we assume that

a41 =
2(−92311 + 3

√
32272369)

1180335
b212, a50 =

1
10

√
1684063 + 201

√
32272369

157378
b
3
2
12. (4:12)

After substituting (4.12) into (4.11) we can obtain condition (4.1). At the moment,

some easy computations lead us to

λ8 = −
(−9759524327217471 − 2029352919017

√
32272369)(−92311 + 3

√
32272369)

√
1684063 + 201

√
32272369

157378
22808202724416130287435000

b
15
2
12

≈ −0.00029769b
15
2
12 �= 0.

(4:13)

Following similar steps we can obtain the other three families of statement (4.2)-

(4.4). Hence the claim is proved.

In arriving at our conclusions, we only need to show that, when one of the four sets

of conditions in Theorem 4.1 holds, the Jacobian of the first eight quasi-Lyapunov con-

stants of system (1.3) with respect to b21, b03, a32, a14, a50, a05, a41 are not equal to

zero. An easy computation shows that

∂(λ1,λ2,λ3,λ4,λ5,λ6,λ7)
∂(b21, b03, a32, a14, a50, a05, a41)

∣∣∣∣
(4.1)

=
∂(λ1,λ2,λ3,λ4,λ5,λ6,λ7)

∂(b21, b03, a32, a14, a50, a05, a41)

∣∣∣∣
(4.2)

= −32(10924089213604647 + 2069952083969
√
32272369)

114161509909380574265625
b912 ≈ −6.35822 × 10−6b912 �= 0,

(4:14)

∂(λ1,λ2,λ3,λ4,λ5,λ6,λ7)
∂(b21, b03, a32, a14, a50, a05, a41)

∣∣∣∣
(4.3)

=
∂(λ1,λ2,λ3,λ4,λ5,λ6,λ7)

∂(b21, b03, a32, a14, a50, a05, a41)

∣∣∣∣
(4.4)

=
32(−10924089213604647 + 2069952083969

√
32272369)

114161509909380574265625
b912 ≈ 2.3407 × 10−7b912 �= 0.

(4:15)

The above considerations imply the conclusion of Theorem 1.2.

Appendix
We present here the Mathematica code for computing the quasi-Lyapunov constants

at the nilpotent origin for system (1.3) based on the algorithm of Theorem 2.4:

c0,0 = 0, c1,0 = 0, c0,1 = 0, c2,0 = 0, c1,1 = 0, c0,2 = 1;

when a < 0, or b < 0, ca,b = 0;

else

cα,β = (a50(5 − (1 + s)(−5 + α))c−5+α,1+β + a41(4 − (1 + s)(−4 + α))c−4+α,β

+ 2(1 + s)(2 + β)c−4+α,2+β + a32(3 − (1 + s)(−3 + α))c−3+α,−1+β

+ b21(1 − (1 + s)(1 + β))c−3+α,1+β + b12(2 − (1 + s)β)c−2+α,β

+ a14(1 − (1 + s)(−1 + α))c−1+α,−3+β + b03(3 − (1 + s)(−1 + β))

× c−1+α,−1+β − a05(1 + s)αcα,−4+β )/(s + 1)/α,

ωm = a50(5 − (−4 +m)(1 + s))c−4+m,0 + a41(4 − (−3 +m)(1 + s))c−3+m,−1

+ 2(1 + s)c−3+m,1 + a32(3 − (−2 +m)(1 + s))c−2+m,−2 + b21c−2+m,0

+ b12(3 + s)c−1+m,−1 + a14(1 − m(1 + s))cm,−4 + b03(3 + 2(1 + s))cm,−2

− a05(1 +m)(1 + s)c1+m,−5,

λm =
ω2m+4

2m − 4s − 1
.
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