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Abstract

By using the critical point theory and S1 index theory, we obtain a new result for the
existence and multiplicity of periodic solutions for a class of second-order delay
differential equations x“ (t) = f (x(t))-[f (x(t-1))+f (x(t-2))+...+f (x(t-(N -1)))].
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1 Introduction
Inspired by the excellent study in [1], many authors [2-16] studied the following differ-

ential delay equations

x′(t) = − [
f
(
x(t − 1)

)
+ f

(
x(t − 2)

)
+ · · · + f

(
x
(
t − (N − 1)

))]
, (1:1)

where f Î C (ℝ, ℝ),and N ≥ 2 is an integer.

Kaplan and Yorke [2] introduced a technique of couple system which allows them to

reduce the search for periodic solutions of a differential delay equation to the problem

of finding periodic solutions for a related system of ordinary differential equations.

They study periodic solutions of (1.1) with N = 2, f Î C (ℝ, ℝ) is odd, xf (x) >0 for x ≠

0 and f satisfies some suitable conditions near 0 and ∞. More precisely, if the solution

x(t) of (1.1) with N = 2 satisfies x(t) = -x(t-2), let

x1(t) = x(t), x2 (t) = x(t − 1), (1:2)

then X(t) = (x1(t), x2(t))
T satisfies

X′ (t) = A2∇H(X), (1:3)

where, A2 =
(
0 −1
1 0

)
,

i.e., A2 is a skew symmetric matrix, and

H(X) =

x1∫
0

f (s)ds +

x2∫
0

f (s)ds. (1:4)

∇H(X) is the gradient of H.

In fact, by direct computation, one has the following proposition:
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Proposition 1.1. (i) Any solution x(t) of (1.1) with N = 2, and x(t) = -x(t - 2) will give

a solution of (1.3) X(t) = (x1(t), x2(t))
T by (1.2). Moreover, X(t) has the following sym-

metric structure

x1(t) = −x2 (t − 1) , x2 (t) = x1(t − 1), (1:5)

(ii) Any solution X(t) = (x1(t), x2(t))
T of (1.3) with the symmetric structure (1.5) will

give a solution of (1.1) by letting x(t) = x1 (t). Moreover, x(t + 2) = -x(t).

Kaplan and Yorke proved that (1.3) has periodic solutions with the symmetric struc-

ture (1.5), which give the Kaplan-Yorke type periodic solutions of (1.1) with period 4, i.

e., x(t) satisfying x(t) = -x(t - 2). They further conjectured that similar result should be

true for the general case N ≥ 2, i.e., under similar conditions for f, (1.1) has a 2N-peri-

odic Kaplan-Yorke type periodic solution x(t), i.e., x(t) satisfying x(t) = -x(t - N).

Li and He [6-8], in an attempt to reuse Kaplan and Yorke’s original idea, applied

Lyapunov Center Theorem and some known results about convex Hamiltonian sys-

tems [17, Theorem 7.2] to obtain 4-periodic solutions of (1.4). But those 4-periodic

solutions obtained by [17, Theorem 7.2] give no information about the symmetric

structure (1.5) or the minimal period. The solutions of (1.3), which will not generate

noncontact solutions of (1.1), see [14, Remark 3.3].

Herz [12] study (1.1) with N = 2 by Lyapunov direct method. And, Jekel and John-

ston [13], proved the existence of a 2N-periodic Kaplan-Yorke type periodic solution

for (1.1) by Kaplan-Yorke original method and homotopic method.

Fei [14,15] applied the pseudo-index theory [17-20] to obtain periodic solution in a

subspace, which surely have the required symmetric structure (1.5) and give solutions

to (1.1).

In recent years, Guo and Yu [16] considered (1.1) with N = 2 by variational methods

directly, and they obtain the Kaplan-Yorke type periodic solutions. That is to say that

they do not necessarily transform the existence problem of (1.1) to existence problems

for related systems (1.3). Afterwards, Cheng and Hu [21] studied (1.1) with N = 2 by

Guo-Yu’s method in [16]. Guo [22] studied the following second-order differential

delay equation by Guo-Yu’s method in [16]

x′′ (t) = −f (x (t − r)) , (1:6)

they obtained the multiplicity results for periodic solutions, but the solutions are not

Kaplan- Yorke type.

The authors [23,24] considered the Kaplan-Yorke type periodic solutions of (1.1)

with N = 2 by Maslov-type index [25] and Morse theory [26], respectively.

Recently, some researchers [27-31] have begun to study the existence of solutions for

second-order differential delay equation by using a variational method. However, to

the best of authors’ knowledge, the study of Kaplan-Yorke type periodic solutions of

second- order differential delay equation using a variational method has received con-

siderably less attention. We find the method apply in [6-15], such as the structure of

variational does not directly apply to second-order differential delay equation.

Motivated by the study in [7-16,21-24,27-32], in this article we are concerned with

the existence of Kaplan-Yorke type periodic solutions of the following second-order
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differential delay equations

x′′ (t) = f (x (t)) − [
f (x (t − 1)) + f (x (t − 2)) + · · · + f (x (t − (N − 1)))

]
, (1:7)

where f Î C (ℝ,ℝ) is odd, and N ≥ 2 is an integer

If x(t) = x(t+N), let

x1 (t) = x(t), x2 (t) = x(t − 1), ..., xN (t) = x (t − (N − 1)) , (1:8)

then z(t) = (x1(t), x2(t),..., xN(t))
T satisfies

z′′(t) = AN∇H(z), (1:9)

where AN =

⎛
⎜⎜⎜⎜⎝

1 −1 · · · −1

−1 1
. . .

...
...

. . .
. . . −1

−1 · · · −1 1

⎞
⎟⎟⎟⎟⎠

i.e., AN is a n × n symmetric matrix, and

H (z) =

x1∫
0

f (s) ds+

x2∫
0

f (s) ds+ · · · +
xN∫
0

f (s) ds. (1:10)

In fact, by direct computation, one has the following proposition.

Proposition 1.2. (i) Any solution x(t) of (1.7) with x(t) = x(t - N) will give a solution

of (1.9) X(t) = (x1(t), x2 (t), . . . , xN (t))T by (1.8). Moreover, X(t) has the following sym-

metric structure

x1(t) = xN (t − 1) , x2 (t) = x1(t − 1),

x3 (t) = x2(t − 1), ..., xN (t) = xN−1(t − 1).
(1:11)

(ii) Any solution X(t) = (x1(t), x2(t), . . . , xN (t))T of (1.9) with the symmetric struc-

ture (1.11) will give a solution of (1.7) by letting x(t) = x1(t). Moreover, x(t + N) = x

(t).

Throughout this article, we always assume that:

(f1) f Î C (ℝ, ℝ) is odd and 0 <a, b <+∞

lim
x→0

f (x)
x

= α, lim
x→∞

f (x)
x

= β ;

(f 2±) |f (x) - bx| is bounded and Gb (x) ® ± ∞, as |x| ® ∞;

(f 3±) ±Ga (x) >0 for |x| >0 being small,

where F (x) =
∫ x
0 f (s) ds, and

Gβ (x) = F (x) − 1
2

βx2, Gα(x) = F (x) − 1
2

αx2. (1:12)

Similarly to the argument in [14,20,33], for given a number a Î ℝ, and N ≥ 2, k ≥ 1

being two integer, we set:
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i (α,N) =
{
numbers of elements of

{
k
∣∣ (2π

N (2k − 1)
)2 − 2α < 0, (2k − 1 mod N) �= 0.

}}

and

v (α,N) =
{
numbers of elements of

{
k
∣∣( 2π

N (2k − 1)
) 2 − 2α = 0, (2k − 1 mod N) �= 0.

}}
.

For convenience, denote #(1.7) = the number of geometrically different nonconstant

periodic solutions of (1.7) which satisfy x(t - N/2) = -x(t), ∀t Î R.

Our main result reads as:

Theorem 1.1. Suppose f satisfies (f 1) and N ≥ 2 being an integer in (1.7). We have

the following conclusions:

(i) #(1.7) ≥ i(a, N) - i(b, N) provided v(b, N) = 0 or (f 2-) holds.

(ii) #(1.7) ≥ i(a, N) - i(b, N) + v(a, N) provided (f 3+)holds and either v(b, N) = 0 or

(f 2-) holds.

(iii) #(1.7) ≥ i(b, N) + v(b, N) - i(a, N) provided (f 3-) and (f 2+) holds.

2 Variational structure
For S1 = ℝ/(Nℤ),let E = H1(S1, ℝN). Then E is a Hilbert space with norm ||·|| and inner

product〈,〉, and E consists of those z(t) in L2(S1, ℝN) whose Fourier series

z (t) = a0 +
∞∑
m=1

(
am cos

(
2π

N
mt

)
+ bm sin

(
2π

N
mt

))
,

satisfies

‖z‖2 = N|a0|2 + N
2

∞∑
m=1

(
1 + β2

m

) (|am|2 + |bm|2) < ∞,

where am, bm Î ℝN and βm = 2πm
N .

We can define an operator

〈
L0z, y

〉
=

N∫
0

(
A−1
N ż, ẏ

)
dt, (2:1)

on E. By direct computation, L0 is a bounded self-adjoint linear operator on E and

L0z (t) =
∞∑
m=1

β2
m

1 + β2
m
A−1
N (am cos βmt + bm sin βmt) . (2:2)

By (f1), one can show that H(z) Î C1 (ℝN, ℝ) and satisfies

|H (z)| ≤ d1|z|2 + d2, ∀z ∈ R
N,

where d1, d2 >0. By using similar arguments as in [14,21], we know that

ϕ (z) =
1
2

〈L0z, z〉 −
N∫
0

H (z) dt ∈ C1 (E,R) (2:3)

and critical points of � in E are classic solutions of (1.9).
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Let TN be the N × N matrix given by

TN =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

For z(t) Î E, define

δz(t) = TNz(t − 1). (2:4)

Then we have δNz(t) = z(t - N), and G = {δ, δ2, . . . , δN} is a compact group action

over E. Moreover, if δz(t) = z(t) holds, z(t) has the symmetric structure (1.11).

Lemma 2.1. DenoteSE = {z ∈ E : δz(t) = z(t), z(t − N
2 ) = −z(t)} Then we have

SE =

{
z (t) =

∞∑
m=1

(
am cos

(
2π

N
(2m − 1) t

)
+ bm sin

(
2π

N
(2m − 1) t

))
:

(
am
bm

)
∈ span

{(
um
wm

)
,
(−wm

um

)}}
,

(2:5)

where θm = 2π
N (2m − 1) and

um = (1, cosθm, ..., cos(N − 1)θm)T ,

wm = (0, sinθm, ..., sin(N − 1)θm)T .
(2:6)

Proof. For any, z (t) = a0 +
∞∑
m=1

(
am cos

( 2π
N mt

)
+ bm sin

(2π
N mt

)) ∈ SE, we must have z

(t-N/2) = -z(t), which implies that

a0 = −a0, am = (−1)m+1am, bm = (−1)m+1bm, i.e., am = bm = 0

for even m.

this means that for any z Î SE,

z (t) =
∞∑
m=1

(
am cos

(
2π

N
(2m − 1) t

)
+ bm sin

(
2π

N
(2m − 1) t

))
.

Note that δz(t) = z(t) ⇔ TN z(t - 1) = z(t), i.e.,

∞∑
m=1

(
am cos

(
2π

N
(2m − 1) t

)
+ bm sin

(
2π

N
(2m − 1) t

))

=
∞∑
m=1

(
TNam cos

(
2π

N
(2m − 1) (t − 1)

)
+ TNbm sin

(
2π

N
(2m − 1) (t − 1)

))

This implies that for k ≥ 1{
am = TNam cos θm − TNbm sin θm
bm = TNam sin θm + TNbm cos θm

(2:7)
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If we introduce complex vector Cm= am + ibm, the above (2.7) becomes

Cm = eiθmTNCm.

Note that

det(TN − λIN) = λN − 1,

the eigenvalues of TN are

λ = e−i
2jπ
N , j = 1, 2, 3, . . . ,

Equation (2.7) implies that Cm must be the eigenvector associated with the eigenva-

lue

λ = e−iθm ,

We obtain that

Cm = (1, eiθm , . . . , ei(N−1)θm)T , (2:8)

{
um = Re(Cm) = (1, cos θm, cos 2θm, . . . , cos(N − 1)θm)T ,

wm = Im(Cm) = (0, sin θm, sin 2θm, . . . , sin(N − 1)θm)T .
(2:9)

By direct computation, iCm is also the eigenvector associated with the

eigenvalueλ = e−iθm.

Therefore, we have the conclusion. The proof is complete. □
Lemma 2.2. Let � be given in (2.3) and � |SE be the restriction of � on SE. Then criti-

cal points of � |SE over SE are critical points of � over E.

Proof. By (1.9) and direct computation, we have

ANTN = TNAN, H(TNz) = H(z), ∇H(TNz) = TN∇H(z).

Combining these with (2.3) and the fact that any z(t) Î E is N-periodic, one can

easily verify that

ϕ(δz) = ϕ(z), ϕ′(δz) = δϕ′(z),

i.e., � is G-invariant, and �’, is G-equivariant. The conclusion follows directly. □
For any a Î ℝ, define an operator La by extending the bilinear form

〈Lαz, y〉 = 〈L0z, y〉 −
N∫
0

(
αz, y

)
dt, (2:10)

on E. Moreover, La is G-equivariant. By direct computation, La is a bounded self-

adjoint linear operator on E and if z(t) Î SE

Lαz(t) =
∞∑
m=1

1
1 + β2

m
(β2

mA
−1
N − αI)(am cosβmt + bm sin βmt). (2:11)

For m ≥ 1, denote

SE(m) =
{
z(t) = am cos

(
2π

N
(2m − 1)t

)
+ bm sin

(
2π

N
(2m − 1)t

)
:
(
am
bm

)
satisfies(2.5)

}
.
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Then SE = ⊕∞
j=1SE(j). Since AN = IN − (TN + T2

N + · · · + TN−1
N ), and AT

N = AN, so SE(m)

is the eigen-subspace of L0 corresponding to eigenvalue lm, here lm = 2 - N, as (2m -

1 mod N) = 0; lm = 2, as (2m - 1 mod N) ≠ 0. Denote by M -(·), M +(·) and M0(·) the

positive definite, negative definite and null subspaces of the self-adjoint linear operator

defining it, respectively.

Lemma 2.3. For k ≥ 1, γ α
k = (2π

N (2k − 1))2λ−1
k − α. Then La, as an operator on SE,

has the following properties on SE.

M−(Lα) =
∞⊕

k=1,γ α
k <0

SE(k),

M+(Lα) =
∞⊕

k=1,γ α
k >0

SE(k),

M0(Lα) =
∞⊕

k=1,γ α
k =0

SE(k).

(2:12)

Proof. For m ≥ 1 and zm = am cos
( 2π
N (2m − 1)t

)
+ bm sin

(2π
N (2m − 1)t

)
, consider the

eigenvalue problem

Lαzm = λα
mzm.

By (2.7) and (2.11), we have

1
1 + θ2

m
(θ2

mA
−1
N − αI)am = λα

mam,

1
1 + θ2

m
(θ2

mA
−1
N − αI)bm = λα

mbm.

Since am, bm are the eigenvector of AN corresponding to eigenvalue lm, then
λα
m = (1 + θ2

m)
−1(θ2

mλ−1
m − α). Therefore La is positive definite, negative definite, or null

on SE(k) if and only if γ α
k =

( 2π
N (2k − 1)

)2
λ−1
k − α is positive, negative, or zero,

respectively.

This implies (2.12) directly. □
For S1 = ℝ/(Nℤ), there is a natural S1-action over SE, defined by

T(θ)z(t) = z(t + θ),∀θ ∈ S1,∀z ∈ SE.

It is easy to see that � is S1-invariant, �’ is S1-equivariant, and

Fix(S1) = {u ∈ SE : T(θ)u = u,∀θ ∈ S1} = {0}.

By directly applying [20, Theorem 2.4] to � over SE, we have the following lemma.

Lemma 2.4. Assume there exist two closed S1-invariant linear subspaces, SE+ and SE-

, of SE and r >0 such that (a) (SE+ + SE-) is closed and of finite codimension in SE,

(b) L(SE-)Î SE-with L = La or L = Lb,

(c) there exist c0 Î ℝ, c0 >-∞ such that

inf
z∈SE+

ϕ(z) = c0,

(d) there exists c∞ Îℝ such that

ϕ(z) ≤ c∞ < ϕ(0),∀z ∈ (SE− ∩ Sr) = {z ∈ SE− : z = r},

(e) � satisfies (PS)c condition for c0 ≤ c ≤ c∞, i.e., every sequence {zm} ⊆ SE with � (zm) ®
c and �’(zm) ® 0 possesses a convergent subsequence. Then � possesses at
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least12 [dim(SE− ∩ SE+) − codimSE(SE− + SE+)] geometrically different critical orbits in

�-1([c0, c∞]).

3 Proof of main results
Proof of Theorem 1.1 As we already proved in Lemma 2.2, critical points of � over SE

are critical points of � over E. Hence they are nonconstant classic N -periodic solutions of

(1.7) with the symmetric structure (1.11). By Proposition 1.2, they give solutions of (1.7)

with the property x(t - N/2) = -x(t). Therefore, we can seek critical points of � on SE

directly.

Set:

ψβ(z) =

N∫
0

[
H(z) −

(
1
2

βz, z
)]

dt, ψα(z) =

N∫
0

[
H(z) −

(
1
2

αz, z
)]

dt

Then

ϕ(z) =
1
2

〈Lαz, z〉 − ψα(z), ϕ(z) =
1
2

〈Lβz, z〉 − ψβ(z)

Case (i): If i(a, N ) > i(b, N ). We shall carry out the proof in several steps.

Step 1: let

ψα(0) = 0,

∥∥ψ ′
α(z)

∥∥
‖z‖ → 0, as ‖z‖ → 0,

Then Lemma 2.4(a)and (b) hold with L = La. By (f1), using the same argument as

[18, Lemma 5.5], it is easy to show that

ψα(0) = 0,

∥∥ψ ′
α(z)

∥∥
‖z‖ → 0, as ‖z‖ → 0,

We denote

λ− = min{|γ α
m |(1 + θ2

m)
−1 | γ α

m < 0, m ∈ N},
and

λ+ = min{(1 + θ2
m)

−1γ β
m | γ β

m > 0, m ∈ N}.
Since ψa (0) = 0, ||ψ ′

α(z)||
||z|| → 0, as ||z|| ® 0, for ε = λ−

4 , there exists a constant r > 0

such that for any z Î H1 (S1, ℝN)∥∥ψ ′
α(z)

∥∥ ≤ λ−

4
‖z‖ , as ‖z‖ ≤ r.

Furthermore,∣∣ψα(z)
∣∣ = ∣∣ψα(z) − ψα(0)

∣∣
=

∣∣∣∣∣∣
1∫

0

∂ψα(τ z)
∂τ

dτ

∣∣∣∣∣∣
≤

1∫
0

∣∣〈ψ ′
α(τ z), z〉

∣∣dτ
≤ λ−

4
‖z‖2.
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Therefore, we have for z Î (E- ∩ Sr) = {z Î E-| ||z|| = r}

ϕ(z) =
1
2

〈Lαz, z〉 − ψα(z)

≤ −λ−

2
‖z‖2 + λ−

4
‖z‖2

=
−λ−

4
‖z‖2

=
−λ−

4
r2 < 0.

Thus (d) of Lemma 2.4 holds.

If M 0 (Lb)= {0}, by (f1), using the same argument as [18, Lemma 5.5], it is easy to

show that∥∥ψ ′
α(z)

∥∥
‖z‖ → 0, as ‖z‖ → ∞,

it follows that given ε = λ+

2 > 0, there exists r >0, such that

∥∥ψ ′
α(z)

∥∥ ≤ λ+

2
‖z‖ , ‖z‖ > r.

Moreover, there is d1 >0 such that∥∥ψ ′
α(z)

∥∥ ≤ d1, ‖z‖ ≤ r,

thus

∥∥ψ ′
α(z)

∥∥ ≤ λ+

2
‖z‖ + d1,∀z ∈ H1(S1,RN).

Using the above formula we get

|∇H(z) − βz| ≤ λ+

2
|z| + d1.

Since for any z Î SE+= M+(Lb)⊕M0 (Lb)∣∣ψβ(z)
∣∣ = ∣∣ψβ(z) − ψβ(0)

∣∣
=

∣∣∣∣∣∣
1∫

0

∂ψβ(τ z)
∂τ

dτ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1∫

0

〈ψ ′
β(τ z), z〉dτ

∣∣∣∣∣∣
≤

1∫
0

λ+τ

2
z2 + d1 · zdτ

≤ λ+

4
z2 + d1z.
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Then for any z Î SE+ = M+(Lb) ⊕ M 0(Lb)= M + (Lb) ⊕ {0}

ϕ(z) =
1
2

〈Lβz, z〉 − ψβ(z)

≥ λ+

2
z2 − λ+

4
z2 − d1z

=
λ+

4
z2 − d1z.

Thus there exists c0 >-∞ such that (c) of Lemma 2.4 holds.

If M0(Lb) ≠ {0}, by (f 2-) and (1.12), for any M >0, there exists a constant d2 >0 such

that

Gβ(z) ≤ −d2, |z| > M. (3:1)

Let

�1 = {t ∈ [0,N]||z| > M} (3:2)

and

�2 = {t ∈ [0,N]||z| ≤ M}. (3:3)

Since F (z) Î C2 (ℝN, ℝ), by (3.3), there exists a constant d3 >0 such that∫
�2

[Gβ(z(t)), z(t)] dt ≤ d3, |z| ≤ M. (3:4)

By (3.1) - (3.4), we have

ψβ(z) =

N∫
0

[H(z) − (
1
2

βz, z)]dt ≤ d3

Then we have for z = z+ + z0 Î M+(Lb) ⊕ M 0 (Lb)

ϕ(z) =
1
2

〈Lβz, z〉 − ψβ(z)

=
1
2

〈Lβz+, z+〉 − ψβ(z)

≥ −d3.

Thus � is bounded from below on E+. Therefore, condition (c) of Lemma 2.4 is

verified.

Step 2: Using the same argument as [22,25] and [26, Lemma 4.2], one can prove that

� satisfies (PS)c condition for any c Î ℝ under the condition either (f 1) with v(b, N) =
0 holds or (f 2±) holds.

Step 3: By Lemma (2.4), � has at least σ = 1
2 [dim(SE− ∩ SE+) − codimSE(SE− + SE+)]

geometrically different critical orbits in �-1 ([c0, c∞]).

Now by Lemma (2.3), it is easy to show that

σ =
1
2
[dim(SE− ∩ SE+) − codimSE(SE− + SE+)]

=
1
2
[dimM−(Lα) − dimM−(Lβ)]

=
1
2
[2i(α,N) − 2i(β ,N)].
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This means #(1.7) ≥ i(a, N)-i(b, N), and this completes the proof of case (i).

For case (ii), (iii), using the same idea and similar arguments, one can show that the

conclusions hold. We omit the details. The proof is complete. □
Example. Consider the following equation

x′′(t) = f (x(t)) − f (x(t − 1)), (3:5)

and its coupled system

x′′(t) = f (x) − f (y), y′′(t) = −f (x) + f (y). (3:6)

with f Î C (ℝ, ℝ) being odd and

f (x) = αx + α0x
1
3 , for|x| ≥ 100

f (x) = βx + β0x3, for|x| ≤ 1.

Here N = 2, and by Definition

i(α, 2) = �{k | (π(2k − 1))2 − 2α < 0, k = 1, 2, . . .},

and

v(α, 2) = �{k | (π(2k − 1))2 − 2α = 0, k = 1, 2, . . .}.

Let a = 16, b = 1. Then it is easy to see that

i(16, 2) = 2, v(16, 2) = 0, i(1, 2) = 0, v(1, 2) = 0

By Theorem 1.1, Equation (3.5) has at least i(16, 2) - i(1, 2) = 2 geometrically differ-

ent nonconstant 2-periodic solutions which satisfy x(t - 1) = -x(t).
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