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Abstract

In this article, we established the existence and uniqueness of the solution for a
generalized class of fractional order differential equations involving the Riemann-
Liouville differential operator on unbounded domain [0, +∞). The contraction
principle has been used to obtain the results in this article.
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1 Introduction
Differential equations of fractional order have recently proved to be valuable tools in

the modeling of many phenomena in various fields of science and engineering. Indeed,

we can find numerous applications in viscoelasticity, electrochemistry, control, porous

media, electromagnetism, etc[1-5]. There has been a significant development in the

study of fractional differential equations and inclusions in recent years; see the mono-

graphs of Kilbas et al. [6], Lakshmikantham et al. [7], Podlubny [4], and the survey by

Agarwal et al. [8]. For some recent contributions on fractional differential equations,

see [9-28] and the references therein. Very recently in [10,11,21,22] the authors and

other researchers studied the existence and uniqueness of solutions of some classes of

fractional differential equations with delay. For more details on the geometric and phy-

sical interpretation for fractional derivatives of both the Caputo types see [5,23].

Baleanu and Mustafa [16] have considered{
Dα(x(t) − x(0)) = f (t, x(t)), t > 0,

x(0) = x0
(1)

where Da is the standard Riemann-Liouville fractional derivatives and f : ℝ≥0 × ℝ ®
ℝ is a given continuous function. They have shown that the initial value problem (1)

has unique solution in ℝ≥0 = [0, ∞), if |f(t, x) - f(t, y)| ≤ F(t)|x - y| for all t ≥ 0, x, y Î
ℝ, where F : ℝ≥0 ® ℝ≥0 is a continuous function.

In this article, we consider the following initial value problem:{L(D)(x(t) − x(0)) = f (t, x(t)), t > 0,

x(0) = x0, I1−αx(t)|t=0 = 0, I1−βx(t)|t=0 = 0,
(2)
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where L(D) = Dα − γ tnDβ, n is nonnegative integer, g Î ℝ, 0 <b ≤ a < 1 and Da and

Db are the standard Riemann-Liouville fractional derivatives. Here f : ℝ≥0 × ℝ ® ℝ is a

given nonlinear continuous function and ℝ≥0 has its usual meaning of nonnegative

semi-axis. We prove the solution for Equation (2) is exist and under some conditions

on f (t, x) and on the range of function F, this solution is unique. Note that, Equation

(1) is a particular case of Equation (2), that is if g = 0 then Equation (2) reduces to

Equation (1).

The article is organized as follows. In Section 2, we give basic definitions of Rie-

mann-Liouville fractional calculus. Existence and uniqueness solution have been

derived in Section 3 and also an example is given to illustrate our results.

2 Basic definitions and preliminaries
Definitions of Riemann-Liouville fractional derivative/integral and some of their prop-

erties are given below which could be found in [4,19,20].

Definition 2.1 The left sided Riemann-Liouville fractional integral of a function x Î
L1 ([a, b], ℝ) of order a >0 is defined as

Iαa+x(t) =
1

�(α)

t∫
a

x(s)

(t − s)1−α
ds, t > a,

where �(α) =
∫ +∞
0 e−ttα−1dt.

The fractional integral of x(t) = (t - a)b, a ≥ 0, b > -1 is given as

Iαa+x(t) =
�(β + 1)

�(β + α + 1)
(t − a)β+α.

Definition 2.2 The left sided Riemann-Liouville fractional derivative of a function x

defined as

Dα
a+x(t) =

d
dt

{
I1−α
a+ x(t)

}
, α ∈ (0, 1).

We denote Dα
a+x(t) by Dα

a x(t) and Iαa+x(t) by Iαa x(t). Also Dax(t) and Iax(t) refer to

Dα
0+x(t) and Iα0+x(t), respectively.

Proposition 2.3 [4, pp. 71-72] Suppose that x(t) is continuous function on [0, ∞) then

Dβ
0x(t)is integrable,

Iα
{
Dβx(t)

}
= Iα−βx(t) −

[
I1

−β
x(t)

]
t=0

tα−1

�(α)
, 0 < β < 1, β ≤ α, (3)

Dα
{
Iβx(t)

}
= Iα−βx(t). (4)

Further, If I1-bx(t)|t =0 = 0 then Equation (3) reduces to

Iα0
(
Dβ

0x(t)
)
= Iα−β

0 x (t) , 0 < β < 1,β ≤ α. (5)

Proposition 2.4 Let × be continuous on [0, +∞) and 0 < b <1, b ≤ a. If I1-bx(t)|t =0

=0 then

(i) Iα(tnx(t)) =
n∑

k=0

(−α

k

)[
dktn

dtk

] [
Iα+kx(t)

]
=

n∑
k=0

(−α

k

)
n!tn−k

(n − k)!
Iα+kx(t),
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(ii) Iα(tnDβx(t)) =
n∑

k=0

(−α

k

)
n!tn−k

(n − k)!
Iα−β+kx(t),

where n is a nonnegative integer and,(−α

k

)
= (−1)k

α(α + 1) · · · (α + k − 1)
k!

= (−1)k
�(α + k)
k!�(α)

Proof. (i) can be found in [19, p. 53] and (ii) is an immediate consequence of Equa-

tion (3) and (i) with together I1-bx(t)|t =0 = 0.

3 Existence and uniqueness
In this section, our objective is to find solutions to the initial value problem (2) with

some conditions on f (t, x) and on the range of function F so that this solution is

unique on unbounded domain [0, ∞). First in the following lemma, we prove that the

solution of Equation (2) is equivalent to the solution of an integral equation using Pro-

position 2.4.

Lemma 3.1 The solution of the initial value problem (2) is equivalent to the Voltra

integral equation

x(t) = x(0) + γ

n∑
k=0

(−α
k

) n!tn−k

(n − k)!
Iα−β+k[x(t) − x(0)] + Iαf (t, x(t)), t > 0

= x(0) + γ

n∑
k=0

μ (k,n,α) tn−kIα−β+k[x(t) − x(0)] + Iαf (t, x(t)),

(6)

where,

μ(k,n,α) :=
(−α

k

)
n!

(n − k)!
, k = 0, 1, 2, . . . , n.

Proof: Suppose the Equation (2) is given, then Ia{(Da-gtnDb)[x(t)-x(0)]}= Iaf(x, x(t)).

With assumptions I1-ax(t)|t =0 =0 and I1-bx(t)|t =0 =0, Equation (3) gives Ia{Da[x(t)-x

(0)]}=x(t)-x(0) and using Proposition 2.4 (ii) the integral equation (4) is obtained

(notice that Iαx(0)|t=0 = x(0)
�(1+α) t

α|t=0 = 0). Conversely, assume that the integral equation

(6) is given hence

γ

n∑
k=0

(−α

k

)
n!tn−k

(n − k)!
Iα−β+k[x(t) − x(0)] + Iαf (t, x(t))

= γ

n∑
k=0

(−α

k

)[
Dktn

] [
Iα+kDβ

[
x(t) − x(0)

]
+ I1−β [

x(t) − x(0)]t=0
]
+ Iαf

(
t, x(t)

)
,

= γ Iα
(
tnDβ

[
x(t) − x(0)

])
+ Iαf

(
t, x(t)

)
= Iα

{
γ tnDβ

[
x(t) − x(0)

]
+ f (t, x(t)

}
= x(t) − x(0) = Iα

{
Dα

[
x(t) − x(0)

]}
.

Notice that by using Equation (3) we have

Iα
{
Dα

[
x(t) − x(0)

]}
= x(t) − x(0) − I1−α

{
x(t) − x(0)

}
t=0.

Hence the initial condition of I1−α
0 x(t)|t=0 = 0 yields

Iα
{
Dα

[
x(t) − x(0)

]}
= x(t) − x(0).
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Thus Da{Ia[gtnDb[x(t)-x(0)]+f(x, x(t))]}=Da{Ia(Da[x(t)-x(0)])}. Therefore gtnDb[x(t)-x

(0)]+f(x, x(t))=Da[x(t)-x(0)] and we obtain the Equation (2). This proves that x(t) is a

solution of initial value problem (2) and the proof is complete. In the following theo-

rem, we try to prove that the integral equation (6) under some conditions has unique

solution in [0, ∞) so that this unique solution is the unique solution of Equation (2).

Theorem 3.2 Assume that there exists the continuous function F : ℝ≥0 ® [1, +∞)

such that |f(t, x)-f(t, y)| ≤ F(t)|x-y| for all t ≥ 0, x, y Î ℝ (notice that F(t) ≥ 1 for each t

≥ 0). Then the integral equation (5) has unique solution defined in ℝ≥0.

Proof. Introduce the continuous functions

h(t) = 1 +
∣∣x(0)∣∣ + γ

n∑
k=0

μ(k, n, α)tn−kIα−β+k [x(0) − x(0)
]
+ Iαf (t, x (0))

= 1 +
∣∣x(0)∣∣ + 1

�(α)

t∫
0

∣∣f (s, x (0))
∣∣

(t − s)1−α
ds,

and

Hλ(t) = h(t) exp

⎛
⎝(n + 1)t +

λ

q

t∫
0

[h(s)F(s)]qds)

⎞
⎠ , t ≥ 0

for a fixed l >0. Hence (notice that h(t) ≥ 1),

exp

⎛
⎝λ

q

t∫
0

[h(s)F(s)]qds

⎞
⎠ =

⎧⎨
⎩exp

⎛
⎝λ

t∫
0

[h(s)F(s)]qds

⎞
⎠
⎫⎬
⎭

1
q

=
Hλ(t)
h(t)

e−(n+1)t ≤ Hλ(t)e−(n+1)t

(7)

Here, q is taken such that,

1
p
+
1
q
= 1 and 1 < p < min

{
1
α
,

1
1 − α

,
1

1 − α + β

}
.

Introduce the complete metric space Ω = (c, dl), where c is the set of all element of

C(ℝ≥0, ℝ) that behave as O(Hl(t)) when t goes to +∞ and

dλ(x, y) = sup
t≥0

{ |x(t) − y(t)|
Hλ(t)

}

for any x, y Î X. Since Hl(t) ≥ 1, all the constant functions belong to X.

Given the operator T : Ω ® C(ℝ≥0, ℝ) with the formula

(Tx)(t) = x(0) + γ

n∑
k=0

μ(k,n,α)tn−kIα−β+k[x(t) − x(0)] + Iαf (t, x(t))

= x(0) + γ

n∑
k=0

μ(k,n,α)

t∫
0

(t − s)α−β+k−1[x(s) − x(0)]
�(α − β + k)

ds

+
1

�(α)

t∫
0

(t − s)α−1f (s, x(s)) ds.
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Set,

M = max
{ |γμ(k,n,α)|

�(α − β + k)
: k = 0, 1, . . . , n

}
,

= max

{
|γ (−α

k

)
n!

(n − k)!�(α − β + k)
: k = 0, 1, . . . , n

}
,

then we have the following estimates (notice that tn-k ≤ ent for each k = 0, 1, 2, ..., n

and t ≥ 0)

|(Tx)(t) − (Ty)(t)| ≤ M ent
n∑

k=0

t∫
0

(t − s)α−β+k−1|x(s) − y(s)|ds

+
1

�(α)

t∫
0

(t − s)α−1F(s)|x(s) − y(s)|ds

≤ M ent
n∑

k=0

t∫
0

es(t − s)α−β+k−1F(s)
|x(s) − y(s)|

es
ds

+
1

�(α)

t∫
0

es(t − s)α−1F(s)
|x(s) − y(s)|

es
ds

≤ Ment
n∑

k=0

Ik(t) J(x, y)(t) + I(t) J(x, y)(t),

(8)

where for each k = 0, 1, 2, ..., n,

Ik(t) =

⎧⎨
⎩

t∫
0

(t − s)p(α−β+k−1)epsds

⎫⎬
⎭

1
p

= et

⎧⎨
⎩

pt∫
0

(
s
p

)p(α−β+k−1)

e−s ds
p

⎫⎬
⎭

1
p

= p
1
q +β−α−k

et

⎧⎨
⎩

pt∫
0

sp(α−β+k−1)e−sds

⎫⎬
⎭

1
p

≤ p
1
q +β−α−k

et�(1 − p(1 − α + β − k)) = C(p,α,β , k)et ,

(9)

where C(p,α,β , k) = p
1
q +β−α−k

�(1 − p(1 − α + β − k)).

J(x, y)(t) =

⎧⎨
⎩

t∫
0

(F(s))q
|x(s) − y(s)|q

esq
ds

⎫⎬
⎭
1
q

=

⎧⎨
⎩

t∫
0

d
ds

(
exp

(
λ
∫ s
0 [h(ρ)F(ρ)]

qdρ
)

λ

)( |x(s) − y(s)|
Hλ(s)

)q

ds

⎫⎬
⎭
1
q

≤
{∫ t

0

d
ds

(
exp

(
λ
∫ s
0 [h(ρ)F(ρ)]

qdρ
)

λ

)
ds

}1
q
dλ(x, y)

= λ

−1
q

⎧⎨
⎩exp(λ

s∫
0

[h(ρ)F(ρ)]qdρ)

⎫⎬
⎭
1
q
dλ(x, y).

(10)
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Substituting Equation (7) into Equation (10) yields

J(x, y)(t) = λ
−1
q e−(n+1)tHλ(t)dλ(x, y)

≤ λ
−1
q e−tHλ(t)dλ(x, y), t ≥ 0.

(11)

I(t) =
1

�(α)

⎧⎨
⎩

t∫
0

(t − s)p(α−1epsds

⎫⎬
⎭

1
p

=
et

�(α)

⎧⎨
⎩

pt∫
0

(
s
p

)p(α−1)

(e−s)
ds
p

⎫⎬
⎭

1
p

=
et

�(α)
p
1
q−α

�(1 − p(1 − α)) = C2(α, p)et ,

(12)

where C2(α, p) = 1
�(α)p

1
q−α

�(1 − p(1 − α)).

Hence, substituting (9), (11), and (12) into inequality (8) leads to

|(Tx)(t) − (Ty)(t)| ≤
(
M

n∑
k=0

C1(p,α,β , k)

)
λ

−1
q Hλ(t)dλ(x, y)

+ C2(α, p)λ
−1
q Hλ(t)dλ(x, y).

Therefore,

dλ(Tx,Ty) ≤
{
M

n∑
k=0

C1(p,α,β , k) + C2(α, p)

}
λ

−1
q dλ(x, y)

The formula is valid only if we establish that Tx Î c whenever x Î c. This follows
from the next estimates

|(Tx)(t)| ≤ |(Tx)(t) − (Tx0))(t)| + |(Tx0)(t)|

≤
(
M

n∑
k=0

C1(p,α,β , k) + C2(α, p)

)
λ

−1
q Hλ(t)dλ(x, x0) + h(t)

≤
{(

M
n∑

k=0

C1(p,α,β , k) + C2(α, p)

)
λ

−1
q dλ(x, x0) + 1

}
Hλ(t)

= O(Hλ(t)) as t → +∞.

In conclusion, the operator T : Ω ® Ω is a contraction for every

λ >

(
M

n∑
k=0

C1(p,α,β , k) + C2(α, p)

)q

.

Its unique fixed point is the unique solution of Equation (2) in C ([0, ∞), ℝ).

Example 3.3 The following fractional differential equation:⎧⎪⎪⎨
⎪⎪⎩
(
D

2
3 − t3D

1
2

)
[x(t) − x(0)] = sin

((
2 + t2

)
x

1 + t2

)
, t > 0

x(0) = x0, I
1
3 x(t)|t=0 = 0 and I

1
2 x(t)|t=0 = 0,
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satisfying in Theorem 3.2. In this example we have,

f (t, x(t)) = sin
(

2x
1 + t2

)
and hence |f (t, x) − f (t, y)| ≤ 2 + t2

1 + t2
|x − y|,

so that F(t) = 2+t2
1+t2 ≥ 1 for each t Î [0, +∞).

4 Conclusions
The existence and uniqueness of solutions for the nonlinear fractional differential

equations with initial conditions comprising standard Riemann-Liouville derivatives

have been discussed in C([0, +∞), ℝ). In order to obtain the results in this article the

contraction principle had important role. Although the present study provides some

insights in the equations encountered in the non-global existence solutions, this exis-

tence and uniqueness theorem may be explored for other classes of fractional differen-

tial equations which encounter in the global existence solutions, like recent

contributions [16,24], that is a subject for future study.
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