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Abstract

Isochronal function projective synchronization between chaotic and time-delayed
chaotic systems with unknown parameters is investigated in this article. Based on
Lyapunov stability theory, adaptive controllers and parameter updating laws are
designed to achieve the isochronal function projective synchronization between
chaotic and time-delayed chaotic systems. The scheme is applied to realize the
synchronization between time-delayed Lorenz systems and time-delayed hyper-
chaotic Chen systems, respectively. Numerical simulations are also presented to show
the effectiveness of the proposed method.
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1. Introduction
In the last few years, chaos synchronization has gained a lot of attention for its poten-

tial applications in some engineering applications, such as image processing, chemical

and biological systems, information science and in particular secure communication.

Since the pioneering work of Pecora and Carroll [1], in which complete synchroniza-

tion between two identical chaotic systems with different initial conditions was rea-

lized, various approaches have been put forward for synchronization of chaotic

systems, such as complete synchronization [2], phase synchronization [3], generalized

synchronization [4], lag synchronization [5], projective synchronization [6], modified

projective synchronization [7,8] and function projective synchronization [9-11], func-

tion projective lag synchronization [12], anti-synchronization [13] and so on.

Among all types of chaos synchronization, projective synchronization phenomenon is

of great significance for its potential application in secure communication. In 1999,

Mainieri and Rehacek [14] first proposed the concept of projective synchronization,

which is characterized that the drive and the response systems could be synchronized

up to a scaling factor. Because of the proportionality between its synchronized dynami-

cal states, the feature can be used to M-nary digital communication for achieving fast

communication. So projective synchronization have attracted increasing attention dur-

ing recent years and some conditions ensuring projective synchronization have been

obtained. Recently, some scholars extended the concept of projective synchronization

and proposed modified projective synchronization [15], function projective
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synchronization [16] and modified function projective synchronization [17,18], in

which master and slave system are synchronized with a scaling function matrix.

As we know, delayed differential equations could exhibit complex dynamical beha-

viors and have attracted much attention in the field of nonlinear dynamics. Note that

research on synchronization between time-delayed chaotic systems has been exten-

sively carried out, see, for example, [19-21]. Recently, dual-anticipating, dual and dual-

lag synchronization [22] between two identical time-delayed chaotic systems, lag syn-

chronization [23] were investigated, where lag or anticipatory dynamics occurred, i.e.,

there existed a lag time or anticipatory time phase shift between state vectors. While

results about zero lag time difference between synchronized state shifts, i.e., isochronal

synchronization [24,25] are also obtained between time-delayed systems. Note that

projective synchronization [26,27] between time-delayed chaotic systems was exten-

sively investigated. However, results about isochronal function projective synchroniza-

tion between chaotic and time-delayed chaotic systems are still few. In this article,

isochronal function projective synchronization scheme between chaotic and time-

delayed chaotic systems with unknown parameters is proposed. The method is shown

to be effective by applying to Lorenz and hyper-chaotic Chen systems.

The remainder of this article is organized as follows. In Section 2 the synchronization

scheme is presented. Section 3 is devoted to the application of the proposed scheme to

Lorenz and hyper-Chaotic systems, respectively. Numerical simulations are also presented

to demonstrate the effectiveness of the method. Some conclusions are drawn in Section 4.

2. Statement of the problem
Consider the chaotic system given by

ẋ = F(x)θ + G(x)β + f (x), (1)

where x Î Rn denotes the state vector, F, G : Rn ® Rn × p are continuous function

matrices, f : Rn ® Rn is a continuous nonlinear vector function, θ, b Î Rp are para-

meter vectors. Note that many chaotic and hyper-chaotic systems, such as Lorenz sys-

tem, Chen system, Lü system, Rössler system, hyper-chaotic Chen system, etc, could

be described by system (1).

The time-delayed version of system (1) could also exhibit chaotic behaviors, such as

time-delayed Lorenz system [19] and time-delayed Rossler system [21], etc. To con-

sider the isochronal synchronization between chaotic and time-delayed chaotic sys-

tems, take the drive system as follows

ẏ = F(y)θr + G(y − τ )βr + f (y). (2)

The response system is

ẋ = F(x)θ + G(x)β + f (x) + u, (3)

where u = (u1, u2,..., un)
T Î Rn is the control input to be determined later.

Now we need to design the controller u such that the chaotic system (1) could track

the trajectory of time-delayed system (2). Define the error e = x - l(t)y, where l(t) =
diag(l1(t), l2(t),...,ln (t)).

Definition 1. It is said that isochronal function projective synchronization occurs

between systems (1) and (2) if there exists a diagonal function matrix l(t) such that
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lim
t→∞ ‖e‖ = lim

t→∞
∥∥x − λ(t)y

∥∥ = 0.

To achieve the isochronal synchronization between (1) and (2) with different initial

conditions, now the control input is chosen as

u = −F(x)θ − G(x)β − f (x) + λ(t)(F(y)θ + G(y − τ )β + f (y))

+ λ̇(t)y − ke,
(4)

where k = diag(k1, k2,..., kn), ki > 0(i = 1, 2,..., n) are constants. Consequently, we get

ė = λ(t)F(y)(θ − θr) + λ(t)G(y − τ )(β − βr) − ke. (5)

The parameter updating laws for θr, br are chosen as{
θ̇r = λ(t)eF(y),
β̇r = λ(t)eG(y − τ ),

(6)

then the synchronization result follows immediately.

Theorem 1. Isochronal function projective synchronization between systems (1) and

(2) will occur under the control (4) and parameter updating laws (6).

Proof. Take the Lyapunov function

V =
1
2

(
eTe + eTθ eθ + eTβeβ

)
, (7)

where eθ = θ - θr, eb = b - br. The time derivative of V along the trajectory of error

system (5) is

V̇ = eT ė + eTθ ėθ + eTβ ėβ

= eT ė + eTθ (−θ̇r) + eTβ(−β̇r).

In view of systems (5) and (6), one has

V̇ = −
n∑
i=1

kie2i ≤ 0. (8)

So by Lyapunov stability theory, ei ® 0 as t ® ∞, i.e., the synchronization will occur.

Remark 1. When l(t) = I, -I, the complete synchronization and anti-synchronization

between (1) and (2) are achieved, respectively. When l(t) = aI, diag(l1,..., ln), then
generalized projective synchronization and modified projective synchronization

between (1) and (2) will happen, respectively.

Remark 2. Here structures of systems (1) and (2) are in the same form. Similarly, the

synchronization result could also hold between chaotic and delayed chaotic systems

with different structures under appropriate controllers and parameter updating laws.

3. Applications
3.1. FPS between Lorenz and delayed Lorenz systems

The delayed Lorenz system is taken as the drive system
⎧⎨
⎩
ẏ1 = ar(y2 − y1),
ẏ2 = bry1 − y2 − y2y3,
ẏ3 = y1y2 − cry3(t − τ ),

(9)

where ar, br, cr are uncertain parameters to be estimated. The system exhibits chaotic

behaviors when ar = 10, br = 28, cr =
8
3
and τ = 0.3, see Figure 1.

Wu and Liu Advances in Difference Equations 2012, 2012:37
http://www.advancesindifferenceequations.com/content/2012/1/37

Page 3 of 9



The response system is the Lorenz system with controllers⎧⎨
⎩
ẋ1 = a(x2 − x1) + u1,
ẋ2 = bx1 − x2 − x2x3 + u2,
ẋ3 = x1x2 − cx3 + u3.

(10)

Define the errors ei = xi - li(t)yi, i = 1, 2, 3. Choose the controllers as follows
⎧⎨
⎩
u1 = −a(x2 − x1) + λ1(t)a(y2 − y1) + λ̇1(t)y1 − k1e1,
u2 = −bx1 + x2 + x2x3 + λ2(t)(by1 − y2 − y1y3) + λ̇2(t)y2 − k2e2,
u3 = −x1x2 + cx3 + λ3(t)(y1y2 − cy3(t − τ )) + λ̇3(t)y3 − k3e3,

(11)

where ki > 0, i = 1, 2, 3, then from systems (9), (10), and (11) one has
⎧⎨
⎩
ė1 = λ1(t)(a − ar)(y2 − y1) − k1e1,
ė2 = λ2(t)(b − br)y1 − k2e2,
ė3 = −λ3(t)(c − cr)y3(t − τ ) − k3e3.

(12)

The parameter updating laws are given by
⎧⎨
⎩
ȧr = λ1(t)(y2 − y1)e1,
ḃr = λ2(t)y1e2,
ċr = −λ3(t)y3(t − τ )e3.

(13)

Along the way similar to that of Theorem 1, one could arrive the following result.

Theorem 2. Isochronal function projective synchronization between Lorenz system

(10) and delayed Lorenz system (9) will be realized under the controllers (11) and para-

meter updating laws (13).

3.2. FPS between hyper-chaotic Chen and delayed hyper-chaotic Chen systems

Consider the delayed hyper-chaotic Chen system
⎧⎪⎪⎨
⎪⎪⎩

ẏ1 = ar(y2 − y1) + y4,
ẏ2 = dry1 − y1y3 + cry2(t − τ ),
ẏ3 = bry3 − y1y2,
ẏ4 = p4y4 + y2y3.

(14)

When ar = 35, br = 3, cr = 12, dr = 7, pr = 0.5, and τ = 0.4, then the system displays

chaotic behaviors, see Figure 2.
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Figure 1 Chaotic attractor of time-delayed Lorenz system.
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The response system is the hyper-chaotic Chen system with controllers⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = a(x2 − x1) + x4 + u1,
ẋ2 = dx1 − x1x3 + cx2 + u2,
ẋ3 = bx3 − x1x2 + u3,
ẋ4 = px4 + x2x3 + u4.

(15)

Define the errors ei = xi - li(t)yi, i = 1, 2, 3, 4. Choose the controllers as follows⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 = −a(x2 − x1) − x4 + λ1(t)(a(y2 − y1) + y4) + λ̇1(t)y1 − k1e1,
u2 = −dx1 + x1x3 − cx2 + λ2(t)(dy1 − y1y3 + c2y2(t − τ ))

+λ̇2(t)y2 − k2e2,
u3 = −x1x2 + bx3 + λ3(t)(y1y2 − by3) + λ̇3(t)y3 − k3e3,
u4 = −p4y4 − x2x3 + λ̇4(t)y4 + λ4(t)(py4 + y2y3) − k4e4,

(16)

where ki > 0, i = 1, 2, 3, 4, then from systems (14), (15), and (16) one has
⎧⎪⎪⎨
⎪⎪⎩

ė1 = λ1(t)(a − ar)(y2 − y1) − k1e1,
ė2 = λ2(t)(c − cr)y2(t − τ ) + λ2(t)(d − dr)y1 − k2e2,
ė3 = −λ3(t)(b − br)y3 − k3e3,
ė4 = λ4(t)(p − p4)y4 − k4e4.

(17)
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Figure 2 Chaotic attractor of time-delayed hyper-chaotic Chen system.
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The parameter updating laws are given by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ȧr = λ1(t)(y2 − y1)e1,
ḃr = −λ3(t)y3e3,
ċr = λ2(t)y2(t − τ )e2,
ḋr = λ2(t)y1e2,
ṗr = λ4(t)y4e4.

(18)

As a result, the synchronization between (14) and (15) will happen.

Theorem 3. Isochronal function projective synchronization between hyper-chaotic

Chen system (15) and delayed hyper-chaotic Chen system (14) will be achieved under

the controllers (16) and parameter updating laws (18).

The proof is similar to that of Theorem 1.

3.3. Numerical simulations

The initial conditions for systems (9) and (10) are respectively chosen as (y1(0), y2(0),

y3(0)) = (1,-3,2) and (x1(0), x2(0), x3(0)) = (-1,3,-2), and let τ = 0.3. The scaling func-

tions are l1 (t) = sin(t), l2(t) = cos(t), l3(t) = - sin(t). Moreover, (k1, k2, k3) = (1, 3, 2).

The simulation results are shown in Figure 3. Note that the error variables e1, e2, e3
tend to zero and the estimated values of unknown parameters ar, br, cr converge to

10, 28,
8
3
, respectively.

The initial conditions for systems (14) and (15) are respectively chosen as (y1(0), y2
(0), y3(0), y4(0)) = (-3,4,-2,-2) and (x1(0), x2(0), x3(0), x4(0)) = (3,-4,2,2), and let τ = 0.3.

The scaling functions are l1(t) = sin(t), l2(t) = -cos(t), l3(t) = cos(t), l4(t) = -sin(t).

Moreover, the control gains are chosen as (k1, k2, k3, k4) = (7, 5, 5, 5). The simulation

results are shown in Figures 4 and 5. Note that the error variables tend to zero and
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Figure 3 Time evolution of errors and estimated values of unknown parameters.
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Figure 4 Time evolution of error variables of systems (18).
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the estimated values of unknown parameters ar, br, cr, dr, pr converge to 35, 3, 12, 7,

0.5, respectively.

4. Conclusions
In this article, function projective synchronization between chaotic and time-delayed

chaotic systems with unknown parameters is investigated. Adaptive synchronization

scheme is proposed by designing appropriate controllers and parameter updating laws.

Based on Lyapunov stability theory, synchronization results are obtained. The method

is applied to Lorenz and hyper-chaotic Chen systems, respectively. Corresponding

numerical simulations show the effectiveness of the method proposed. In existing lit-

eratures results about synchronization between chaotic and time-delayed chaotic sys-

tems are still few. So the obtained will be helpful in synchronizing chaotic and time-

delayed chaotic systems.
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