Wang Advances in Difference Equations 2012, 2012:31 ® Advances in Difference Equations
http://www.advancesindifferenceequations.com/content/2012/1/31 a SpringerOpen Journal

RESEARCH Open Access

C' reqularity of the stable subspaces with a
general nonuniform dichotomy

Jie Wang

Correspondence: wjhehehe@126. ( Abstract )
com

Department of Mathematics, For nonautonomous linear difference equations, we establish ' regularity of the

College of Science, Hohai

. . 1 . . .
University, Nanjing 210098, China stable subspaces under sufficiently C'-parameterized perturbations. We consider the

general case of nonuniform dichotomies, which corresponds to the existence of
what we call nonuniform (u, v)-dichotomies.
Mathematics Subject Classification 2000: Primary 34D09; 34D10; 37D99.

Keywords: difference equations, parameter dependence, nonuniform dichotomies

1. Introduction
We consider nonautonomous linear difference equations

Vms1l = AmVUm + Bm()”)vm (1.1)

in a Banach space, where A is a parameter in some open subset Y of a Banach space
(the parameter space), and A — B,,(A) is of class C' for each m e J = N. Assuming
that the unperturbed dynamics

Ume1 = AmUm (1.2)

admits a very general nonuniform dichotomy (see Section 2 for the definition), and

that
sup |Bu(x)| and  sup B, (2|
mejJ,AeY mejJ,AeY

are sufficiently small, we establish the optimal C' regularity of the stable subspaces
on the parameter A for Equation (1.1).

The classical notion of (uniform) exponential dichotomy, essentially introduced by
Perron in [1], plays an important role in a large part of the theory of differential equa-
tions and dynamical systems. We refer the reader to the books [2-5] for details and
references. Inspired both in the classical notion of exponential dichotomy and in the
notion of nonuni-formly hyperbolic trajectory introduced by Pesin in [6,7], Barreira
and Valls [8-11] have introduced the notion of nonuniform exponential dichotomies
and have developed the corresponding theory in a systematic way for the continuous
and discrete dynamics during the last few years. See also the book [12] for details. As
mentioned in [12], in finite-dimensional spaces essentially any linear differential equa-

tion with nonzero Lyapunov exponents admits a nonuniform exponential dichotomy.
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The works of Barreira and Valls can be regarded as a nice contribution to the nonuni-
form hyperbolicity theory [13].

There are some works concerning the smooth dependence of the stable and unstable
sub-spaces on the parameter. For example, in the case of continuous time, that is, for
linear differential equations

v = [A(6) + B(t, V)],

Johnson and Sell [14] considered exponential dichotomies in R (in a finite dimen-
sional space), and proved that for Ck perturbations, if the perturbation and its deriva-
tives in A are bounded and equicontinuous in the parameter, then the projections are
of class Ck in A. In the case of discrete time, Barreira and Valls established the optimal
C' dependence of the stable and unstable subspaces on the parameter in [15] for the
uniform exponential dichotomies and in [16] for the nonuniform exponential
dichotomies.

In our study, we establish the optimal C' dependence of the stable subspaces on the
parameter for very general nonuniform dichotomies (which was first introduced by
Bento and Silva in [17]) for (1.1). Such dichotomies include for example the classical
notion of uniform exponential dichotomies, as well as the notions of nonuniform expo-
nential dichotomies and nonuniform polynomial dichotomies. The proof in this article
follows essentially the ideas in [16], with some essential difficulties because we consider
the new dichotomies. We also note that we can establish the optimal C' dependence of
the unstable subspaces on the parameter using the similar discussion as in [16], and we
omit the detail for short.

2, Setup
Let B(X) be the set of bounded linear operations in the Banach space X. Let (4,,),.c/
be a sequence of invertible operators in B3(X). For each m, n € ], we set

Ap_1..Ay, ifm>n,
A(m,n) =1 1d, ifm=n,

ALLAYifm <.

In order to introduce the notion of nonuniform dichotomy, it is convenient to con-
sider the notion of growth rate. We say that an increasing function y : J — (0, +) is a
growth rate if

n(0)=1 and nlir}lwu(n) = +00.
Given two growth rates y and v, we say that the sequence (4,,),,c; (or the cocycle

A(m, n)) admits a nonuniform (¢, v) dichotomy if there exist projections Py, € B(X) for
each m € J such that

A(m,n)P, = Py A(m,n), mmn,e]j

and there exist constants o, D > 0 and ¢ > 0 such that

| A(m, n)P, | < D(‘;((’n”)))_ ve (), 2.1)
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and

[ AGmn) Q| sD(’“‘ (m)> " (m), (22)
m(n)

for each m > n, where Q,, = Id - P, is the complementary projection of P,,.

When pu(m) = v(m) = e, we recover the notion of p-nonuniform exponential
dichotomy, while we recover the notion of nonuniform polynomial dichotomy when
u(m) = vim) =1 + m.

For example, if 4 and v are arbitrary growth rates and ¢ o > 0, consider a sequence

of linear operators A, : R> — R? given by diagonal matrices

_(an 0
A”‘(o b,,)’

where
1)\ 81 (m+1)(cos(m+1)—1) 81 (m)( )
ogv(m+1)(cos(m+1)—1)— ogv(m)(cosm—1
am:(ﬂ(m+ )) 02 g 518 ’
n(m) .
by = (M(m +1) )aez log v(m+1)(cos(m+l)71)+2 log v(m)(cos mfl)’
m(m)

for any m € J. Then (A,,),,c; admits a nonuniform (¢, v) dichotomy with the projec-
tions P, : R* — R? defined by P,,(x, y) = (x, 0), and we have

A e < (M0 e,

n(n)
and
] = (20) vt

for each m > n.
In this article, for each n € ], we define the stable and unstable subspaces by

E,=P,(X) and F, = Q,(X).

3. Main results
We establish the existence of stable subspaces Eﬁ on J for each A € Y, such that the
maps A > E* are of class C'. As the same in [10], we look for each space Elas a

graph over E,. More precisely, we look for linear operators ®,,;: E, — F, such that
E} = graph(Idg, + ®,,), nel, AeY.

Given a constant x < 1, let X be the space of families ® = (®,,;),.c ;5 y of linear

operators ®,,; :E, — F, such that
@]l := sup {|| @y | vi(Inl) : (1) eI x Y} <k
and

Copu(®@) = sup {|| @y — P | vi(Inl) s €T} <kl — pll
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for each 4, 4 € Y. Equipping X with the distance
[® — W =sup{|®nr— Wnarv°(Inl): (n,2) €] x Y},

it becomes a complete metric space. Given ® € X and A € Y, for each n € ], we
consider the vector space

Ei; = graph(IdEn + q>n,)n) = {(Sr cbn,)f) : S S En} .
Moreover, for each m, n € ], we set

Cpn-1...Cy, ifm>n,
As(m,n) =4 1d, ifm=n,
C,l.Cl, ifm<n,

where C; = Ay + Bi(L) for each ke J.

Now we state the main result of this article.

Theorem 3.1. Assume that the sequence (A,,) . ; admits a nonuniform (u, v) dichot-
omy, and for each m € J,By, : Y — B(X)are C' functions satisfying

IBu(n)| <8vP(m+1) and |B,(x)]| <sv P (m+1). (3.1)

Suppose further that

[ n(n) 7 sl

Then for o sufficiently small there exists a unique & € Xsuch that
E: = A, (m,n)E, (3.3)

for each m, n € J. Moreover,

(1) for each ne J, m > nand h € Y we have

A (m,m) [EL | < D(‘;((’;’))) v (n) (3.4)

for some constant D’ > 0;

(2) The map )\ ~ ®,,, is of class C* for each n € J.

Proof. Given n € Jand (& n) € E, x F,, the vector

(Xm, Ym) = As(m, n)(&,n) € Ep X Fy

satisfies
m—1
X = A(m, )€ + ) PuA(m, 1+ 1)Bi(3) (x1, 1) (3.5)
I=n
and
m—1

ym = A(m,n)n + Y QuA(m, 1+ 1)Bi(3)(x1, 71) (3.6)

I=n
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for each m > n.
Due to the required invariance in (3.3), given (x,, y») € E; we must have y,, = @,,,

x,, for each m, and thus Equations (3.5)-(3.6) are equivalent to

m—1
X = A(m, n)x, + Y PuA(m, 1+ 1)By(2)(Idg, + ®1)x (3.7)
I=n
and
m—1
Dy = A(m, n)®psxy + Y QuA(m, 1+ 1)Bi(A)(Idg, + D1 ) (3.8)

I=n

for each m > n.

Now we introduce linear operators related to (3.7). Given ® € X, n € Jand A € Y,
we consider the linear operators Wy, , = Wy o, 1 E; — Ep determined recursively by
the identities

m—1

o = PuwA(m,n) + " Py A(m, 1+ 1)Bi(3) (Idg, + @15) W], (3.9)

I=n
for m >n, setting Wy, = Idg,. We note that for x, = ¢ € E,, the sequence
Xm = Wy Xy = W 1 & (3.10)

is the solution of Equation (3.5) with y; = ®;,x; for each / > n. Equivalently, it is a
solution of Equation (3.7).
Using (3.10) we can rewrite (3.8) in the form

m—1
Dy Wi, = Alm, n)®ys + Y QuA(m, 1+ 1)Bi(2)(Idg, + @1 )W}, (3.11)

I=n

Lemma 3.2. Given o sufficiently small, for each & € Xand ) € Y, the following prop-
erties are equivalent:

(1) (3.11) holds for every n € ] and m > n;
(2) for every n € J and m > n we have

D= — Y QuA(l+1,n) ' Bi(A)(Idg, + B1s )W}, (3.12)

I=n

Proof of the lemma. We first show that the series in (3.12) are well defined. Using
(2.2) and (3.1), we obtain

Ve (n)

3 HQ,,A(I +1,m)  Bi() (Idg, + By )WY,
I=n
< 6D(1 +x) IZ (“S(;)l))_ VB (14 1) WP v (n) (3.13)

> I+1)\ ¢
<wpY (M/(»(n) )) VP 1) W [ ().

Page 5 of 15
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By (3.9), for each m > n we have

vz = p (40 "

n(n)

o )\ (3.14)
R o (Rrie IR AP
I=n
Setting
T (i NS
Then we have
m—1 M(l) —a
& e=p
T < Dv¥(n) +8D(1 +K)TZ<M(Z+1)> v+ 1) (3.15)

I=n

< Dv®(n) + 28D9 Y.

Taking 0 sufficiently small such that 209D < 1/2 (independently of #) we obtain
T < 2Dv(n),

and therefore,

Wil < 2D(Z((':)) ) ve (n). (3.16)

Combined (3.13) and (3.16), we have

v (n)

> [Quad s 1 B (dy + @)W
I=n

n?(n)

< 48D? o~ (1D 1) _avgfﬁ(h 1)v*(n)
; ( ) (3.17)

o0
<4sD? Y V(14 1)
I=n

<k

provided that ¢ sufficiently small.
Now we assume that identity (3.11) holds. It is equivalent to
q)n,k = Qn.A(m, n)71 q)m,)\.wrr:l/)\,
m-l . . (3.18)
— Y QuA(l+ 1,n) ' Bi(A)(Idg, + P ) W]
I=n
Using (3.16), for each m > n we have
- pe(m)\ >
HQHA(m, n) = @, Wi, H < 2«kD? ( () ) ve(n)

Since a > 0, letting m — +oo in (3.18) we obtain identity (3.12).



Wang Advances in Difference Equations 2012, 2012:31 Page 7 of 15
http://www.advancesindifferenceequations.com/content/2012/1/31

Conversely, let us assume that identity (3.12) holds. Then
m—1
A(m, 1)@y + Y QuA(m, 1+ 1)Bi(3)(Idg, + @15) W},

I=n

==Y QuA(l+1,m)'Bi(3)(Idg, + P1) W},

I=n
m—1

£ QuA(l+1,m)7 Bi(A)(Idg, + @1) W],

I=n

==Y QuA(l+1,m) ' Bi(3)(Idg, + ®1) W},

I=m
for each m > n. Since W, = W, Wy . it follows from (3.12) with # replace by m
that (3.11) holds for each m > n.
We define linear operators A(®),,; : E, — F, each ® € X, n € ], and % by

A(®)np ==Y QuA(l+1,n) "' By(A)(Idg, + 1) W],

I=n
Lemma 3.3. For § sufficiently small, A is well defined and A(X) C X.
Proof of the lemma. By (3.17) the operator A is well-defined and
la(@)] <«
for ¢ sufficiently small. Furthermore, writing
Wl",l}\ = Wl,}u Wl",lu = Wl,/l./
we have
= [Bi(3)(1de; + @1 )W — Bi(w)(Idg, + @1 ) Wi
= |Bi2) = Biw) | - [Wia | - (1 + [ @)
+[Bil) [ - [Win = Wi - (U [ @ia])) + [BiGa [ Wi [ @00 = 1]
< 28D(1+ k) A — pullvP(l + 1)( w(D) ) Ve (n)
()
+8(1+x)P(l+1) H Wi — Wi, ||

H’(l) )avﬁ‘(n)v—sa)

+28Dkv P (1+ 1) |A — wll <M(”)

< 68D ||A — p (”((’?)) v 1+ 1) (n) + 280 P (14 1) Wi — W,
"
Therefore,
m—1
Wi = Wi | < D [ PwA(m, 1+ 1) - by
I=n

568D2<l;((11))> v (n) 1A — ||Z< n(h )w\f—ﬂ(zn)

+28D Z (Mlél(m) ) veh (I+1) H Wi — Wi H

< 65D% (“(( ))) Ve () % = el

+28DZ( w(m) ) VB 1) [Wis — Wil
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Setting

Then we have from the above inequality that

m—1 —Q
(0 -
Y < 65D79v¢ (n) [ — | + 25D ) T( K VB (1),
— N\ u(+1)

Setting Y = sup{Y,, : m > n}, we obtain
Y < 68D*0ve(n) |A — u| + 28D Y.

Taking o sufficiently small such that 20D9 < 1/2, we obtain
Y < 128D*9ve(n) ||x — ull,

and therefore,

[Wins = Wi | < 128D219(l;((’:))) ve(n) A — ull. (3.19)

Therefore, it follows form (3.19) that

by < 65D ||A — | (Z(S?Q_av‘ﬂ(l +1)v°(n)
250 P+ 1) 1251)219(5((:1)))&1;6(@ A — pll

(1)

=K || — pll (M(”)

>_av—ﬂ(z+ 1)v* (n)

where K = 6D + 240D*9 > 0.
Therefore, we obtain

”A(q))n,k - A(q))n,ﬂ || v (Tl)

<3t 1wt
I=n

. pDp(l+ 1)\ e—p 2s
< SKD ||x — u]| v (1+ 1)v¥(n)
(")

o0
<SKD[x =l Y v 1+ 1)
I=n

< 8KDV [|A — pl]

and provided that ¢ is sufficiently small, we obtain G, (A(®D)) < &|[A - p|. This shows
that A(X) C X.

Now we note F be the space of sequences U = (U,,3),e nae v Of linear operators U,
: E, - F, indexed by Y such that A » U,,; is continuous for each # € J, and

U= sup {|Un.|} =1 (3.20)
(n,A)elxY
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Equipping F with this norm, it becomes a complete metric space, For each
(@, U) e X x F,ne J,and A € Y, we also define linear operators B (®, U),; by

[e o]
B(®, U)y = — Y QuA(l+1,n)7' Gy, (3.21)

I=n

where
= Bl()\-)(ZZ,A + q)l/AZl/A + Ul,)\W{’l)\) + B;()\.)(IdEl + (Dl/)t)WL)\ (322)
and the linear operators Z,,5 = Z,,0,u). : E, = E,, are determined recursively by the
identities
m—1

Znp = Y PuA(m,1+1)Gyy (3.23)

I=n
for m >n, setting Z,,, = 0. One observe that by the continuity of the functions ®;;
and Uj; on A the functions A » W;; and A » Z;;, are also continuous.
Lemma 3.4. For o sufficiently small, the operator B is well defined, and
B(X x F) C F.
Proof of the lemma. By (3.16) and (3.20) we have

m—1

1Zn ] = 32 IPwmACm, 1+ D B (1 + | @1a]) |22

I=n

+ (HBI(M [t « 1B | (1 + @) Wi ]

< 25DZ ( ) ey )
o3 () () v

<2 MI%()) s—ﬂ(ln)nz:,xll+65Dzl’(i($>)>a

I=n

Setting Y, = (Zi’:;)a | Zm,

Yo <25DZ<“( ”)) VP14 1) | Zi | + 68D?0

< 28DV Y} + 63D*¥
and setting Y = sup{Y,, : m > n},

T < 28DOY + 68D*D.
Thus, taking ¢ sufficiently small such that 26D¢ < ;, we have

T < 128D?%,

and therefore

|Zos | < 123D2ﬂ(“ (m))a (3.24)
w(n)

Page 9 of 15
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Setting
G=), HQnA(“ 1Lm) H |G (3.25)
I=n
it follows from (3.16) and (3.20) that
oS (PN L
“=P. (") e
{28v‘3(l+ 1) || + 68DV (1 + 1)(%}11)))&1;5(;1)}
< - p(l+1) _avg—ﬂ N
JD;( () ) (1)
229 #() *‘"+ n(\ 7, (3.26)
[245[)19(”(”)) (1) "(")}
5 > L+ DM\ .
< 248 D3ﬂ§<ﬂ(u2(r)§()) VB (14 1)
+ 2 - w(l+1)u(l) _avzg_ﬁ +
wnry (M0 WO D

I=n

< 248°D393 + 68D*9 < 1,

provided that ¢ is sufficiently small. This shows that B is well defined for each #, and
that |B(®D, U) || < 1. Therefore, B(X x F) C F.
Now we define another map §S: X x F — X x F by

S(®, U) = (A(®), B(®, U)).

By Lemmas 3.3 and 3.4, it is clearly that the maps S is well defined and
S(X x F)Cc & x F.

Lemma 3.5. For J sufficiently small, the operator S is a contraction.

Proof of the lemma. Given @, W € X, and set Wio = W'y, , Wiw = W], ;. we
obtain

|A(®),,, — AW, | v* (m)

- 2 (l+1) 7“‘)8 1) s0-F(ls
_Dg( M(n)) (1+1)-8v7P(1+1).

{IWio = Wiw| + || ®1aWie — W Wi |} v*(n)

< spi (“(l+ 1)>_av€—ﬂ(z+ 1).

=\ n(n)
{2|Wie = Wiw| + 1@ — Il [We | ve (1)} v*(n)

(3.27)

< 28DV |Wie — Wi | v¥(n) + 28D%0 || — V|| ( M(S?)) v (v (n).
"

Page 10 of 15
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By (3.16) we obtain

||wm¢ ~ Wy
<8DZ (M‘gl( ) ) V(4 1)-vP(l+1).
{2 || Wl,<1> — Wig| +l1® = W[ [Wiw | v (D)}
< 28Dmi1 ( w(m) )avg_ﬁ(h 1) [Wie — Wi
B AVI(ERY ' ’
s 10 — ot (PN S (1D N e
e —wi () (,00) e v
o () () -t e (47)

w(m)
w(n)

Y, < 28DOY; +28D%9 ||® — V||

Setting Y, = ( ) [Win,o — Win,w

and setting Y = sup{Y,, : m > nj,

T < 28DOY +28D*Y || @ — V|
Thus, taking o sufficiently small so that 26D9 < ;_ we have

Y < 48D%9 ||® — V|

and therefore,

[Wino — Wi| < 46D*9 | — W|| (’;((Zl))) (3.28)

Using (3.16) and (3.28) in (3.27) we obtain
lA(®),,5 =AY |
< 48D || D — KON e ny + 28079 @ — LOR T 3.29
< 28DV - 46D | ® — || (u(n)> V¥ (n) + 26D*9 | — W (u(n)> vi(n) (3.29)
< 8K || — W[ v¥(n)

for K = 86D%9* + 2D*9 > 0, provided that 5K’ v?(n) < 1. This shows that A is a
contraction.

Nextly, also given ®, W € X, U,V € Fand L € Y, set Zyopuu = Z;, ouy. and Z; g, ¢ =
Ziw.110, We obtain

|B(®, U),, — B(®,V),,]

< n(l+1) DBl s
(SDZ( ) (1+1). 320,

(2] 200 - Zw,vll + @ =] (1Zvou] + [Wie])
Ui = Via [ [Woe | + [Wio = Wi | (1+ [Vir ]| + 90 [)} -

Page 11 of 15
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By (3.16), (3.26), and (3.30)

| Zmou — Zmwv|

8DZ< w(m) ) VP14 1),

w(l+

21200 = Zwy| + @ = W] ([Ziou] + [Wiol)
Ui = Via | [Woa ] + [Wie = Wiw| (1+ [Vir ] + |91 ])}

< 28D Z ( w(m) ) VP (14 1) ||Z1,q>,u - Zl,\D,V”

+ (125 D319 +28D% +128°D°9) || — V||

mi (i) (i) 7w

\28D? wlm) N\ (DN s e (3.31)
2D = V”Z( ien) (i) e

< 28D Z ( w(m) > VP (1+1) | Ziou — Ziw,v |

+(1282D39 + 28D% + 1282D9) | — ¥ ﬂ(“(m))

u(n)
+ 28D |U - V|| ﬁ(“(m))

w(n)
ey ( MU nm) N
_28D<u(n)> §<u(l+1)> VP (+ 1) | Zieu — Ziwv|
+8Ko<||d>—w||+||U—V||>(’;((Z’)))_

for some positive constant K, = 126D°9* + 2D*9 + 120D*9* > 0, provided that J < 1.

. p(m) )“
Setting Y, = z" - 7"
g ( ,u(n) ” m,®,U W,

Tm <25DU0Y;+6Ko (|© — W+ ||U—-V])

and setting Y = sup{Y,, : m = n} we obtain
T <28DOY + 68Ky (|® — | + U - V])

Taking 0 sufficiently small so that 26Dy¢ < ;_ we obtain
T < 25Ko (1P — W + IU = V)

and therefore,

p(m)\ ™
[Zmo,u — Zmw,v | < 26Ko (19 — Wl + |U = V) (M((ﬂ))> . (3.32)
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Using (3.32) in (3.30) we obtain

”B(CD' U)n,k - B(Cb, V)n,k “

< api (u(z + 1))—avsﬂ(z +1)- [48Ko AP — || + |U - V]) (u(m)>—a

2\ () k()
Ao — v (128D219(5((rll)))_a +2D(Z((’?))_av£(n))

o (PO e
2D U vn(ﬂ(n)) Ve (n) + 126D ﬁ(ﬂ(n)) o \pn}

< 45?DKy (1& — W[+ U~ V)Y (“(l ;21():;(’”))av8—f‘(z 1)

I=n

+8DY" (“(Z y 1)> VP14 1) - [(126°D%® + 26D + 128°D>)

I=n ,LL(H)
B RN e 4 asD? (U — rON\™ e
o (10) oo () o

<SLI® — W[+ U—-VID

for some positive constant L = 40DKy9 + 0DK, > 0, provided that 6 L < 1. It follows
from (3.29) and the above inequality that for J sufficiently small the operator S is a

contraction.

Now we proceed with the proof of Theorem 3.1. By Lemma 3.5 and its proof, there
exists a unique pair (®, U) € X x F such that S(®, U) = (¥, U) and ¢ is the unique
sequence in X such that A(®),; = ®,, for each n € J, A € Y. Namely, ¢ is the unique
solution of Equation (3.12) as well as Equation (3.11). Together with (3.9) this implies

that if £ € E,, then
me> (W& @y (W), €))

is a solution of (3.7) and (3.8). This means (3.3) holds.
Let ® be another sequence for (3.3). If £ € E,, then

(6, @,,6) € E: and A (m, n)(g, &) € EX

Thus, if (x,,, ¥,,,) is the solution of Equation (1.1) with x,, = ¢ and y,, = © ,,,§, then
Y = ©yuax,, for m = n. This means (3.7) and (3.8) hold. Furthermore, the sequence

Xm = W1 & satisfies (3.9) and (3.11) holds. So ¢ = &.

Let (xn, yn) € E%, then for each m > n we have
(Xm, ym) = A (m, n)(xn, yn)
and
X = Wpaxn and Yy = OpaXm.
Therefore

(%ms ¥m) = (Idg,, + Pmp ) WinaXn.
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By (3.16)
—o

| Gonr )| < 4D<i((’:)) ) v () il
On the other hand,

” (xn, )/n)” = ”xn +Yn|| > ”xn —Vn ” = [lxnll — ” cI)n,kxn” > (1 =) llxnll-
Thus

4D ((pu(m)\ ™
sl = " (20) v il
Lo . . 4D
which implies that (3.4) holds with D' = ) > 0.
— K

For the C' regularity of the maps Ar> ®,, we consider the pair
(@', U')=(0,0) € X x F. Clearly,

d

Uy, = dx

@,
for each n € Jand L € Y. We define a sequence (®™, U™) € X x F by

(¢m+1’ Um+1) _ S(qu, Um) _ (A(q)m),B(CDml Um))

For a given m € J, if A — de:A is of class C' for each n € J, and ur, = dli on, for
d

every n € Jand A € Y, then the linear operators W,,, and Z,,; satisfy Z,,, = =~ W,

da
for m 2 n and A € Y. Therefore we can apply Leibniz’s rule to conclude that

= <I>;'f:{1 is of class C' for every n € J, with
Uit = B(@™, U™y
— 0
=2 (Al L) B Wi + o W)
= (3.33)
= ! A(P" ).
di '
) ddx o

foreachne Jand L € Y.

Moveover, if (&, U) is the unique fixed point for the contraction map S. then the
sequence (CDZf,\)meN converge uniformly to @, ; and the sequence (U:lr,lk)mew converge
uniformly to U, ; for eachm e Jand A € Y.

We know that if a sequence f,, of C' functions converges uniformly, and its deriva-
tives f) also converges uniformly, then the limit of £, is of class C', and its derivative
is the limit of f},. Therefore, by (3.33) each function A > @, is of class C', and

d

s q>n,l = Un,l

for each n € Jand A € Y. This completes the proof of Theorem 3.1.
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