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Abstract

This article concerns with the analysis of an iterative procedure for the solution of a
nonlinear nonstationary diffusion convection equation in a two-dimensional
bounded domain supplemented by Dirichlet boundary conditions. This procedure,
denoted Lagged Diffusivity method, computes the solution by lagging the diffusion
term. A model problem is considered and a finite difference discretization for that
model is described. Furthermore, properties of the finite difference operator are
proved. Then, a sufficient condition for the convergence of the Lagged Diffusivity
method is given. At each stage of the iterative procedure, a linear system has to be
solved and the Arithmetic Mean method is used. Numerical experiments show the
efficiency, for different test functions, of the Lagged Diffusivity method combined
with the Arithmetic Mean method as inner solver. Better results are obtained when
the convection term increases.

1 Statement of the problem
Consider as model problem the nonlinear diffusion convection equation

∂u
∂t

= div(σ∇u) − ṽ · ∇u − αu + s, (1)

where u = u(x, y, t) is the density function at the point (x, y) at the time t of a diffu-

sion medium R, s = s(x, y, u) > 0 is the diffusion coefficient or diffusivity and is

dependent on the solution u, a = a(x, y) ≥ 0 is the absorption term, ṽ = ṽ(x, y, t, u) is

the velocity vector and the source term s(x, y, t) is a real valued sufficiently smooth

function.

Equation (1) can be supplemented by the initial condition (t = 0)

u(x, y, 0) = U0(x, y), (2)

in the closure R̄ of R and by Dirichlet boundary condition on the contour ∂R of R of

the form

u(x, y, t) = U1(x, y, t). (3)

In the following, we suppose R to be a rectangular domain with boundary ∂R and we

assume that the functions s, a, and s satisfy the “smoothness” conditions:
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(i) the function s = s(u) is continuous in u; the functions a(x, y) and s(x, y, t) are

continuous in x, y and in x, y, t respectively;

(ii) there exist two positive constants smin and smax such that

0 < σmin ≤ σ (u) ≤ σmax,

uniformly in u; in addition, a(x, y) ≥ amin ≥ 0;

(iii) for fixed (x, y) Î R, the function s(u) satisfies Lipschitz condition in u with con-

stant Γ (uniformly in x, y), Γ > 0.

Here, the vector ṽ = (ṽ1, ṽ2)T is assumed to be constant.

The nonlinearity introduced by the u-dependence of the coefficient s(u) requires
that, in general, the solution of equation (1) be approximated by numerical methods.

We superimpose on R ∪ ∂R a grid of points Rh ∪ ∂Rh; the set of the internal points

Rh of the grid are the mesh points (xi, yj), for i = 1,..., N and j = 1,..., M, with uniform

mesh size h along x and y directions, respectively, i.e., xi+1 = xi + h and yj+1 = yj + h

for i = 0,..., N, j = 0,..., M.

Thus, at the mesh points of R ∪ ∂R, (xi, yj), for i = 0,..., N + 1, j = 0,..., M + 1, the

solution u(xi, yj, t) is approximated by a grid function uij(t) defined on Rh ∪ ∂Rh and

satisfying the boundary condition (3) on ∂Rh for t > 0 and the initial condition (2) on

Rh ∪ ∂Rh for t = 0.

By ordering in a row lexicographic order the mesh points Pl = (xi, yj) (i.e., l = (j - 1) ⋅
N + i with j = 1,..., M, and i = 1,..., N), we can write the vector u(t) of components uij
(t) and approximate the right-hand side of (1) by

A(u(t))u(t) + b(u(t)) + s(t), (4)

where the matrix A(u(t)) is of order μ = M × N and has the block tridiagonal form;

the M diagonal blocks are tridiagonal matrices of order N and the M - 1 sub- and

super-diagonal blocks are diagonal matrices of order N.

The five nonzero elements of A(u(t)) corresponding to uij-1(t), ui-1j (t), uij(t), ui+1j(t)

and uij+1(t) respectively, are

{(Bij + B̃ij), (Lij + L̃ij),−(Dij + D̂ij), (Rij + R̃ij), (Tij + T̃ij)},

where

Lij ≡ Lij(u(t)) =
1
h2

σ

(
uij(t) + ui−1j(t)

2

)
,

Bij ≡ Bij(u(t)) =
1
h2

σ

(
uij(t) + uij−1(t)

2

)
,

Rij ≡ Rij(u(t)) =
1
h2

σ

(
ui+1j(t) + uij(t)

2

)
,

Tij ≡ Tij(u(t)) =
1
h2

σ

(
uij+1(t) + uij(t)

2

)
,

L̃ij =
ṽ1
2h

, B̃ij =
ṽ2
2h

,

R̃ij = − ṽ1
2h

, T̃ij = − ṽ2
2h

,

Dij ≡ Dij(u(t)) = Bij + Lij + Rij + Tij, D̂ij = α(xi, yj).

(5)
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The matrix A(u(t)) is an irreducible matrix [[1], p. 18].

Providing that the mesh spacing h is sufficiently small, i.e.,

h < min

{
2σmin∣∣ṽ1∣∣ ,

2σmin∣∣ṽ2∣∣
}
, (6)

the matrix A(u(t)) is strictly (a(x, y) > 0) or irreducibly (a(x, y) = 0) diagonally domi-

nant ([[1], p. 23]) and has negative diagonal elements, all(u(t)) < 0 (l = 1, ..., μ) and

nonnegative off diagonal elements alp(u(t)) ≥ 0, l ≠ p, with l, p = 1, ..., μ; therefore, -A

(u(t)) is an M-matrix [[1], p. 91].

In the case of diffusion equation (ṽ = 0), the matrix A(u(t)) is also symmetric; then

-A(u(t)) is a Stieltjes matrix and is symmetric positive definite [[1], p. 91].

The vector b(u(t)) in (4) is obtained imposing Dirichlet boundary conditions (3) and

it depends on the function U1(xi, yj, t) at points (xi, yj) of ∂R and its lth component

depends on the lth component of the solution u(t) for the mesh point Pl of R which is

neighbor of points of ∂R.

The vector s(t) in (4) has components sl(t) = s(xi, yj, t) for i = 1,..., N, j = 1,..., M and

l = (j - 1) N + i.

We can apply a step-by-step method to the initial value problem of μ equations

du(t)
dt

= A(u(t))u(t) + b(u(t)) + s(t),

with the initial condition (2), u(xi, yj, 0) = U0(xi, yj), and computes the approximation

un+1 to u(tn+1) using the approximate solution un at the time level tn, with tn = nΔt

and Δt the time step.

Indicating sn = s(tn), for n = 0,1,..., the well-known θ-method (see, e.g., [2]) is written

un+1 − un

�t
= θ(A(un+1)un+1 + b(un+1) + sn+1) + (1 − θ)(A(un)un + b(un) + sn),

where θ is a real parameter such that 0 ≤ θ ≤ 1; for any θ ≠ 0, the method is implicit.

I is the μ × μ identity matrix.

Thus, at each time level n = 0, 1,..., the vector un+1 Î ℝμ is the solution of the non-

linear system,

F(u) ≡ (I − �tθA(u))u − �tθb(u) − w = 0. (7)

The vector w Î ℝμ is given by

w ≡ wn = (I + �t(1 − θ)A(un))un + �t(1 − θ)b(un) + �t(θsn+1 + (1 − θ)sn).

We set τ = Δtθ.

We can introduce an iterative method of Lagged Diffusivity, computing the new iter-

ate u(k+1) keeping the diffusivity term at the previous iteration k. That is, since the

matrix I-τ A(u) is nonsingular for all u Î ℝμ then u(k+1) is the solution of the linear

system

(I − τA(u(k)))u = w + τb(u(k)),
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such that the residual

r(k+1) = (I − τA(u(k)))u(k+1) − w − τb(u(k)),

satisfies the stopping condition∥∥∥r(k+1)∥∥∥ ≤ εk+1,

where εk is a given tolerance such that εk ® 0 when k ® ∞ and ∥⋅∥ indicates the

Euclidean norm. The initial iterate u(0) of this Lagged Diffusivity procedure can be set

equal to un.

2 Uniform monotonicity and a convergence result
In this section, we consider the nonlinear system F(u) = 0 in (7) and we prove that F

(u) is continuously and uniformly monotone and then F(u) = 0 has a unique solution.

Moreover, we prove that the sequence {u (k)} generated by the Lagged Diffusivity pro-

cedure is convergent to the solution. Before this, we have to prove three lemmas on

some properties of finite difference operators.

In the following, we may consider the matrix A(u) as

A(u) = Â(u) + Ã + D̂,

where Â(u) and Ã are the block tridiagonal matrices whose row elements are {Bij,

Lij, -Dij, Rij, Tij} and {B̃ij, L̃ij, R̃ij, T̃ij} , respectively, while the matrix D̂ is a diagonal

matrix whose diagonal entries are {−D̂ij} . Furthermore, we denote

Â(u) = Âx(u) + Ây(u),

where Âx(u) is the block diagonal matrix whose row elements are {Lij,−Dx
ij,Rij}

with Dx
ij = Lij + Rij , and Ây(u) is the block tridiagonal matrix whose row elements are

{Bij,−Dy
ij,Tij} with Dy

ij = Bij + Tij . Analogously, we can define b(u) = bx(u) + by(u)

where bx(u) contains the contributions of U1(x0, yj, t) and U1(xN+1, yj, t) for j = 1, ...,M

and by(u) contains the contributions of U1(xi, y0, t) and U1(xi, yM+1, t) for i = 1,...,N.

For the sake of clarity, we set uij ≡ uij(t) and vij ≡ vij(t), (i = 0,..., N + 1, j = 0,..., M +

1), the grid functions defined on Rh ∪ ∂Rh and satisfying the Dirichlet boundary condi-

tion on ∂Rh for t > 0.

For grid functions {uij} and {vij} of this type, the discrete l2 (Rh) inner product and

norm are defined by the formulas

< u, v > = h2
N∑
i=1

M∑
j=1

uijvij,

‖u‖h = (h2
N∑
i=1

M∑
j=1

∣∣uij∣∣2)1/2 = (< u,u >)1/2,

respectively

We denote by B the set of all grid functions defined on Rh ∪ ∂Rh and satisfying the

Dirichlet boundary condition on ∂Rh for t > 0 for which there exist two positive
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constants r and b, both independent of h, such that

‖u‖h ≤ ρ (8)

∣∣∇xuij
∣∣ ≤ β ,

∣∣∇yuij
∣∣ ≤ β . (9)

Here, ∇x uij and ∇y uij indicates the backward difference quotients

∇xuij =
uij − ui−1j

h
, ∇yuij =

uij − uij−1

h
. (10)

Before to prove the main result, we summarize in three lemmas on some properties

of finite difference operators.

Here, for a grid function {uij}, we denote

ui±1/2j =
ui±1j + uij

2
, uij±1/2 =

uij±1 + uij
2

.

Lemma 1. Let {uij}, {vij}, {zij} be three grid functions defined at the mesh points (xi,

yj) of a grid Rh ∪ ∂Rh, i = 0,...,N + 1, j = 0,..., M + 1 which are equal to the prescribed

function U1 (xi, yj, t) at the point (xi, yj) of ∂Rh and t > 0; then

< −Â(z)u − b(z), v >=< −Âx(z)u − bx(z), v > + < −Ây(z)u − by(z), v >,

where

< −Âx(z)u − bx(z), v > =
M∑
j=1

[
σ (z1/2j)(u1j − u0j)v1j+

+
N∑
i=2

σ (zi−1/2j)(uij − ui−1j)(vij − vi−1j)+

+σ (zN+1/2j)(uNj − uN+1j)vNj
]
,

(11)

< −Ây(z)u − by(z), v > =
M∑
i=1

[
σ (zi1/2)(ui1 − ui0)vi1+

+
M∑
j=2

σ (zij−1/2)(uij − uij−1)(vij − vij−1)+

+σ (ziM+1/2)(uiM − uiM+1)vMj
]
.

(12)

Proof. Formulae (11) and (12) follow immediately from the definition of the coeffi-

cients in (5).

Lemma 2. Let {uij} and {vij} be two grid functions defined at the mesh points (xi, yj)

of the grid Rh ∪ ∂Rh, i = 0,..., N + 1, j = 0,..., M + 1 such that, at the point (xi, yj) of

∂Rh and t > 0, the grid function {uij} is equal to the prescribed function U1(xi, yj, t) and

the grid function {vij} is equal to the null function, respectively.

Then, we have the following expression for the discrete l2(Rh) inner product of the

vectors −Â(u)v and v
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< −Â(u)v,v > = h2
M∑
j=1

N∑
i=1

σ (ui−1/2j)(∇xvij)
2 + h2

N∑
i=1

M∑
j=1

σ (uij−1/2)(∇yvij)
2+

+
M∑
j=1

σ (uN+1/2j)vNjvNj +
N∑
i=1

σ (uiM+1/2)viMviM

(13)

Proof. From (5) the expression of < −Â(u)v,v > is

< −Â(u)v,v > =
M∑
j=1

[
σ (u1/2j)v1jv1j +

N∑
i=2

σ (ui−1/2j)(vij − vi−1j)(vij − vi−1j) + σ (uN+1/2j)vNjvNj

]
+

+
N∑
i=1

⎡
⎣σ (ui1/2)vi1vi1 +

M∑
j=2

σ (uij−1/2)(vij − vij−1)(vij − vij−1) + σ (uiM+1/2)viMviM

⎤
⎦.

Since the grid function {vij} is equal to zero for all the points of ∂Rh, we can write

< −Â(u)v,v > =
M∑
j=1

[
σ (u1/2j)(v1j − v0j)(v1j − v0j) +

N∑
i=2

σ (ui−1/2j)(vij − vi−1j)(vij − vi−1j)+

+σ (uN+1/2j)vNjvNj
]
+

+
N∑
i=1

⎡
⎣σ (ui1/2)(vi1 − vi0)(vi1 − vi0) +

M∑
j=2

σ (uij−1/2)(vij − vij−1)(vij − vij−1)+

+σ (uiM+1/2)viMviM
]
.

From the definition of backward difference quotients (10), we have formula (13).

Lemma 3. Let {uij}, {vij} and {ṽij} be three grid functions of B such that, at the

points (xi, yj) of the boundary ∂Rh they are equal to the prescribed function U1(xi, yj, t)

(t > 0).

Then, we have the following expression for the discrete l2(Rh) inner product∣∣∣< (
−Â(u) + Â(v)

)
ṽ − b(u) + b(v),u − ṽ

∣∣∣ ≤ β�

φ
‖u − v‖2h +

β�φ

2h2
∥∥u − ṽ

∥∥2
h +

+
βh2�φ

2

M∑
j=1

N∑
i=1

(∣∣∇x(uij − ṽij)
∣∣2 + ∣∣∇y(uij − ṽij)

∣∣2) ,
(14)

where Γ > 0 is the Lipschitz constant of condition (iii), b > 0 is a constant for which

|∇x vij| ≤ b and |∇y vij| ≤ b, and j is an arbitrary positive number.

Proof. Using formulae (11) and (12) and since uij − ṽij is equal to zero for all the

points of ∂Rh, we have

< (−Â(u) + Â(v))ṽ − b(u) + b(v),u − ṽ >=
M∑
j=1

[
(σ (u1/2j) − σ (v1/2j)) ×

× (ṽ1j − ṽ0j)((u1j − ṽ1j) − (u0j − ṽ0j))+

+ (σ (uN+1/2j) − σ (vN+1/2j))(ṽNj − ṽN+1j)(uNj − ṽNj) − (uN+1j − ṽN+1j))+

+
N∑
i=2

(σ (ui−1/2j) − σ (vi−1/2j))(ṽij − ṽi−1j)((uij − ṽij) − (ui−1j − ṽi−1j))]+

+
N∑
i=1

[
(σ (ui1/2) − σ (vi1/2))(ṽi1 − ṽi0)((ui1 − ṽi1) − (ui0 − ṽi0))+

+ (σ (uiM+1/2) − σ (viM+1/2))(ṽiM − ṽiM+1)((uiM − ṽiM) − (uiM+1 − ṽiM+1))+

+
M∑
j=2

(σ (uij−1/2) − σ (vij−1/2))(ṽij − ṽij−1)((uij − ṽij) − (uij−1 − ṽij−1))].
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Writing the backward difference quotients (10) for the functions ṽij and uij − ṽij and

by (9) for ∇xṽij and ∇yṽij , then

∣∣∣< (−Â(u) + Â(v))ṽ − b(u) + b(v),u − ṽ >

∣∣∣ ≤ βh2
M∑
j=1

N+1∑
i=1

∣∣∣σ (uij + ui−1j

2

)
− σ

(vij + vi−1j

2

)∣∣∣ ×

× ∣∣∇x(uij − ṽij)
∣∣ + βh2

N∑
i=1

M+1∑
j=1

∣∣∣σ (uij + uij−1

2

)
− σ

(vij + vij−1

2

)∣∣∣ ∣∣∇y(uij − ṽij)
∣∣ .

Since the property of Lipschitz continuity on the function s with Lipschitz constant

Γ (property (iii)), we have

∣∣∣< (−Â(u) + Â(v))ṽ − b(u) + b(v),u − ṽ >

∣∣∣ ≤ βh2�
2

M∑
j=1

N+1∑
i=1

(∣∣uij − vij
∣∣ + ∣∣ui−1j − vi−1j

∣∣) ×

× ∣∣∇x(uij − ṽij)
∣∣ + βh2�

2

N∑
i=1

M+1∑
j=1

(∣∣uij − vij
∣∣ + ∣∣uij−1 − vij−1

∣∣) ∣∣∇y(uij − ṽij)
∣∣ .

Keeping into account that uij − ṽij and uij - vij are equal to zero for the points of ∂R,

for an arbitrary positive number j, we have

∣∣∣< (−Â(u) + Â(v))ṽ − b(u) + b(v),u − ṽ >

∣∣∣ ≤ βh2�
2

M∑
j=1

N∑
i=1

∣∣uij − vij
∣∣

√
φ

∣∣∇x(uij − ṽij)
∣∣ √φ+

+
βh2�
2

M∑
j=1

N∑
i=1

∣∣uij − vij
∣∣

√
φ

∣∣∇y(uij − ṽij)
∣∣ √φ +

βh2�
2

M∑
j=1

N∑
i=1

∣∣uij − vij
∣∣

√
φ

×

× ∣∣∇x(ui+1j − ṽi+1j)
∣∣ √φ +

βh2�
2

M∑
j=1

N∑
i=1

∣∣uij − vij
∣∣

√
φ

∣∣∇y(uij+1 − ṽij+1)
∣∣ √φ.

By the well-known technical trick (for a and b positive numbers: ab < 1/2a2 + 1/

2b2), we can write

∣∣∣< (−Â(u) + Â(v))ṽ − b(u) + b(v),u − ṽ >

∣∣∣ ≤ βh2�
2

M∑
j=1

N∑
i=1

∣∣uij − vij
∣∣2

2φ
+

+
βh2�
2

M∑
j=1

N∑
i=1

∣∣∇x(uij − ṽij)
∣∣2

2
φ +

βh2�
2

M∑
j=1

N∑
i=1

∣∣uij − vij
∣∣2

2φ
+

+
βh2�
2

M∑
j=1

N∑
i=1

∣∣∇y(uij − ṽij)
∣∣2

2
φ +

βh2�
2

M∑
j=1

N∑
i=1

∣∣uij − vij
∣∣2

2φ
+

+
βh2�
2

M∑
j=1

N∑
i=1

∣∣∇x(ui+1j − ṽi+1j)
∣∣2

2
φ +

βh2�
2

M∑
j=1

N∑
i=1

∣∣uij − vij
∣∣2

2φ
+

+
βh2�

2

M∑
j=1

N∑
i=1

∣∣∇y(uij+1 − ṽij+1)
∣∣2

2
φ

≤ β�

φ
‖u − v‖2h +

βh2�φ

4

M∑
j=1

N∑
i=1

(∣∣∇x(uij − ṽij)
∣∣2 + ∣∣∇y(uij − ṽij)

∣∣2)+

+
βh2�φ

4

M∑
j=1

N∑
i=1

(∣∣∇x(ui+1j − ṽi+1j)
∣∣2 + ∣∣∇y(uij+1 − ṽij+1)

∣∣2) .

Now, we analyze the term
∑M

j=1

∑N

i=1

(∣∣∇x(ui+1j − ṽi+1j)
∣∣2 + ∣∣∇y(uij+1 − ṽij+1)

∣∣2) . We

have
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M∑
j=1

N∑
i=1

(∣∣∇x(ui+1j − ṽi+1j)
∣∣2 + ∣∣∇y(uij+1 − ṽij+1)

∣∣2) ≤
M∑
j=1

N+1∑
i=1

∣∣∇x(uij − ṽij)
∣∣2+

+
N∑
i=1

M+1∑
j=1

∣∣∇y(uij − ṽij)
∣∣2

≤
M∑
j=1

N∑
i=1

(∣∣∇x(uij − ṽij)
∣∣2 + ∣∣∇y(uij − ṽij)

∣∣2) +

+
M∑
j=1

∣∣uNj − ṽNj
∣∣2

h2
+

N∑
i=1

∣∣uiM − ṽiM
∣∣2

h2

≤
M∑
j=1

N∑
i=1

(∣∣∇x(uij − ṽij)
∣∣2 + ∣∣∇y(uij − ṽij)

∣∣2) +

+
1
h2

N∑
i=1

M∑
j=1

∣∣uij − ṽij
∣∣2 + 1

h2

M∑
j=1

N∑
i=1

∣∣uij − ṽij
∣∣2

≤
M∑
j=1

N∑
i=1

(∣∣∇x(uij − ṽij)
∣∣2 + ∣∣∇y(uij − ṽij)

∣∣2) +
2
h4

∥∥u − ṽ
∥∥2
h .

Then, we have the result (14).

As a consequence of Lemmas 1, 2, and 3, we prove the result of the uniform mono-

tonicity of the mapping F(u); thus the nonlinear system (7) has a unique solution in

B .

Theorem 3. If

αmin +
1
τ

>
σmin

h2
+

β2�2

2σmin
, (15)

then the nonlinear system F(u) = 0, with F(u) as in (7), has a unique solution in B .

Proof. We show that the mapping F(u) is continuous and uniformly monotone, i.e.,

there exists a positive scalar g such that

< F(u) − F(v),u − v > ≥ γ < u − v,u − v >, (16)

for all u and v in B . Then, the nonlinear system in (7) has a unique solution [[3], p.

143, 167].

From

1
τ
(F(u) − F(v)) = (−A(u) +

1
τ
I)(u − v) + (−A(u) + A(v))v − b(u) + b(v),

we have

1
τ

< F(u) − F(v),u − v > =< −Â(u)(u − v),u − v > + < −Ã(u − v),u − v > +

+ < (−D̂ +
1
τ
I)(u − v),u − v > +

+ < (−Â(u) + Â(v))v − b(u) + b(v),u − v > .

Since Ã is the skew-symmetric part of A(u), it follows that < −Ã(u − v),u − v >= 0.
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We separately examine the terms

< −Â(u)(u − v),u − v >,< (−D̂ +
1
τ
I)(u − v),u − v > and

< (−Â(u) + Â(v))v − b(u) + b(v),u − v >.

Lemma 2 with u-v instead of v and the assumption (ii) on the uniform lower bound-

edness of s respect to the variable u permit to write

< −Â(u)(u − v),u − v > ≥ h2σmin

M∑
j=1

N∑
i=1

(
∣∣∇x(uij − vij)

∣∣2 + ∣∣∇y(uij − vij)
∣∣2)+

+ σmin

M∑
j=1

∣∣uNj − vNj
∣∣2 + σmin

N∑
i=1

|uiM − viM|2.

Since a(x, y) ≥ amin ≥ 0 we have

< (−D̂ +
1
r
I)(u − v),u − v >≥ (αmin +

1
r
) ‖u − v‖2h .

By using Lemma 3 with v instead of ṽ, we can write

< (−Â(u) + Â(v))v − b(u) + b(v),u − v >≥ −β�(
1
φ
+

φ

2h2
) ‖u − v‖2h −

−βh2�φ

2

M∑
j=1

N∑
i=1

(
∣∣∇x(uij − vij)

∣∣2 + ∣∣∇y(uij − vij)
∣∣2).

Then, collecting the last three inequalities we obtain

1
τ

< F(u) − F(v),u − v > ≥
(

αmin +
1
τ

− β�

(
1
φ
+

φ

2h2

))
‖u − v‖2h +

+ h2
(

σmin − β�φ

2

) M∑
j=1

N∑
i=1

(
∣∣∇x(uij − vij)

∣∣2 + ∣∣∇y(uij − vij)
∣∣2).

If we set

φ =
2σmin

β�
,

we obtain

1
τ

< F(u) − F(v),u − v >≥
(

αmin +
1
τ

− β2�2

2σmin
− σmin

h2

)
‖u − v‖2h .

When condition (15) holds, then the mapping F(u) is uniformly monotone on B
where the constant g in (16) is

γ = τ

(
αmin − σmin

h2
− β2�2

2σmin

)
+ 1.

Now, we can state a result for the convergence of the Lagged Diffusivity method

where the vector u(k+1) is the approximate solution of the linear system

(I − τA(u(k)))u = w + τb(u(k)), (17)
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such that the residual

r(k+1) = (I − τA(u(k)))u(k+1) − w − τb(u(k)),

satisfies the stopping condition

∥∥∥r(k+1)∥∥∥ ≤ εk+1, (18)

where εk is a given tolerance such that εk ® 0 when k ® ∞.

Thus, the iterate u(k+1) is the solution of the system (7) whose diffusivity term s in A

(u) and b(u) depends on the iterate u(k) and the inhomogeneous term now depends by

u(k+1).

We suppose that the grid functions {u(k)ij }, k = 0, 1, ... , are belonging to the set B . In

particular, the backward difference quotients of each grid function {u(k)ij } are bounded.

Since this bound depends on the inhomogeneous term, we have that there exist two

constants b > 0 and b0 > 0 such that

∣∣∣∇xu
(k)
ij

∣∣∣ ≤ β̃k and
∣∣∣∇yu

(k)
ij

∣∣∣ ≤ β̃k, (19)

with β̃k = β + εkβ0 . (Formula (19) replaces formula (9).)

Theorem 4. Let u∗ ∈ B be the solution of the nonlinear system F(u) = 0 in (7). Let u
(k+1) be the solution of the linear system in (17) with condition (18). If condition (15) is

satisfied, and, in particular

αmin +
1
τ

>
σmin

h2
, (20)

then, the sequence {u(k)} converges to u*.

Proof. The solution u∗ ∈ B of (7) satisfies the equation

u∗ − τA(u∗)u∗ − w − τb(u∗) = 0, (21)

and the iterate u(k+1) satisfies the equation

u(k+1) − τA(u(k))u(k+1) − w − τb(u(k)) = r(k+1). (22)

Subtracting (22) from (21), we obtain

−A(u∗)u∗ + A(u(k))u(k+1) +
1
τ
u∗ − 1

τ
u(k+1) − b(u∗) + b(u(k)) = −1

τ
r(k+1).

Taking into account of the identity

−A(u)u + A(w)v = −A(u)(u − v) + (−A(u) + A(w))v,

for all u, v and w belonging to B , we can write(
−A(u∗) +

1
τ
I
)
(u∗ − u(k+1)) + (−A(u∗) + A(u(k)))u(k+1) − b(u∗) + b(u(k)) =

1
τ
r(k+1).
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Thus, we have

<

(
−A(u∗) +

1
τ
I
)
(u∗ − u(k+1)),u∗ − u(k+1) > +

+ < (−A(u∗) + A(u(k)))u(k+1) − b(u∗) + b(u(k)),u∗ − u(k+1) >

=< −1
τ
r(k+1),u∗ − u(k+1) > .

Since Ã is the skew-symmetric part of A(u), for any vector zÎ ℝμ we have

< (Â(u) + Ã + D̂)z, z >=< (Â(u) + D̂)z, z >,

and then, we can write

< −1
τ
r(k+1),u∗ − u(k+1) > ≥

≥< −Â(u∗)(u∗ − u(k+1)),u∗ − u(k+1) > + < (−D̂ +
1
τ
I)(u∗ − u(k+1)),u∗ − u(k+1) > −

−
∣∣∣< (−Â(u∗) + Â(u(k)))u(k+1) − b(u∗) + b(u(k)),u∗ − u(k+1) >

∣∣∣ .
From Lemmas 2 and 3 we obtain

< −1
τ
r(k+1), u∗ − u(k+1) > ≥

≥ h2σmin

N∑
i=1

M∑
j=1

(∣∣∣∇x

(
u∗
ij − u(k+1)ij

)∣∣∣2 + ∣∣∣∇y(u∗
ij − u(k+1)ij )

∣∣∣2)+

+ σmin

M∑
j=1

∣∣∣u∗
Nj − u(k+1)Nj

∣∣∣2 + σmin

N∑
i=1

∣∣∣u∗
iM − u(k+1)iM

∣∣∣2+
+

(
αmin +

1
τ

)∥∥∥u∗ − u(k+1)
∥∥∥2

h
−

− β̃k+1�

φ

∥∥∥u∗ − u(k)
∥∥∥2

h
− β̃k+1�φ

2h2

∥∥∥u∗ − u(k+1)
∥∥∥2
h
−

− β̃k+1h2�φ

2

M∑
j=1

N∑
i=1

(∣∣∣∇x(u∗
ij − u(k+1)ij )

∣∣∣2 + ∣∣∣∇y(u∗
ij − u(k+1)ij )

∣∣∣2) ≥

≥ h2
(

σmin − β̃k+1�φ

2

)
N∑
i=1

M∑
j=1

(∣∣∣∇x(u∗
ij − u(k+1)ij )

∣∣∣2 + ∣∣∣∇y(u∗
ij − u(k+1)ij )

∣∣∣2)+
+

(
αmin +

1
τ

)∥∥∥u∗ − u(k+1)
∥∥∥2

h
−

− β̃k+1�

φ

∥∥∥u∗ − u(k)
∥∥∥2

h
− β̃k+1�φ

2h2

∥∥∥u∗ − u(k+1)
∥∥∥2
h
.

(23)

Keeping into account of the stopping condition (18) we can write

1
τ

εk+1

∥∥∥u∗ − u(k+1)
∥∥∥
h

≥ 1
τ

∥∥∥r(k+1)∥∥∥ ∥∥∥u∗ − u(k+1)
∥∥∥
h

≥< −1
τ
r(k+1),u∗ − u(k+1) > . (24)

Since j is an arbitrary positive number, we can choose j such that in (23)

σmin − β̃k+1�φ

2
= 0,
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that is

φ =
2σmin

β̃k+1�
.

Thus, from (23) and (24) we have

1
τ

εk+1

∥∥∥u∗ − u(k+1)
∥∥∥
h

≥
(

αmin +
1
τ

− σmin

h2

)∥∥∥u∗ − u(k+1)
∥∥∥2
h

− β̃2
k+1�

2

2σmin

∥∥∥u∗ − u(k)
∥∥∥2
h
.

Since the grid function {u(k+1)ij } belongs to B , it then satisfies the inequality (8) and

so we have∥∥∥u∗ − u(k+1)
∥∥∥
h

≤ 2ρ,

then

2ρ

τ
εk+1 ≥

(
αmin +

1
τ

− σmin

h2

)∥∥∥u∗ − u(k+1)
∥∥∥2
h

− β̃2
k+1�

2

2σmin

∥∥∥u∗ − u(k)
∥∥∥2
h
.

We assume that condition (15) holds. Then, keeping into account of the expression

of β̃k , we have the inequality

∥∥∥u∗ − u(k+1)
∥∥∥2
h

≤ γ̂

∥∥∥u∗ − u(k)
∥∥∥2
h
+ âεk+1, (25)

where

a = αmin +
1
τ

− σmin

h2
> 0, γ̂ =

(β + εk+1β0)
2�2

2σmina
, â =

2ρ

τa
.

Now, since there exists an integer k0 such that γ̂ < 1 for all k ≥ k0, we can write for-

mula (25) as

∥∥∥u∗ − u(k0+r)
∥∥∥2
h

≤ γ̂ r
∥∥∥u∗ − u(k0)

∥∥∥2
h
+ â

r∑
j=1

γ̂ r−jεk0+j,

r = 1, 2,..., and since εk ® 0 for k ® ∞, it follows from the general Toeplitz Lemma

(e.g., see [[3], p. 399]) that

lim
k→∞

∥∥∥u∗ − u(k)
∥∥∥2
h
= 0.

Therefore, the sequence {u(k)} of approximate solutions of the Lagged Diffusivity

method converges to the solution u* of the system (7).

3 Numerical experiments
In this section, we consider a numerical experimentation of the Lagged Diffusivity

method for the solution of the nonlinear system generated by the θ-method applied on

the model problem (1) in a rectangular domain with Dirichlet boundary conditions.

Indeed we solve with the Lagged Diffusivity procedure the nonlinear system

(I − τA(u))u − w − b(u) = 0.
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The Lagged Diffusivity procedure is an efficient and robust method, even if only line-

arly convergent, for solving the digital image restoration problem using diffusive filters.

One of the most used diffusive filter is defined (in equation (1) with (ṽ = 0)) by a dif-

fusivity s(u) chosen as a rapidly decreasing function of the gradient magnitude |∇u|2.
Specifically, s(s) : [0, ∞) ® (0, ∞) is a decreasing function satisfying s(0) = 1 and

lims®∞s(s) = 0 and s = |∇u|2 = (∂u/∂x)2 + (∂u/∂y)2.

Due to the presence of this term s(u), the operator div(s∇u) is highly nonlinear and,

when linearized by lagging the diffusivity s, it has highly varying coefficients [4-8].

Often happens in real images that |∇u| = 0. This makes necessary the use of numeri-

cal regularization, consisting in replacing the term |∇u| by (|∇u|2 + b)1/2 for a “small

enough” positive artificial parameter b. Due to the presence of the highly nonlinear

operator div(s∇u), Newton’s method for solving the nonlinear system (7) does not

work satisfactory, in the sense that its domain of convergence is very small.

These diffusion problems for image restoration are also solved using operator split-

ting methods (e.g., [9-11]). Operator splitting is a powerful concept used in Computa-

tional Mathematics for the design of effective numerical methods. These splitting

methods are essentially based on certain special relaxation processes which allow one,

to reduce the complicated problem into a sequence of simpler problems which can be

effectively solved with a computer.

At present, there exists a lot of interest in the applications of operator splitting

methods to problems of Financial Mathematics, and, in particular, to diffusion convec-

tion equations with mixed derivatives terms (e.g., [12-14]).

Operator splitting is also a very common tool for solving nonlinear evolution equa-

tions which include hyperbolic conservation laws and degenerate diffusion convection

equations with nonsmooth solutions. In these evolution equations, the convection

dominates diffusion (e.g., [15-19]).

An alternative case has been considered in our computational experiments. Indeed,

we consider diffusion convection problems which are of diffusion dominated nature, as

those concerning the groundwater transport of a contaminant in an aquifer or the con-

trol of heating processes of industrial kilns.

The convergence of the “outer” iteration {u(k)} to u* of the Lagged Diffusivity proce-

dure involves solution for an unknown vector u of the matrix equation (17). This lin-

ear system may be solved by an operator splitting method. The effect of this “inner”

iteration on convergence of the “outer” iteration to u* must be analyzed in order to

define a good strategy for the convergence of the Lagged Diffusivity procedure. Indeed,

a significant reduction in total effort can often be achieved by proper coordination of

inner and outer iteration.

In the experiments, the vector solution u* is prefixed and is composed by the values

of prescribed functions u(x, y, t) defined on [a, b] × [a, b] × [0, ∞). In all the experi-

ments, we have a = 0 and b = 1. We choose different solution functions where the

time value t is set equal to 1:

u1 : u(x, y, t) = xyt,

u2 : u(x, y, t) =
3∑
i=1

15e−8((x−ξi)
2+(y−ηi)

2)t,

u3 : u(x, y, t) = (x + y)t,

u4 : u(x, y, t) = (1 + x − y)3t.
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For the function u2, we have ξ1 = h1 = 0.2, ξ2 = 0.2, h2 = 0.8 and ξ3 = h3 = 0.8.

The chosen functions s(u) are:

σ1 : σ (u) = 0.01 + 0.5u,

σ2 : σ (u) = 0.01 + 0.5u2,

σ3 : σ (u) =
100

1 + 500u
.

The vector w is computed as

w ≡ w∗ = (I − τA(u∗))u∗ − b(u∗),

where the matrix A(u*) and the vector b(u*) have elements as in formula (5) with N

= M and a(x, y) = 0. We set θ = 1 and Δt = 10-3 or Δt = 10-4; τ = θ Δt. Here, the con-

dition (20) holds.

At each iteration k of the Lagged Diffusivity procedure, we have to solve the linear

system of order μ = N × N:

(I − τA(u(k)))u = w∗ + b(u(k)).

We consider the case that the coefficient matrix is an M-matrix (ṽ �= 0).

In these experiments, the iterative method of the Arithmetic Mean is used as linear

solver in the form introduced in [20]. This method is convergent when the coefficient

matrix is a nonsingular M-matrix. This form of the Arithmetic Mean method is a var-

iant of the Alterating Group Explicit (AGE) decomposition introduced by Evans (e.g.,

see [21-23]). The effectiveness of the Arithmetic Mean method, even on parallel archi-

tectures, is highlighted in [20,24-27]. Some recent papers on the Arithmetic Mean

method on linear systems are in [28-31].

We call u(k+1) the solution of the linear system above computed with jk iterations of

the Arithmetic Mean solver where the inner residual

r(k+1) = (I − τA(u(k)))u(k+1) − w∗ − b(u(k)),

satisfies the condition∥∥∥r(k+1)∥∥∥ ≤ εk+1,

with ε1 = 0.1∥F(u(0))∥ and

εk+1 = 0.5εk. (26)

The vector F(u(0)) = (I - τA(u (0)))u (0) - w* - b(u(0)) is the initial outer residual and

its Euclidean norm is called res0.

The initial vector u(0) is taken as the null vector (u(0) = 0) or as the vector e which is

the vector with all the components equal to 1 (u (0) = e).

The Lagged Diffusivity procedure has been implemented in a Fortran code with

machine precision 2.2 × 10-16 and stops when

εk+1 ≤ ε, (27)

with ε = 10−4 .
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An experiment evaluates the effectiveness of the Lagged Diffusivity method for differ-

ent values of ε ; another experiment shows the behavior of the method for different

choices of εk+1 respect to the one in (26) with ε = 10−4 .

We call k* the iteration of the Lagged Diffusivity procedure for which condition (27)

is satisfied.

In the tables, we report the number of iterations k*, the total number of iterations of

the Arithmetic Mean method jT, the discrete l2(Rh) norm of the error,

err =
∥∥u∗ − u(k

∗)
∥∥
h, the Euclidean norm of the outer residual

res =
∥∥∥F(u(k∗))

∥∥∥ =
∥∥∥(I − τA(u(k

∗)))u(k
∗) − w∗ − b(u(k

∗))
∥∥∥ ,

and res0.

The symbol * close to the value of res indicates that the behavior of the norm of the

outer residual (∥F(u(k))∥) is not monotone decreasing. In addition, σ̄ ∗ is an approxima-

tion of smax.

Furthermore, in the tables, writing 5.26(-7) means 5.26 × 10-7.

From the numerical experiments, we can drawn the below conclusions (See Tables 1,

2 and 3).

• We observe that, since εk+1 decreases, for k increasing, as (26) and the Lagged

Diffusivity method stops at the iteration k* when the criterium for εk∗+1 in (27) is

satisfied, we have

εk∗+1 =
1
2

εk∗ =
1
22

εk∗−1 = · · · = 1
2k∗ ε1 ≤ ε,

where we set ε1 = 0.1∥F(u(0))∥. Then

k∗ > log2

(
ε1

ε

)
.

In the experiments, we obtain

k∗ =
⌈
log2

(
ε1

ε

)⌉
.

• We observe that in all the experiments with the rule (26) the outer residual∥∥F(u(k∗))
∥∥ has the same order of ε with an error in the discrete l2(Rh) norm of

order of hε .

• From the experiments, the choice for εk+1 as in (26) gives satisfactory results in

terms of iterations of the inner solver and in relation to the outer residual and the

error.
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• About the initial vectors, we can say that, generally, the null vector is a good

choice, in terms of total number of inner iterations, for s(u) = s1 and s(u) = s2;
while for the functions u (x, y, t) and s(u) = s3 we have better results when u(0) = e.

A detection of that the null vector is not a good initial vector for the problems

with s(u) = s3, is the number of inner iterations at the first outer iteration. Indeed,

for the functions u2, u3, and u4, most of the inner iterations happen at the first

iteration, k = 1; for instance, in Table 1 when s(u) = s3 and τ = 10-4, at k = 1, for

u2 we have 1,484 inner iterations on the total number 1,534, for u3 we have 1,421

inner iterations on the total number 1,515, for u4 we have 1,407 inner iterations

on the total number 1,986.

• When the behavior of the norm of the outer residual F(u(k)) is not monotone

decreasing (i.e., s(u) = s2, u(x, y, t) = u2, u4, τ = 10-3) we can have a large total

number of inner iterations at an outer iteration. We suggest to change the initial

vector to obtain a monotone decreasing of the norm of the outer residual that

implies a reduction of the total number of inner iterations. Changing the initial

vector u(0), the rows marked with “✔” in Table 1 become the results of Table 4.

• From Table 1, we observe that the Arithmetic Mean method gives better perfor-

mances when the ratio σ ∗/ṽ1(ṽ1 = ṽ2) is small, that is the coefficient matrix of the

inner linear system is strongly asymmetric (see [24]).

Table 1 Results with N = 256, ṽ1 = ṽ2 = 1 , u(0) = 0

u(x, y, t) σ̄ ∗/ṽ1 k* jT err res res 0

τ = 10-3

s(u) = s1
u1 0.51 18 260 5.26(-7) 1.51(-4) 205.61

u2 8.52 26 5972 4.81(-7) 1.48(-4) 51451.65

u3 1.01 20 585 7.00(-7) 1.97(-4) 1041.69

u4 4.01 24 1607 3.46(-7) 1.13(-4) 9617.82

s(u) = s2
u1 0.51 17 196 5.96(-7) 1.80(-4) 123.15

✔ u2 145.03 29 35427 2.19(-7) 9.73(-5)* 276108.92

u3 2.01 20 899 5.59(-7) 1.71(-4) 898.18

✔ u4 32.01 25 3960 4.70(-7) 1.85(-4)* 31481.01

τ = 10-4

s(u) = s1
u1 0.51 17 33 4.22(-7) 1.12(-4) 89.44

u2 8.52 23 676 5.40(-7) 1.45(-4) 6203.62

u3 1.01 19 70 3.75(-7) 9.94(-5) 304.43

u4 4.01 21 216 3.80(-7) 1.10(-4) 1170.79

s(u) = s2
u1 0.51 17 30 3.54(-7) 9.63(-5) 86.61

u2 145.03 25 7160 4.65(-7) 1.55(-4) 28054.93

u3 2.01 19 115 4.00(-7) 1.10(-4) 297.76

u4 32.01 22 852 4.43(-7) 1.53(-4) 3266.07

s(u) = s3
u2 1.50 22 1534 4.19(-7) 1.30(-4) 3061.65

u3 100.00 19 1515 3.16(-7) 1.10(-4) 297.96

u4 100.00 20 1986 2.67(-7) 1.06(-4) 558.51
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• A very general conclusion is that, at each time step tn, the Lagged Diffusivity

method (17)-(18)-(26)-(27) allows to obtain an approximate solution of the non-

linear system (7) with sufficiently high accuracy and low computational complexity,

when the initial vector u(0) has been chosen properly.

Remark. Given the exact solution u(x, y, t) of equations (1), (3) at time t = tn+1 (for

example, tn+1 = 1), in the above numerical experiments, we have considered in system

(7) the “source” vector w as w ≡ w* = (I-τA(u*)) u* -b(u*) with u* = {u(xi, yj, tn+1)}.

With this definition of w, it has been possible to obtain, for our test problems, the

behavior of the error associated with the numerical computation of the solution of (7),

i.e., an indication of the accuracy on the solution of the nonlinear equations (7). We

have denoted this error by err.

In order to analyze the behavior of the effective one-step error (in the discrete l2 (Rh)

norm) of the θ-method, denoted by Estep, we must consider in system (7) the “source”

vector w as

w ≡ wn =
(
I + �t(1 − θ)A(un)

)
un + �t(1 − θ)b(un) + �t(θsn+1 + (1 − θ)sn)

with un = {u(xi, yj, tn)} and tn = tn+1 - Δ t.

From Table 5, we observe that the values of Estep are comparable with those of err,

with the exception of the test problems s(u) = s1, s2, u(x, y, t) = u2 for τ = 10-3, 10-4,

Table 2 Results with N = 256, ṽ1 = ṽ2 = 1 , u(0) = e

u(x, y, t) k* jT Err res res0

τ = 10-3

s(u) = s1
u1 20 302 3.69(-7) 1.03(-4) 546.04

u2 26 6066 4.76(-7) 1.47(-4) 50940.66

u3 20 633 4.63(-7) 1.31(-4) 692.97

u4 24 1631 3.37(-7) 1.10(-4) 9323.23

s(u) = s2
u1 19 249 4.51(-7) 1.32(-4) 362.86

u2 29 38837 2.36(-7) 1.06(-4)* 298830.38

u3 20 932 5.45(-7) 1.67(-4) 881.87

u4 26 4122 2.63(-7) 1.03(-4)* 35275.82

τ = 10-4

s(u) = s1
u1 18 37 5.17(-7) 1.34(-4) 211.75

u2 23 737 5.23(-7) 1.40(-4) 6026.72

u3 18 76 3.73(-7) 9.89(-5) 132.60

u4 21 240 3.46(-7) 1.00(-4) 1074.69

s(u) = s2
u1 18 33 4.50(-7) 1.19(-4) 205.39

u2 25 7615 5.02(-7) 1.68(-4)* 30266.34

u3 18 121 3.82(-7) 1.05(-4) 144.41

u4 22 910 4.89(-7) 1.69(-4) 3611.96

s(u) = s3
u2 22 48 3.98(-7) 1.24(-4) 2825.73

u3 17 102 4.76(-7) 1.66(-4) 113.34

u4 19 604 3.99(-7) 1.58(-4) 416.74
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where the discrepancy between err and Estep depends on the fact that the matrix A(u)

is ill conditioned because the Lipschitz constant is large.

Furthermore, the global error for solving the problem (1)-(2)-(3) with the θ-method

combined with the Lagged Diffusivity procedure is computed for the cases

c1 : θ = 1, u
(
x, y, t

)
= u2, σ (u) = σ1,

c2 : θ = 0.5, u(x, y, t) = u2, σ (u) = σ1,

c3 : θ = 1, u(x, y, t) = u4, σ (u) = σ1,

c4 : θ = 0.5, u(x, y, t) = u4, σ (u) = σ1,

and it is denoted with E(c1), E(c2), E(c3), and E(c4).

The behavior of this global error, step-by-step, from 1 ≤ t ≤ 1.2 and Δt = 10-3 is

highlighted in Figure 1; the numerical results are seen to be largely in keeping with the

theory.

Table 3 Results for different ε and εk+1 (u(0) = 0)

N = 256; u = u1; σ (u) = σ1; ṽ1 = ṽ2 = 1; τ = 10−3; res0 = 205.61
ε k* jT err res

10-3 15 210 4.21(-6) 1.20(-3)

10-4 18 260 5.26(-7) 1.51(-4)

10-5 21 310 6.59(-8) 1.90(-5)

10-6 25 377 4.09(-9) 1.18(-6)

N = 256; u = u1; σ (u) = σ1; ṽ1 = ṽ2 = 1; τ = 10−3; res0 = 205.61
εk+1 k* jT err res

0.7εk 35 268 3.85(-7) 1.10(-4)

0.5εk 18 260 5.26(-7) 1.51(-4)

0.1 εk 6 250 7.08(-7) 2.01(-4)

0.05εk 5 260 4.36(-7) 1.23(-4)

0.01εk 3 189 7.67(-6) 2.31(-3)

N = 256; u = u4; σ (u) = σ1; ṽ1 = ṽ2 = 1; τ = 10−3; res0 = 9617.82
εk+1 k* jT err res

0.7εk 46 1625 3.10(-7) 1.02(-4)

0.5εk 24 1607 3.46(-7) 1.13(-4)

0.1 ε 7 1327 3.06(-6) 9.34(-4)

0.05εk 6 1408 1.02(-6) 3.09(-4)

0.01 εk 4 1384 4.12(-5) 2.46(-2)

N = 256; u = u4; σ (u) = σ2; ṽ1 = ṽ2 = 1; τ = 10−3; res0 = 31481.01
εk+1 k* jT err res

0.7εk 49 4146 2.78(-7) 1.14(-4)*

0.5εk 25 3960 4.70(-7) 1.85(-4)*

0.1 εk 8 4930 1.75(-5) 1.42(-2)*

0.05εk 6 4827 3.16(-4) 0.27*

0.01 εk 4 3800 4.70(-3) 4.63*

Table 4 Results for the cases in Table 1 marked with “✔” with different initial vectors

u(0) u (x, y, t) k* jT err res res 0

10e u2 28 26839 3.01(-7) 1.33(-4) 189726.62

4e u 4 26 3669 2.67(-7) 1.05(-4) 35807.59
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Table 5 Results with N = 256, ṽ1 = ṽ2 = 1, u(0) = un, w = wn

u(x, y, t) σ̄ ∗/ṽ1 k* jT Estep res res0 ∥w*-wn∥

τ = 10-3

s(u) = s1
u1 0.51 9 143 4.84(-7) 1.37(-4) 0.36 1.16(-12)

u2 8.52 17 3850 7.25(-5) 1.01(-4) 68.40 3.58(-2)

u3 1.01 11 341 6.78(-7) 1.89(-4) 1.97 3.51(-12)

u4 4.01 15 967 2.65(-7) 1.15(-4) 19.05 8.34(-5)

s(u) = s2
u1 0.51 9 120 3.97(-7) 1.18(-4) 0.31 9.75(-13)

u2 145.03 20 17950 1.94(-4) 1.32(-4) 734.79 7.13(-1)

u3 2.01 12 538 5.24(-7) 1.58(-4) 3.27 6.79(-12)

u4 32.01 17 2452 2.46(-6) 1.88(-4) 125.38 1.50(-3)

τ = 10-4

s(u) = s1
u1 0.51 4 12 4.06(-7) 1.07(-4) 9.63(-3) 1.17(-13)

u2 8.52 10 341 1.24(-5) 1.39(-4) 0.73 3.56(-3)

u3 1.01 6 30 4.05(-7) 1.06(-4) 3.56(-2) 3.52(-13)

u4 4.01 8 95 5.35(-7) 1.58(-4) 0.20 8.34(-6)

s(u) = s2
u1 0.51 4 10 4.29(-7) 1.15(-4) 9.37(-3) 9.86(-14)

u2 145.03 13 3585 1.01(-4) 1.67(-4) 7.36 7.13(-2)

u3 2.01 6 46 5.12(-7) 1.39(-4) 4.49(-2) 6.81(-13)

u4 32.01 11 413 2.84(-7) 1.23(-4) 1.26 1.50(-4)

s(u) = s3
u2 1.50 8 15 5.68(-7) 1.43(-4) 0.21 7.58(-5)

u3 100.00 6 19 1.08(-6) 1.00(-4) 3.38(-2) 1.86(-2)

u4 100.00 6 24 5.22(-7) 1.66(-4) 5.49(-2) 8.45(-5)
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Figure 1 Global error for cases c1-c4.
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