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Abstract

This paper is concerned with asymptotic stability of switched discrete time-delay
systems. The system to be considered is subject to interval time-varying delays,
which allows the delay to be a fast time-varying function and the lower bound is
not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for
the asymptotic stability for the system is designed via linear matrix inequalities.
Numerical example is included to illustrate the effectiveness of the result.
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Introduction
As an important class of hybrid systems, switched systems arise in many practical pro-

cesses that cannot be described by exclusively continuous or exclusively discrete mod-

els, such as manufacturing, communication networks, automotive engineering control

and chemical processes (see, e.g., [1-3] and the references therein). On the other hand,

time-delay phenomena are very common in practical systems. A switched system with

time-delay individual subsystems is called a switched time-delay system; in particular,

when the subsystems are linear, it is then called a switched time-delay linear system.

During the last decades, the stability analysis of switched linear continuous/discrete

time-delay systems has attracted a lot of attention [4-18]. The main approach for stabi-

lity analysis relies on the use of Lyapunov-Krasovskii functionals and linear matrix ine-

qulity (LMI) approach for constructing a common Lyapunov function [19-24].

Although many important results have been obtained for switched linear continuous-

time systems, there are few results concerning the stability of switched linear discrete

systems with time-varying delays. It was shown in [5,7,11] that when all subsystems

are asymptotically stable, the switching system is asymptotically stable under an arbi-

trary switching rule. The asymptotic stability for switching linear discrete time-delay

systems has been studied in [10], but the result was limited to constant delays. In [11],

a class of switching signals has been identified for the considered switched discrete-

time delay systems to be stable under the average dwell time scheme.

This paper studies asymptotic stability problem for switched linear discrete systems

with interval time-varying delays. Specifically, our goal is to develop a constructive way

to design switching rule to asymptotically stabilize the system. By using improved Lya-

punov-Krasovskii functionals combined with LMIs technique, we propose new criteria
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for the asymptotic stability of the system. Compared to the existing results, our result

has its own advantages. First, the time delay is assumed to be a time-varying function

belonging to a given interval, which means that the lower and upper bounds for the

time-varying delay are available, the delay function is bounded but not restricted to

zero. Second, the approach allows us to design the switching rule for stbility in terms

of of LMIs, which can be solvable by utilizing Matlab’s LMI Control Toolbox available

in the literature to date.

The paper is organized as follows: Section 2 presents definitions and some well-

known technical propositions needed for the proof of the main results. Switching rule

for the asymptotic stability is presented in Section 3. Numerical example of the result

is given in Section 4.

Preliminaries
The following notations will be used throughout this paper. R+ denotes the set of all

real non-negative numbers; Rn denotes the n-dimensional space with the scalar pro-

duct of two vectors 〈x,y〉 or xTy; Rn×r denotes the space of all matrices of (n × r)-

dimension. AT denotes the transpose of A; a matrix A is symmetric if A = AT.

Matrix A is semi-positive definite (A ≥ 0) if 〈Ax,x〉 ≥ 0, for all x Î Rn; A is positive

definite (A > 0) if 〈Ax, x〉 > 0 for all x ≠ 0; A ≥ B means A - B ≥ 0. l(A) denotes the
set of all eigenvalues of A; lmin(A) = min{Rel: l Î l(A)}.
Consider a discrete systems with interval time-varying delay of the form

x(k + 1) = Aγ x(k) + Bγ x(k − d(k)), k = 0, 1, 2, . . .

x(k) = υk, k = −d2,−d2 + 1, . . . , 0,
(1)

where x(k) Î Rn is the state, g(.): Rn ® N:= {1,2,...,N} is the switching rule, which is a

function depending on the state at each time and will be designed. A switching func-

tion is a rule which determines a switching sequence for a given switching system.

Moreover, g(x(k)) = i implies that the system realization is chosen as the ith system, i =

1,2,..., N. It is seen that the system (1) can be viewed as an autonomous switched sys-

tem in which the effective subsystem changes when the state x(k) hits predefined

boundaries. Ai, Bi, i = 1,2, ..., N are given constant matrices. The time-varying function

d(k) satisfies the following condition:

0 < d1 ≤ d(k) ≤ d2, ∀k = 0, 1, 2, . . .

Remark 1 It is worth noting that the time delay is a time-varying function belonging

to a given interval, in which the lower bound of delay is not restricted to zero.

Definition 1 The switched system (1) is asymptotically stable if there exists a switch-

ing function g(.) such that the zero solution of the system is asymptotically stable.

Definition 2 The system of matrices {Ji}, i = 1,2,..., N, is said to be strictly complete

if for every x Î Rn\{0} there is i Î {1, 2,..., N} such that xT Jix < 0.

It is easy to see that the system {Ji} is strictly complete if and only if

N⋃
i=1

αi = Rn\{0},
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where

αi = {x ∈ Rn : xTJix < 0}, i = 1, 2, . . . ,N.

Proposition 1 [12]The system {Ji}, i = 1,2,..., N, is strictly complete if there exist δi ≥

0,i =1,2,...,N,
∑N

i=1 δi > 0such that

N∑
i=1

δiJi < 0.

If N = 2 then the above condition is also necessary for the strict completeness.

Main results
Let us set

Wi(P,Q,R) =

⎛
⎝ Q − P RT − AT

i R −RTBi

R − RTAi P + R + RT −RTBi

−BT
i R −BT

i R −Q

⎞
⎠ ,

Ji(P,Q) = (d2 − d1)Q − RTAi − AT
i R, λ1 = λmin(P),

αi = {x ∈ Rn : xTJi(R,Q)x < 0}, i = 1, 2, . . . ,N,

ᾱ1 = α1, ᾱi = αi\
i−1⋃
j=1

ᾱj, i = 2, 3, . . . ,N.

(2)

The main result of this paper is summarized in the following theorem.

Theorem 1 The switched system (1) is asymptotically stable if there exist symmetric

positive definite matrices P > 0, Q > 0 and matrix R satisfying the following

conditions
(i)∃δi ≥ 0, i = 1, 2, . . . ,N,

∑N

i=1
δi > 0 :

∑N

i = 1
δiJi(R,Q) < 0.

(ii)Wi(P,Q,R) < 0, i = 1, 2, . . . ,N.

The switching rule is chosen as g(x(k)) = i, whenever x(k) ∈ ᾱi.

Proof. Consider the following Lyapunov-Krasovskii functional for any ith system (1)

V(k) = V1(k) + V2(k) + V3(k),

where

V1(k) = xT(k)Px(k), V2(k) =
k−1∑

i=k−d(k)

xT(i)Qx(i),

V3(k) =
−d1+1∑
j=−d2+2

k−1∑
l=k+j

xT(l)Qx(l),

We can verify that

λ1
∥∥x(k)∥∥2 ≤ V(k). (3)

Let us set ξ(k) = [x(k) x(k + 1) x(k - d(k))]T, and

H =

⎛
⎝0 0 0
0 P 0
0 0 0

⎞
⎠ , G =

⎛
⎝P 0 0
R R 0
R 0 I

⎞
⎠ .
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Then, the difference of V1(k) along the solution of the system is given by

�V1(k) = xT(k + 1)Px(k + 1) − xT(k)Px(k)

= ξT(k)Hξ(k) − 2ξT(k)GT

⎛
⎝0.5x(k)

0
0

⎞
⎠ .

(4)

because of

ξT(k)Hξ(k) = x(k + 1)Px(k + 1).

Using the expression of system (1)

0 = −x(k + 1) + Ai(k) + Bix(k − d(k)),

we have

−2ξT(k)GT

(
−x(k + 1) +

0.5x(k)
Aix(k)+

0
Bix(k − d(k))

)
ξ(k)

= −ξT(k)GT

⎛
⎝0.5I 0 0

Ai −I Bi

0 0 0

⎞
⎠ ξ(k) − ξT(k)

⎛
⎝0.5I AT

i 0
0 −I 0
0 BT

i 0

⎞
⎠Gξ(k).

Therefore, from (3) it follows that

�V1(k) = ξT(k)Wiξ(k), (5)

where

Wi =

⎛
⎝0 0 0
0 P 0
0 0 0

⎞
⎠ − GT

⎛
⎝0.5I 0 0

Ai −I Bi

0 0 0

⎞
⎠ −

⎛
⎝0.5I AT

i 0
0 −I 0
0 BT

i 0

⎞
⎠G.

The difference of V2(k) is given by

�V2(k) =
k∑

i=k+1−d(k+1)

xT(i)Qx(i) −
k−1∑

i=k−d(k)

xT(i)Qx(i)

=
k−d1∑

i=k+1−d(k+1)

xT(i)Qx(i) + xT(k)Qx(k) − xT(k − d(k))Qx(k − d(k))

+
k−1∑

i=k+1−d1

xT(i)Qx(i) −
k−1∑

i=k+1−d(k)

xT(i)Qx(i).

(6)

Since d(k) ≥ d1 we have

k−1∑
i=k+1−d1

xT(i)Qx(i) −
k−1∑

i=k+1−d(k)

xT(i)Qx(i) ≤ 0,

and hence from (6) we have

�V2(k) ≤
k−d1∑

i=k+1−d(k+1)

xT(i)Qx(i) + xT(k)Qx(k) − xT(k − d(k))Qx(k − d(k)). (7)
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The difference of V3(k) is given by

�V3(k) =
−d1+1∑
j=−d2+2

k∑
l=k+j+1

xT(l)Qx(l)−
−d1+1∑
j=−d2+2

k−1∑
l=k+j

xT(l)Qx(l)

=
−d1+1∑
j=−d2+2

[
k−1∑
l=k+j

xT(l)Qx(l) + xT(k)Q(ξ)x(k)

−
k−1∑
l=k+j

xT(l)Qx(l) − xT(k + j − 1)Qx(k + j − 1)]

=
−d1+1∑
j=−d2+2

[xT(k)Qx(k) − xT(k + j − 1)Qx(k + j − 1)]

= (d2 − d1)xT(k)Qx(k) −
k−d1∑

j=k+1−d2

xT(j)Qx(j).

(8)

Since d(k) ≤ d2, and

k−d1∑
i=k+1−d(k+1)

xT(i)Qx(i)−
k−d1∑

i=k+1−d2

xT(i)Qx(i) ≤ 0,

we obtain from (7) and (8) that

�V2(k) + �V3(k) ≤ (d2 − d1 + 1)xT(k)Qx(k) − xT(k − d(k))Qx(k − d(k)). (9)

Therefore, combining the inequalities (5), (9) gives

�V(k) ≤ xT(k)Ji(P,Q)x(k) + ξT(k)Wi(P,Q,R)ξ(k), (10)

where

Wi(P,Q,R) =

⎛
⎝ Q − P RT − AT

i R −RTBi

R − RTAi P + R + RT −RTBi

−BT
i R −BT

i R −Q

⎞
⎠ .

Therefore, we finally obtain from (10) and the condition (ii) that

�V(k) < xT(k)Ji(R,Q)x(k), ∀i = 1, 2, . . . ,N, k = 0, 1, 2, . . . .

We now apply the condition (i) and Proposition 1, the system Ji(R, Q) is strictly com-

plete, and the sets ai and ᾱi by (2) are well defined such that

N⋃
i=1

αi = Rn\{0},

N⋃
i=1

ᾱi = Rn\{0}, ᾱi ∩ ᾱj = ∅, i 	= j.

Therefore, for any x(k) Î Rn, k = 1,2,..., there exists i Î {1,2,..., N} such that

x(k) ∈ ᾱi . By choosing switching rule as g(x(k)) = i whenever x(k) ∈ ᾱi , from the con-

dition (10) we have

�V(k) ≤ xT(k)Ji(R,Q)x(k) < 0, k = 1, 2, . . . ,
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which, combining the condition (3) and the Lyapunov stability theorem [12], con-

cludes the proof of the theorem.

Remark 2 Note that the resuts proposed in [4-6] for switching systems to be asymp-

totically stable under an arbitrary switching rule. The asymptotic stability for switching

linear discrete time-delay systems studied in [9] was limited to constant delays. In [10],

a class of switching signals has been identified for the considered switched discrete-

time delay systems to be stable under the averaged well time scheme.

Numerical example
Example 1 Consider the switched discrete-time system (1), where d1 = 1,d2 = 4 and

(A1,B1) =
([−0.1 0.01

0.02 −0.2

]
,
[−0.1 0.01
0.02 −0.3

])
,

(A2,B2) =
([

1 0.2
0.1 2

]
,
[
0.1 0.02
0.01 0.2

])
.

By LMI toolbox of Matlab, we find that the conditions (i), (ii) of Theorem 1 are

satisfied with δ1 = 0.1, δ2 = 0.2 and

P =
[
0.7339 0.0006
0.0006 0.8383

]
,Q =

[
0.2817 0.0138
0.0138 0.3773

]
,R =

[−0.9091 −0.1261
0.1311 −0.9935

]
.

In this case, we have

(J1(R,Q), J2(R,Q)) =
([−0.9918 −0.0175

−0.0175 −1.4672

]
,
[−0.6228 −0.1910

−0.1910 −2.2217

])
.

Moreover, the sum

δ1J1(R,Q) + δ2J2(R,Q) =
[−0.2238 −0.0400

−0.0400 −0.5911

]

is negative definite; i.e. the first entry in the first row and the first column -0.2238 0

is negative and the determinant of the matrix is positive. The sets a1 and a2 in Figure

1 and Figure 2 are given as

α1 = {(x1, x2) : −0.9918x21 − 0.035x1x2 − 0.1.4672x22 < 0},
α2 = {(x1, x2) : 0.6228x21 + 0.382x1x2 + 2.2217x22 > 0}.

Obviously, the union of these sets is equal to R2 \ {0}. The switching regions are

defined as

ᾱ1 = {(x1, x2) : −0.9918x21 − 0.035x1x2 − 0.1.4672x22 < 0}
ᾱ2 = α2\ᾱ1

By Theorem 1 the system is asymptotically stable and the switching rule is chosen as

g(x(k)) = i whenever x(k) ∈ ᾱi .

Conclusion
This paper has proposed a switching design for the asymptotic stability of switched lin-

ear discrete-time systems with interval time-varying delays. Based on the discrete
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Figure 1 Region a1.

Figure 2 Region a2.
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Lyapunov functional, a switching rule for the asymptotic stability for the system is

designed via linear matrix inequalities.
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