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Abstract

This article is concerned with the defect indices of singular symmetric linear
difference equations of order 2n with complex coefficients and one singular
endpoint. We first show that the positive and negative defect indices d+ and d- of a
class of singular symmetric linear difference equations of order 2n with complex
coefficients satisfy the inequalities n ≤ d+ = d- ≤ 2n and all values of this range are
realized. This extends the result for difference equations with real coefficients. In
addition, some sufficient conditions for the limit point and the strong limit point
cases are given.
AMS Classification: 39A70; 34B20.
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1 Introduction
In this article, we are interested in the positive and negative defect indices of the

following singular symmetric linear difference equation with complex coefficients:

n∑
j=0

(−1)j�j (pj(t)∇ jy(t)
)
+ i

n∑
k=1

[
(−1)k+1�k(qk(t)y(t)) + qk(t)∇ky(t)

]

= λw(t)y(t), t ∈ I,
(1:1)

where Δ and ∇ are forward and backward difference operators, respectively, i.e., Δy(t)

= y(t + 1) - y(t) and ∇y(t) = y(t) - y(t - 1); I := [0, +∞) = {t}+∞
t=0; w(t) > 0, pj(t), and qk(t)

are real-valued for 0 ≤ j ≤ n, 1 ≤ k ≤ n; p2n(t) + q2n(t) �= 0 for t ∈ I ; and l is a complex

spectral parameter.

By letting u(t) = (u1(t), u2(t), ..., u2n(t))
T with

uj(t) = �j−1y(t − j),

un+j(t) =
n∑
k=j

(−1)k−j
[
�k−j

(
pk(t)∇ky(t) − iqk(t)y(t)

)]
,

(1:2)

for 1 ≤ j ≤ n, Equation (1.1) can be converted into the following singular linear dis-

crete Hamiltonian system

J�u(t) =
(
λW(t) + P(t)

)
R(u)(t), t ∈ I, (1:3)
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where

W(t) = diag{w(t), 0, ..., 0}, P(t) =
(−C(t) A∗(t)

A(t) B(t)

)
(1:4)

and

A(t) =

(
0 In−1

i qn(t)pn(t)
0

)
, B(t) = diag

{
0, ..., 0, p−1

n (t)
}

C(t) =

(
p0(t) − qn(t)

pn(t)
α(t)

α∗(t) D(t)

)
,

α(t) =
(
iqn−1(t), iqn−2(t), ..., iq1(t)

)
,

D(t) = diag
{
p1(t), p2(t), ..., pn−1(t)

}
,

In-1 is the (n - 1) × (n - 1) unit matrix, and the right partial shift operator

R(u)(t) =
(
u1(t + 1), ..., un(t + 1), un+1(t), ..., u2n(t)

)T . (1:5)

According to the classical von Neumann theory (cf. [1,2]) and its generalization [3], a

symmetric operator or a Hermitian subspace has a self-adjoint extension if and only if

its positive and negative defect indices are equal and its self-adjoint extension domains

have a close relationship with its defect indices. So it is very important to determine

the defect indices of both differential equations and difference equations in the study

of self-adjoint extensions.

Consider singular symmetric linear differential equation with complex coefficients:

n∑
j=0

(−1)j
[
pj(x)y(j)(x)

](j)
+ i

n−1∑
k=0

[(
qk(t)x(k+1)(t)

)(k)
+

(
qk(t)xk(t)

)(k+1)
]

= λw(x)y(x), x ∈ (a, b),

(1:6)

where pj and qk are all real functions, and w(t) > 0 defined on (a, b). The defect

indices of Equation (1.6) has been studied for a long time. It is well known that the

positive and negative defect indices d± of (1.6) are equal to the number of linearly

independent square integrable solutions of (1.6) with Iml > 0 and Iml < 0, respec-

tively. In the special case that the coefficients of (1.6) is real; that is all qk(t) ≡ 0, it is

evident that d+ = d- := d. Glazman [4] showed that the defect index d of Equation

(1.6) with real coefficients defined on (0, +∞), where x = 0 is a regular endpoint, satis-

fies the inequalities n ≤ d ≤ 2n and all values of d in this range are realized. Many

other results on the defect index d of Equation (1.6) with real coefficients were sum-

marized in [5]. Mcleod gave an example of a fourth-order symmetric ordinary differen-

tial equation, whose positive and negative defect indices are different [6]. Kogan and

Rofe-Beketov discussed the positive and negative defect indices of Equation (1.6), and

showed that the positive and negative defect indices may differ an integer [7,8].

For the discrete case, Atkinson first studied the number of linearly independent

square summable solutions of second-order symmetric linear difference equations with

real coefficients [9]. Subsequently, his study was further developed (cf. [10-13]). Sun

studied the number of linearly independent square summable solutions of second-

order symmetric difference equations with complex coefficients [14]. It has been
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shown that the positive and negative defect indices of second-order symmetric differ-

ence equations with complex coefficients are still equal; that is (d+, d-) = (1, 1) or

(2, 2). The positive and negative defect indices of singular symmetric linear difference

equation with real coefficients:

n∑
j=0

(−1)j�j (pj(t)∇ jy(t)
)
= λw(t)y(t), t ∈ I, (1:7)

has been discussed in [15]. Since the coefficients of (1.7) are all real, it can be easily

verified that d+ = d- := d. It has been shown in [15] that n ≤ d ≤ 2n, and all values in

this range can be realized. There are seldom results on the positive and negative defect

indices of symmetric difference equation with complex coefficients.

In the present article, we study the positive and negative defect indices of Equation

(1.1). The rest of the article is organized as follows. In Section 2, two equivalent forms

of Equation (1.1) are formulated, and some useful lemmas are stated. In Section 3, we

pay attention to the defect indices of Equation (1.1) and its equivalent forms. Theorem

3.1 and Example 3.1 show that the positive and negative defect indices of a class of

symmetric difference equations of order 2n with complex coefficients satisfies the

inequalities n ≤ d+ = d- ≤ 2n and all values in this range are realized. This extends the

corresponding result for symmetric difference equations with real coefficients in [15].

We point out the method used here is different from that in [15]. In addition, several

criteria of the limit point and strong limit point cases are established. Most of the

results in the present article extend the corresponding results for real coefficient equa-

tions in [15].

2 Preliminaries
This section is divided into three sections. In Section 2.1, a classification of limit cases

of Equation (1.1) is introduced. In Section 2.2, two equivalent forms of Equation (1.1)

are introduced. In Section 2.3, some sufficient and necessary conditions of limit point

case and strong limit point case of Equation (1.1) are given. Some of the results in this

section can be regarded as extensions of those in [15].

2.1 Classification of limit cases

By ℂ denotes the set of the complex numbers, and by z̄ and u* denote the conjugate of

z and the complex conjugate transpose of u, respectively.

We now introduce the following space:

l2w(I) :=
{
y = {y(t)}+∞

t=−n ⊂ C :
∑
t∈I

w(t)
∣∣y(t)∣∣2 < +∞

}

with inner product〈
x, y

〉
w :=

∑
t∈I

w(t)ȳ(t)x(t),

where the weight function w(t) > 0 on I . For x, y ∈ l2w(I), x is said to be equal to y if

∥x - y∥w = 0, where ∥ · ∥w := (〈·, ·〉w)
1/2. In this sense, l2w(I) is a Hilbert space with the

inner product 〈·, ·〉w. In the special case of w(t) ≡ 1, l2w(I) is briefly denoted by l2(I).

Ren Advances in Difference Equations 2012, 2012:27
http://www.advancesindifferenceequations.com/content/2012/1/27

Page 3 of 13



Similarly to the scalar case, denote

L2w(I) :=
{
u = {u(t)}+∞

t=0 ⊂ C2n :
∑
t∈I

R∗(u)(t)W(t)R(u)(t) < +∞
}

with the inner product

〈u, v〉W :=
∑
t∈I

R∗(v)(t)W(t)R(u)(t),

where the weight function W(t) is a 2n × 2n non-negative Hermitian matrix, R(·) is

defined by (1.5). Then L2W(I) is a Hilbert space with the inner product 〈·, ·〉w in the

sense that u = v if ∥u - v∥W = 0, where ∥ · ∥W := (〈·, ·〉W)
1/2.

As stated in the previous section, (1.1) can be converted into (1.3) by (1.2). It is evi-

dent that for any l Î ℂ, if y(t) is a solution of (1.1), then u(t) defined by (1.2) is a solu-

tion of (1.3) and conversely, if u(t) is a solution of (1.3), then y(t) = u1(t + 1) is a

solution of (1.1). Moreover, it follows from (1.2) and (1.4) that

‖u‖2W =
∑
t∈I

R∗(u)(t)W(t)R(u)(t) =
∑
t∈I

w(t)
∣∣y(t)∣∣2 =

∥∥y∥∥2w .
By dw(l) and DW(l) denote the number of the linearly independent solutions of

Equation (1.1) in l2w(I) and system (1.3) in L2W(I), respectively. Then the following

result is obtained:

Lemma 2.1. DW(l) = dw(l) for any l Î ℂ.

Denote d+ = dw(i) and d- = dw(-i). By Theorem 5.1 of [16], d+ and d- are equal to the

positive and negative defect indices of the minimal operator generated by (1.1), respec-

tively. The following result is directly derived from Corollary 4.1 and Theorem 5.4 in

[16] and Lemma 2.1:

Lemma 2.2. n ≤ d+, d- ≤ 2n.

Definition 2.1. Equation (1.1) is called in the (d+,d-) case at t = +∞. In the case that

d± = n, Equation (1.1) is called in the limit point case at t = +∞; in the case that d± =

2n, Equation (1.1) is called in the limit circle case at t = +∞.

Lemma 2.3 [14]. For second-order symmetric difference equation:

c(t + 1)y(t + 1) + b(t)y(t) + c̄(t)y(t − 1) = λw(t)y(t), t ∈ I, (2:1)

where c(t) is a complex-valued function and b(t) is a real-valued function, and w(t) > 0

on I , the positive and negative defect indices (d+, d-) are equal to either (1, 1) or (2, 2).

2.2 Two equivalent forms of Equation (1.1)

In this section, we formulate two equivalent forms of (1.1).

For convenience, we first introduce the following useful formulae:

�ky(t) = ∇ky(t + k) =
k∑
j=0

(−1)k−jCj
ky(t + j), (2:2)

�k(y(t)z(t)) =
k∑
j=0

Cj
k�

jy(t)�k−jz(t + j), (2:3)

where Cj
k = k!/(j!(k − j)!) is the binomial coefficient.
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First, by using (2.2) and (2.3), Equation (1.1) can be rewritten as

n∑
j=1

(
Pj(t + j) + iQj(t + j)

)
y(t + j) + P0(t)y(t) +

n∑
j=1

(Pj(t) − iQj(t))y(t − j)

= λw(t)y(t), t ∈ I,
(2:24)

where

Pj(t) = (−1)j
n∑
s=j

s−j∑
k=0

Ck
sC

s−j−k
s ps(t + k), 1 ≤ j ≤ n,

P0(t) =
n∑
s=0

s∑
k=0

Ck
sC

s−k
s ps(t + k),

Qj(t) = (−1)j+1
n∑
k=j

Cj
kqk(t), 1 ≤ j ≤ n,

(2:5)

or

pn(t) = (−1)nPn(t),

pj(t) = (−1)jPj(t) −
n∑

s=j+1

s−j∑
k=0

Ck
sC

s−j−k
s ps(t + k), 0 ≤ j ≤ n − 1,

qn(t) = (−1)n+1Qn(t),

qj(t) = (−1)j+1Qj(t) −
n∑

k=j+1

Cj
kqk(t), 1 ≤ j ≤ n − 1.

(2:6)

Equation (2.4) is a equivalent form of Equation (1.1). In addition, it is evident that

Equation (2.1) is a special case of Equation (2.4) with n = 1.

Second, setting

y(t) = w−1/2(t)x(t), t ≥ 0, (2:7)

and multiplying w-1/2(t) on the both side of (2.4) we get

n∑
j=1

(
P̂j(t + j) + iQ̂j(t + j)

)
x(t + j) + P̂0(t)x(t) +

n∑
j=1

(
P̂j(t) − iQ̂j(t)

)
x(t − j)

= λx(t), t ≥ n,

(2:8)

where

P̂j(t) = Pj(t)w−1/2(t)w−1/2(t − j), 0 ≤ j ≤ n,

Q̂j(t) = Qj(t)w−1/2(t)w−1/2(t − j), 1 ≤ j ≤ n.
(2:9)

Further, (2.8) can be rewritten as

n∑
j=0

(−1)j�j (p̂j(t)∇ jx(t)
)
+ i

n∑
k=1

[
(−1)k+1�k (

q̂k(t)x(t)
)
+ q̂k(t)∇kx(t)

]

= λx(t), t ≥ n,

(2:10)
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where p̂j(t) and q̂j(t) are determined by (2.6) with Pj(t), ps(t), Qj(t), and qs(t) replaced

by P̂j(t), p̂s(t), Q̂j(t), and q̂s(t), respectively. It is evident that p̂j(t), 0 ≤ j ≤ n, and q̂k(t), 1

≤ k ≤ n, are all real-valued, and p̂2n(t) + q̂2n(t) �= 0 for all t ≥ n.

Equation (2.10) is an another equivalent form of Equation (1.1). It is evident that for

any l Î ℂ, y(t) is a solution of Equation (1.1) if and only if x(t) = w1/2(t)y(t) is a solu-

tion of Equation (2.10). Moreover, it follows that

+∞∑
t=0

w(t)
∣∣y(t)∣∣2 < +∞

if and only if

+∞∑
t=n

∣∣x(t)∣∣2 < +∞.

By d(l) denotes the numbers of the linearly independent solutions of Equation (2.10)

in l2(I). Then we have that

d(λ) = dw(λ), ∀λ ∈ C.

This means that Equation (1.1) has the same positive and negative defect indices as

those of Equation (2.10).

2.3 Sufficient and necessary conditions of limit point case and strong limit point case

The natural difference operator corresponding to Equation (1.1) is defined by

L(y)(t) :=
n∑
j=0

(−1)j�j (pj(t)∇ jy(t)
)
+ i

n∑
k=1

[
(−1)k+1�k(qk(t)y(t)) + qk(t)∇ky(t)

]
,

and the bilinear form [·, ·] associated with (1.1) is defined by

[x, y](t) :=
n∑
j=1

⎛
⎝ n∑

k=j

(−1)k−j
[
�k−j

(
pk(t)∇kȳ(t) + iqk(t)ȳ(t)

)]⎞⎠ �j−1x(t − j)

−
n∑
j=1

�j−1ȳ(t − j)

⎛
⎝ n∑

k=j

(−1)k−j
[
�k−j

(
pk(t)∇kx(t) − iqk(t)x(t)

)]⎞⎠ .

Then, it follows from [16, Lemma 2.2] that for any x(t) and y(t) defined in {t}+∞
t=−n we

have

m∑
t=0

[
ȳ(t)(Lx)(t) − (Ly)(t)x(t)

]
= [x, y](t)|m+1

t=0 . (2:11)

Denote

D :=
{
y ∈ l2w(I) : w−Ly ∈ l2w(I)

}
,

which is the domain of the maximal operator corresponding to operator L. It yields
from (2.11) that limt®+∞[x, y](t) = c for any x, y ∈ D, where c is a finite constant. The

following lemma is a direct consequence of [16, Theorem 6.15].
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Lemma 2.4. Equation (1.1) is in l.p.c. at t = +∞ if and only if for all x, y ∈ D,

lim
t→+∞[x, y](t) = 0. (2:12)

Following the concept of the strong limit point case for singular discrete Hamilto-

nian system given in [17], we give the following concept:

Definition 2.2. Equation (1.1) is said to be in the strong limit point case (s.l.p.c.) at t

= +∞ if for all x, y ∈ D,

lim
t→+∞

n∑
j=1

�j−1ȳ(t − j)

⎛
⎝ n∑

k=j

(−1)k−j
�k−j

[
pk(t)∇kx(t) − iqk(t)x(t)

]⎞⎠ = 0.

For convenience, denote

S(y)(t) :=
n∑
j=1

�j−1ȳ(t − j)

⎛
⎝ n∑

k=j

(−1)k−j
[
�k−j

(
pk(t)∇ky(t) − iqk(t)y(t)

)]⎞⎠ .

The following result is a direct consequence of Theorem 2.1 in [17].

Lemma 2.5. Equation (1.1) is in s.l.p.c. at t = +∞ if and only if limt®+∞ S(y)(t) = 0 for

all y ∈ D.

Lemma 2.6. Assume that there exist a constant c and an integer t0 ≥ 0 such that pj(t)

(1 ≤ j ≤ n) and p0(t) - cw(t) are either non-negative for all t ≥ t0 or non-positive for all t

≥ t0. Then limt®+∞ S(y)(t) exists, finite or infinite, for all y ∈ D.

Proof. Using (2.2) and (2.3), we have that

�S(y)(t) =
n∑
j=1

�jȳ(t − j)

⎛
⎝ n∑

k=j

(−1)k−j
�k−j

[
pk(t)∇ky(t) − iqk(t)y(t)

]⎞⎠

+
n∑
j=1

�j−1ȳ(t − j + 1)

⎛
⎝ n∑

k=j

(−1)k−j�k−j+1
[
pk(t)∇ky(t) − iqk(t)y(t)

]⎞⎠

=
n∑
j=1

∇ jȳ(t)

⎛
⎝ n∑

k=j

(−1)k−j
�k−j

[
pk(t)∇ky(t) − iqk(t)y(t)

]⎞⎠

−
n−1∑
j=0

∇ jȳ(t)

⎛
⎝ n∑

k=j+1

(−1)k−j�k−j
[
pk(t)∇ky(t) − iqk(t)y(t)

]⎞⎠

=
n∑
j=1

pj(t)
∣∣∇ jy(t)

∣∣2 + ȳ(t)(p0(t)y(t) − (Ly)(t))

=
n∑
j=0

pj(t)
∣∣∇ jy(t)

∣∣2 − ȳ(t)(Ly)(t).

Summing up above relation from t0 to m, we get

S(y)(m + 1) = S(y)(t0) + c
m∑
t=t0

w(t)
∣∣y(t)∣∣2 −

m∑
t=t0

ȳ(t)(Ly)(t)

+
m∑
t=t0

(
p0(t) − cw(t)

) ∣∣y(t)∣∣2 + n∑
j=1

m∑
t=t0

pj(t)
∣∣∇ jy(t)

∣∣2.
(2:13)
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For any y ∈ D, it follows from Cauchy’s inequality that the second and third items on

the right side of (2.13) converge. Since pj(t) (1 ≤ j ≤ n) and p0(t)-cw(t) are either non-

negative for all t ≥ t0 or non-positive for all t ≥ t0, the last two items on the right side

of (2.13) are monotonic. Therefore, limt®+∞ S(y)(t) exists, finite or infinite. The proof

is complete.

Remark 2.1. Note that the assertion of Lemma 2.6 in the present article are the

same that of [15, Lemma 2.7]. Moreover, we point out that none conditions of Lemma

2.6 impose a restriction on qj(t), 1 ≤ j ≤ n.

3 Main results
In this section, several results on the positive and negative defect indices of Equation

(1.1) and its equivalent forms; that is, (2.4) and (2.10), are given. It is first shown that

for a class of symmetric difference equations in form of (2.4), the positive and negative

defect indices are equal; that is n ≤ d+ = d- ≤ 2n, and all values in this range are rea-

lized. Next, several sufficient conditions of the limit point case for Equations (2.10)

and (1.1) are given. Finally, two criteria of the strong limit point case for Equations

(2.10) and (1.1) are established.

3.1 The range of the positive and negative defect indices

In this section, we consider a special case of Equation (2.4):

P(t + n)y(t + n) + P̄(t)y(t − n) = λw(t)y(t), t ∈ I, (3:1)

where P(t) is a complex-valued function, and w(t) > 0 in I .
Theorem 3.1. The positive and negative defect indices d± of Equation (3.1) satisfy

that n ≤ d+ = d- ≤ 2n, and all the values in this range are realized.

Proof. We only prove the assertion holds for n = 2, and the other cases can be

shown similarly.

In the case that n = 2, Equation (3.1) can be written as

P(t + 2)y(t + 2) + P̄(t)y(t − 2) = λw(t)y(t), t ∈ I. (3:2)

It can be divided into the following two second order symmetric difference equa-

tions:

Q1(t + 1)x(t + 1) + Q̄1(t)x(t − 1) = λw1(t)x(t), t ∈ I, (3:3)

Q2(t + 1)z(t + 1) + Q̄2(t)z(t − 1) = λw2(t)z(t), t ∈ I, (3:4)

where

Q1(t) = P(2t), w1(t) = w(2t), x(t) = y(2t),

Q2(t) = P(2t + 1), w2(t) = w(2t + 1), z(t) = y(2t + 1).

For any given l Î ℂ, let x(t) be a solution of Equation (3.3) and z(t) be a solution of

Equation (3.4). Denote

y′(t) =
{
x(k), t = 2k,
0, t = 2k + 1,

y′′(t) =
{
0, t = 2k,
z(k), t = 2k + 1,

k ∈ I.
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It can be easily verified that y’ and y” are two linearly independent solutions of Equa-

tion (3.2). Further, since∑
t∈I

w(t)
∣∣y′(t)∣∣2 =

∑
t∈I

w1(t)
∣∣x(t)∣∣2,

∑
t∈I

w(t)
∣∣y′′(t)∣∣2 =

∑
t∈I

w2(t)
∣∣z(t)∣∣2,

It follows that y′ ∈ l2w(I) if and only if x ∈ l2w1
(I), and y′′ ∈ l2w(I) if and only if

z ∈ l2w2
(I). By d±, d′

± and d′′
± denote the positive and negative defect indices of Equa-

tions (3.2), (3.3), and (3.4), respectively. Then it follows that

d± = d′
± + d′′

±. (3:5)

On the other hand, one has by Lemma 2.3 that

1 ≤ d′
+ = d′ ≤ 2, 1 ≤ d′′

+ = d′′ ≤ 2, (3:6)

and all the values in this range can be realized. Inserting (3.6) into (3.5), one has that

2 ≤ d+ = d ≤ 4.

and all the values in this range can be realized.

For the general Equation (3.1), we can write it into n second-order symmetric differ-

ence equations with complex-valued coefficients. The positive and negative defect

indices are equal to the sum of those of the n second-order symmetric difference equa-

tions, respectively. Then by Lemma 2.3 one can prove the assertion in Theorem 3.1.

The proof is complete.

Example 3.1. Let w1(t) ≡ 1 for t ∈ I . It has been shown in [14] that for Equation

(3.3), if Q1(t) ≡ 1 for t ∈ I , then Equation (3.3) is in the limit point case at t = +∞; if

Q1(t) = -4t + 4ti for t ∈ I , then Equation (3.3) is in the limit circle case at t = +∞.

Thus, if

P(t) ≡ 1, t ∈ I,

then the positive and negative defect indices of Equation (3.2) are (2, 2); if

P(t) =
{
1, t = 2k;
−4k + 4ki, t = 2k + 1,

then the positive and negative defect indices of Equation (3.2) are (3, 3); if

P(t) =
{−4k + 4ki, t = 2k;

−4k + 4ki, t = 2k + 1,

then the positive and negative defect indices of Equation (3.2) are (4, 4). This exam-

ple shows that the positive and negative defect indices of Equation (3.1) satisfies the

inequality n ≤ d+ = d- ≤ 2n and all values in this range are realized.

3.2 Criteria of the limit point and the strong limit point cases

In this section, we give some sufficient conditions for the limit point case and the

strong limit point case.

First, we consider the criteria of the limit point case. Similarly to the notations in

Section 2, we introduce the following notations for Equation (2.10):
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L1(y)(t) :=
n∑
j=0

(−1)j�j (p̂j(t)∇ jy(t)
)

+ i
n∑

k=1

[
(−1)k+1�k (

q̂k(t)y(t)
)
+ q̂k(t)∇ky(t)

]
,

[x, y]1(t) :=
n∑
j=1

⎛
⎝ n∑

k=j

(−1)k−j
[
�k−j

(
p̂k(t)∇kȳ(t) + iq̂k(t)ȳ(t)

)]⎞⎠�j−1x(t − j)

−
n∑
j=1

�j−1ȳ(t − j)

⎛
⎝ n∑

k=j

(−1)k−j
[
�k−j

(
p̂k(t)∇kx(t) − iq̂k(t)x(t)

)]⎞⎠ ,

S1(y)(t) :=
n∑
j=1

�j−1ȳ(t − j)

⎛
⎝ n∑

k=j

(−1)k−j
[
�k−j

(
p̂k(t)∇ky(t) − iq̂k(t)y(t)

)]⎞⎠ ,

D1 :=
{
y ∈ l2(I) : L1y ∈ l2(I)} .

Theorem 3.2. Assume that there exist a non-negative function s(t) defined on I , a
constant M > 0 and an integer t0 ≥ 0 such that∑

t∈I
σ (t) = +∞, (3:7)

σ (t)
∣∣∣�lp̂j(t)

∣∣∣ ≤ M, σ (t)
∣∣∣�lq̂j(t)

∣∣∣ ≤ M, t ≥ t0, (3:8)

for all 1 ≤ j ≤ n and 0 ≤ l ≤ j - 1. Then Equation (2.10) is in l.p.c. at t = +∞.

Proof. First, we mention that the main idea of the proof is the same as that of [15,

Theorem 3.3]. By Lemma 2.4, it suffices to show limt®+∞[x, y]1(t) = 0 for all x, y ∈ D1.

By the discussion before Lemma 2.4, limt®+∞[x, y]1(t) exists, finite, for all x, y ∈ D1.

Suppose that there exist x, y ∈ D1 such that limt®+∞[x, y]1(t) = c ≠ 0. Then there exists

T0 ≥ t0 such that |[x, y]1(t)| ≥ |c|/2 > 0 for all t ≥ T0. It follows from condition (3.7)

that

+∞∑
t=T0

σ (t)
∣∣[x, y]1(t)∣∣ ≥ |c|

2

+∞∑
t=T0

σ (t) = +∞. (3:9)

On the other hand, we have from (2.3) that

∣∣[x, y]1(t)∣∣ ≤
n∑
j=1

∣∣�j−1x(t − j)
∣∣ n∑

k=j

k−j∑
s=0

Cs
k−j

∣∣�sp̂k(t)
∣∣ ∣∣∣�2k−j−sy(t + s − k)

∣∣∣

+
n∑
j=1

∣∣�j−1x(t − j)
∣∣ n∑

k=j

k−j∑
s=0

Cs
k−j

∣∣�sq̂k(t)
∣∣ ∣∣∣�k−j−sy(t + s)

∣∣∣

+
n∑
j=1

∣∣�j−1y(t − j)
∣∣ n∑

k=j

k−j∑
s=0

Cs
k−j

∣∣�sp̂k(t)
∣∣ ∣∣∣�2k−j−sx(t + s − k)

∣∣∣

+
n∑
j=1

∣∣�j−1y(t − j)
∣∣ n∑

k=j

k−j∑
s=0

Cs
k−j

∣∣�sq̂k(t)
∣∣ ∣∣∣�k−j−sx(t + s)

∣∣∣ ,
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which, together with condition (3.8) and Cauchy’s inequality, implies that

σ (t)
∣∣[x, y]1(t)∣∣ ≤ M

n∑
j=1

n∑
k=j

k−j∑
s=0

Cs
k−j

(
2
∣∣�j−1x(t − j)

∣∣2 + 2
∣∣�j−1y(t − j)

∣∣2

+
∣∣∣�k−j−sy(t + s)

∣∣∣2 + ∣∣∣�k−j−sx(t + s)
∣∣∣2

+
∣∣∣�2k−j−sy(t + s − k)

∣∣∣2 + ∣∣∣�2k−j−sx(t + s − k)
∣∣∣2) .

Since x, y ∈ D1,
∣∣�kx

∣∣ and ∣∣�kȳ
∣∣ belong to l2(I) for any k ≥ 0. Hence,

+∞∑
t=T0

σ (t)
∣∣[x, y]1(t)∣∣ < +∞.

This is a contradiction with (3.9). Therefore, limt®+∞[x, y]1(t) = 0 holds for all

x, y ∈ D1. By Lemma 2.4, Equation (2.10) is in l.p.c. at t = +∞.

Reversing the transformation from (1.1) to (2.10), we get the following result:

Theorem 3.3. Assume that there exist a non-negative function s(t) defined on I , a
constant M > 0 and an integer t0 ≥ n such that s(t) satisfies condition (3.7), and

σ (t)
∣∣∣�m

[
ps(t + k + v)w−1/2(t + v)w−1/2(t − j + v)

]∣∣∣ ≤ M, (3:10)

σ (t)
∣∣∣�b

[
qs(t)w−1/2(t)w−1/2(t − j)

]∣∣∣ ≤ M, t ≥ t0, (3:11)

for all 1 ≤ s ≤ n, 1 ≤ j ≤ s, 0 ≤ k ≤ s - j, 0 ≤ v ≤ j - 1, 0 ≤ m ≤ j - 1 - v, and 0 ≤ b ≤ j

- 1. Then Equation (1.1) is in l.p.c. at t = +∞.

Proof. Since Equations (1.1) and (2.10) have the same limit case at t = +∞ under the

transformation (2.7), it suffices to show that conditions (3.10) and (3.11) can imply

that (3.8) holds. By the proof of Theorem 3.4 in [15], condition (3.10) implies that the

first condition in (3.8) holds. So, it remains to show that condition (3.11) can imply

that the second condition in (3.8) holds.

From (2.5), (2.6), and (2.9) we have

q̂n(t) = (−1)n−1qn(t)w−1/2(t)w−1/2(t − n), (3:12)

q̂j(t) =
n∑
k=j

Cj
kqk(t)w

−1/2(t)w−1/2(t − j) −
n∑

k=j+1

Cj
kq̂k(t), 1 ≤ j ≤ n − 1. (3:13)

When s = j = n, it follows from (3.11) that

σ (t)
∣∣∣�b

[
qn(t)w−1/2(t)w−1/2(t − n)

]∣∣∣ ≤ M, 0 ≤ b ≤ n − 1,

which together with (3.12) yields that

σ (t)
∣∣∣�bq̂n(t)

∣∣∣ ≤ M, 0 ≤ b ≤ n − 1. (3:14)

When s = j = n - 1, it follows from (3.11) that

σ (t)
∣∣∣�b

[
qn−1(t)w−1/2(t)w−1/2(t − n + 1)

]∣∣∣ ≤ M, 0 ≤ b ≤ n − 2. (3:15)
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When s = n and j = n - 1, (3.11) implies that

σ (t)
∣∣∣�b

[
qn(t)w−1/2(t)w−1/2(t − n + 1)

]∣∣∣ ≤ M, 0 ≤ b ≤ n − 2. (3:16)

Inserting (3.14)-(3.16) into (3.13) with j = n - 1, we have

σ (t)
∣∣∣�bq̂n−1(t)

∣∣∣ ≤ M

⎛
⎝ n∑

k=n−1

Cn−1
k + 1

⎞
⎠ , 0 ≤ b ≤ n − 2. (3:17)

With a similar argument one can conclude that

σ (t)
∣∣∣�bq̂s(t)

∣∣∣ ≤ M

(
n∑
k=s

Cs
k +

n∑
k=s+1

Cs
k

)
(3:18)

for all 1 ≤ s ≤ n, 0 ≤ b ≤ s - 1 by using (3.13). Therefore, the conditions for qk in

(3.8) hold. By Theorem 3.3, Equation (2.10) is in l.p.c. at t = +∞, which is equivalent to

that Equation (1.1) is in l.p.c. at t = +∞. The proof is complete.

Note that if there exist a constant K > 0 and an integer t0 ≥ 0 such that |f(t)| ≤ Kt

for t ≥ t0, then there exists a constant N > 0 such that |Δmf(t + v)| ≤ Nt for t ≥ t0 + 1

and 0 ≤ m, v ≤ n. Thus the following result is a direct consequence of Theorem 3.4 by

taking s(t) = t-1:

Corollary 3.1. If there exist a constant M > 0 and an integer t0 ≥ n such that∣∣ps(t + k)
∣∣ ≤ Mtw1/2(t)w1/2(t − j),∣∣qs(t)∣∣ ≤ Mtw1/2(t)w1/2(t − j), j ≥ t0,

for all 1 ≤ s ≤ n, 1 ≤ j ≤ s and 0 ≤ k ≤ s - j, then Equation (1.1) is in l.p.c. at t = +∞.

Remark 3.1. In the case that n = 1, the conditions of Theorem 3.3 are equivalent to

that of [14, Theorem 3.1]; that is

∑
t∈I

(
w(t)w(t + 1)

)1/2√
p21(t + 1) + q21(t + 1)

= +∞. (3:19)

In fact, the conditions of Theorem 3.3 in the case that n = 1 are∑
t∈I

σ (t) = +∞,

σ (t)
∣∣∣p1(t)w−1/2(t)w−1/2(t − 1)

∣∣∣ ≤ M,

σ (t)
∣∣∣q1(t)w−1/2(t)w−1/2(t − 1)

∣∣∣ ≤ M, t ≥ t0.

(3:20)

If (3.19) holds, then (3.20) holds with

σ (t) =

(
w(t)w(t − 1)

)1/2√
p21(t) + q21(t)

and M = 1. On the other hand, suppose that (3.20) holds. Then it follows from the

second and third conditions in (3.20) that
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(
w(t)w(t − 1)

)1/2√
p21(t) + q21(t)

≥
(
w(t)w(t − 1)

)1/2∣∣p1(t)∣∣ + ∣∣q1(t)∣∣ ≥ σ (t)
2M

, (3:21)

which, together with the first condition in (3.20), implies that (3.19) holds.

At the end of this section, two criteria of the strong limit point case for Equations

(2.10) and (1.1) are established, respectively.

Theorem 3.4. If p̂j, 0 ≤ j ≤ n, and q̂k(t), 1 ≤ k ≤ n, satisfy all the conditions in Theo-

rem 3.2 and Lemma 2.6, then Equation (2.10) is in s.l.p.c. at t = +∞.

Proof. Since qj(t), 0 ≤ j ≤ n, satisfy the conditions in Lemma 2.6, limt®+∞ S1(y) (t)

exists, finite or infinite, for all y ∈ D1. With a similar argument to that used in the

proof of Theorem 3.2, it follows that limt®+∞ S1(y)(t) = 0 for all y ∈ D1. By Lemma 2.5,

(2.10) is in s.l.p.c. at t = +∞. The proof is complete.

Theorem 3.5. If pj(t), 0 ≤ j ≤ n, qk(t), 1 ≤ k ≤ n, and w(t) satisfy all the conditions in

Theorem 3.3 and Lemma 2.6, then Equation (1.1) is in s.l.p.c. at t = +∞.
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