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Abstract

Let f be a diffeomorphism of a closed n-dimensional C∞ manifold. In this article, we
show that C1-generically, if f has the C1-stably asymptotic average shadowing
property on a closed set then it admits a dominated splitting.
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1 Introduction
The notion of the pseudo-orbits very often appears in several branches of the modern

theory of dynamical system. For instance, the pseudo-orbit property (shadowing prop-

erty) usually plays an important role in stability theory In this article, we consider the

asymptotic average shadowing property, which was introduced in Gu [1], is a special

version of the shadowing property We find a relation between the stably asymptotic

average shadowing property (on manifold) and the dominated splitting structure on

the vector bundle. In differentiable dynamical system, dominated splitting on the vec-

tor bundle is a nature generalization of hyperbolicity and is investigated by many

mathematicians [2-11].

Here we denote M a closed n-dimensional smooth manifold, and let Diff(M) be the

space of diffeomorphisms of M endowed with the C1-topology. Denote by d the distance

on M induced from a Riemannian metric ||⋅|| on the tangent bundle TM. Let f Î Diff

(M). A sequence {xi}∞i=−∞ in M is called an asymptotic average pseudo orbit of f if

lim
n→∞

1
2n

n−1∑

i=−n

d(f (xi), xi+1) = 0.

An asymptotic average pseudo orbit {xi}iÎℤ is said to be asymptotically shadowed in

average by the point z if

lim
n→∞

1
2n

n−1∑

i=−n

d(f i(z), (xi) = 0.

Given an invariant set Λ of f, we say f has the asymptotic average shadowing prop-

erty on Λ if for any asymptotic pseudo orbit {xi}iÎℤ, there exist a point z Î Λ which

asymptotically shadows {xi}iÎℤ.
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Let f Î Diff(M), and let Λ be a closed f-invariant set. We say that Λ is locally maxi-

mal if there is a compact neighborhood U of Λ such that ∩nÎN fn (U) = Λ. Now we

can introduce a notion of C1-stably the asymptotic average shadowing property on a

locally maximal invariant set.

Definition 1.1 Let Λ be a locally maximal invariant set of f Î Diff(M). We say that f

has the Cl-stably asymptotic average shadowing property on Λ, ( or Λ is Cl-stably

asymptotic average shadowable with respect to f ) if there are a compact neighborhood

U of f and a Cl-neighborhood U(f )of f such that Λ = Λf(U) = ∩nÎℤ fn(U) (locally maxi-

mal), and for any g ∈ U(f ), g|�g(U)has the asymptotic average shadowing property,

where Λg(U) = ∩nÎℤ gn(U) is the continuation of Λ.

Let Λ ⊂ M be an f-invariant closed set. We say that Λ admits a dominated splitting if

the tangent bundle TΛM has a continuous Df-invariant splitting E ⊕ F and there exist

constants C >0 and 0 < l < 1 such that
∥∥Dxf

n
∣∣E(x)

∥∥ .
∥∥Dxf

−n
∣∣
F(f n(x))

∥∥ ≤ Cλn

for all x Î Λ and n ≥ 0.

The following remark gives an equivalent definition of dominated splitting.

Remark 1.2 Let Λ be a closed f-invariant set. A splitting TΛM = E ⊕ F is called a l-

dominated splitting for a positive integer l if E and F are Df-invariant and

∥∥∥Df l
∣∣E(x)

∥∥∥ /m(Df l
∣∣F(x) ) ≤ 1

2
,

for all x Î Λ, where m(A) = inf{||Aυ||: ||υ|| = 1} denotes the minimum norm of a lin-

ear map A.

Now we can state main results of this article.

Theorem 1.3 Let Λ be a closed set of f Î Diff(M). Then C1-generically, if f has the

C1-stably asymptotic average shadowing property on Λ then it admits a dominated

splitting.

Theorem 1.4 Let Λ be a transitive set. If f has the C1-stably asymptotic average sha-

dowing property on Λ then it admits a dominated splitting.

2 Proof of theorems
Theorems 1.3 and 1.4 are all base on the following proposition:

Proposition 2.1 Let Λ be a closed locally manximal invariant set of f, if f has the C1-

stably asymptotic average shadowing property on Λ, and there exist a sequence gn goes

to f and periodic orbits Pn of gn which converges to Λ in Hausdorff limits, then Λ

admits a dominated splitting.

Firstly, we give the notation of pre-sink (resp. pre-source) which prevent the stably

asymptotic average shadowing property. A periodic point p of f is called a pre-sink

(resp. pre-source) if Dfπ(p)(p) has a multiplicity one eigenvalue with modulus 1 and the

other eigenvalues has norm strictly less than 1 (resp. bigger than 1).

Lemma 2.2 Let Λ be a closed set of f. Suppose that f|Λ has the C1-stably asymptotic

average shadowing property. Let U and U(f )be given in the Definition 1.1, then for any

g ∈ U(f ), g has neither pre-sink nor pre-sources with the orbit staying in U.

Proof. We prove the lemma by contradiction. Assume that there is g ∈ U(f ) such

that g has a pre-sink p with Orb(p) ⊂ U.
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By the Franks’ Lemma, we can linearize g at p with respect to the exponential coor-

dinates expp, i.e., after an arbitrarily small perturbation, we can get a diffeomorphism

g1 ∈ U(f ) such that there is �1 >0 small enough with Bε1 (Orb(p)) ⊂ U such that

g1
∣∣∣Bε1 (g

i(p)) = expgi+1(p) ◦ Dgi(p)g ◦ exp−1
gi(p)

∣∣∣
Bε1 (g

i(p))
,

for any 0 ≤ i ≤ π(p) - 1.

Since p is pre-sink of g, Dpg
π(p) has a multiplicity one eigenvalue such that |l| = 1

and other eigenvalues of Dpg
π(p) have moduli less than 1. Denote by Ecp the eigenspace

corresponding to l, and Esp the eigenspace corresponding to the eigenvalues with mod-

ulus less than 1. Thus TpM = Ecp ⊕ Esp . If l Î ℝ then dimEcp = 1 , and if l Î ℂ then

dimEcp = 2 .

At first, we consider the case dim Ecp = 1 . For simplicity, we suppose that l = 1, and

gπ(p)
1 (p) = p . The case of l = -1 can be proved similarly. Since the eigenvalue l = 1,

there is a small arc Ip ⊂ Bε1 (p) ∩ expp(E
c
p(ε1))centered at p such that gπ(p)

1 |Ip
is the

identity map. Here Ecp(ε1) is the �1-ball in Ecp center at the origin Op.

There exist D >0 such that for any z Î BD(p), there exists x ∈ Ip such that

gnπ(p)1 (z) → x as n ® ∞. Take two distinct points a, b ∈ Ip such that d(a, b) = D/4.

We construct an asymptotic average pseudo orbit of g1 as follows.

x−i = g−i
1 a,

x0 = a, x1 = g1(a), . . . , xπ(p)−1 = gπ(p)−1
1 a, xπ(p) = b, . . . ,

x(2k−2)π(p) = a, x(2k−2)π(p)+1 = g1(a), . . . , x(2k+2k−1−2)π(p)−1 = g−1
1 a,

x(2k+2k−1−2)π(p) = b, . . . , x(2k+1−2)π(p)−1 = g−1
1 (b), . . . .

One can easily check that ξ = {xi}iÎℤ is an asymptotic average pseudo orbit of g1.

Since g1 has the asymptotic average shadowing property on �g1 (U) , we can find a

point z such that the point z is shadows ξ = {xi}iÎℤ in asymptotic average, i.e.,

lim
n→∞

1
2n

n−1∑

i=−n

d(gi1(z), xi) = 0.

It is easy to see that there is n0 >0 such that gn01 (z) ∈ BD(p) . Hence there exists a

point x ∈ Ip such that gnπ(p)+n01 (z) → x , as n ® ∞. From the choice of a, b and the

fact that gπ(p)
1 |Ip = Id , we have

lim
n→∞

1
n

n−1∑

i−0

d(gi1(z), xi) = lim
n→∞

1
n

n−1∑

i=0

d(gi−n0
1 (x), xi) > 0.

This is a contradiction.

Finally, we consider the case dim Ecp = 2 . There is a disk

Dp ⊂ Bε1 (p) ∩ expp(E
c
p(ε1))centered at p such that gπ(p)

1 |Dp
is a rotation. Note that D

consists of gπ(p)
1 -invariant circles. We take a and b in different circles. Then by similar
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arguments as above, we get the contradiction. We omit the details and finish the proof

here.

Let GL(n) be the group of linear isomorphisms of ℝn. A sequence ξ : ℤ ® GL(n) is

called periodic if there is k > 0 such that ξj+k = ξj for k Î ℤ. We call a finite subset

A = {ξi : 0 ≤ i ≤ k − 1} ⊂ GL(n) is a periodic family with period k. For a periodic

family A = {ξi : 0 ≤ i ≤ n − 1} , we denote CA = ξn−1 ◦ ξn−2 ◦ · · · ◦ ξ0 .

Definition 2.3 We say that the periodic family A = {ξi : 0 ≤ i ≤ n − 1}admits an l-

dominated splitting, if there is a splitting ℝn = E ⊕ F which satisfies:

(a) E and F are CA invariant, i.e., CA(E) = E and CA(F) = F ,

(b) For any k = 0,1,2,...,
∥∥ξk+l−1 ◦ · · · ◦ ξk+1 ◦ ξk|Ek

∥∥
m(ξk+l−1 ◦ · · · ◦ ξk1 ◦ ξk|Fk)

≤ 1
2
,

where Ek = ξk-1 ○ ξk-2 ○ ... ○ ξ0(E) and Fk = ξk-1 ○ ξk-2 ○ ... ○ ξ0(F).

We know the following theorems for periodic family from [4] which is useful for our

result.

Theorem 2.4 Given any � >0 and K >0, there is positive integers n2 ≥ 0 and l ≥ 0

which satisfies the following property: given any periodic family

A = {ξi : 0 ≤ i ≤ n − 1}which satisfies the period n ≥ n2 and max
{‖ξi‖ ,

∥∥ξ−1
i

∥∥} ≤ K ,

for all i = 0,1,...,n-1, if A does not admits any l-dominated splitting, then one can find

a periodic family B = {ζ0, ζ1, ..., ζn−1} such that max
{‖ζi − ξi‖ ,

∥∥ζ−1
i − ξ−1

i

∥∥}
< ε for

any i = 0,1,...,n-1, and det(CA) = det(CB)and the eigenvalues of CB are all real, and

have same modulus.

To prove Theorem 2.4, we need another lemma about uniformly contracting family.

Let A = {ξi : 0 ≤ i ≤ k − 1} ⊂ GL(n) be a periodic family. We say the sequence A is

uniformly contracting family if there is a constant δ > 0 such that for any δ-perturba-

tion of A are sink, i.e., for any B = {ξi : 0 ≤ i ≤ k − 1} with ||ζi - ζi|| < δ, all eigenva-

lue of CB have moduli less than 1. Similarly, we can define the uniformly expanding

periodic family. The following theorem is well known.

Theorem 2.5 [12]For any δ >0 and K >0, there are constants C >0,0 <l <1 and posi-

tive integer m such that if A = {A0,A1, ...,An−1}is a uniformly contracting periodic

family which satisfies

max
{‖Ai‖ ,

∥∥A−1
i

∥∥}
< K

for any i = 0,1,...,n - 1 and n > m, then

k−1∏

j=0

∥∥∥∥∥

m−1∏

i=0

Ai+mj

∥∥∥≤ Cλk ,

where k = [n/m].

Now we return to our main proposition, the Proposition 2.1. Let Pn be given as in
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Proposition 2.1. Choose pn Î Pn, then we get a linear map sequence

An = {Dpnf ,Df (pn)f , . . . ,Df π(pn)−1(pn)f }.

Lemma 2.6 [[10], Lemma 3.2.] If Λ is not a periodic orbit and An is given in above.

Then for any � >0 there exists an n0(�) >0 such that for any n > n0(�), An is neither

�-uniformly contracting nor �-uniformly expanding.

Since the proof is essentially the same as that of [10], we omit the proof here. From

the above lemma and main conclusion of [4], one can get the following lemma. The

proof of the following can be found in [10].

Lemma 2.7 [[10], Lemma 3.3.] Let Λ, gn and Pn be given as in the assumption of Pro-

position 2.1. Then for any � >0 there are n(�),l(�) >0 such that for any n > n(�) if Pn
does not admit an l(�) dominated splitting, then one can find g′

nC
1�-close gn and pre-

serving the orbit of Pn such that Pn is pre-sink or pre-source respecting g′
n .

From the above lemmas and the next property of dominated splitting, we can get

Proposition 2.1.

Lemma 2.8 [[3], Lemma 1.4.] Let gn converges to f and if Λn be a closed gn-invariant

set such that the Hausdorff limit of Λn equal to Λ. If �gn(U)admits a l-dominated

splitting respecting gn, then Λ admits an l-dominated splitting respecting f.

Now we can get our Theorems 1.3 and 1.4, Theorem 1.3 follows two results:

Lemma 2.9 [1,13]Let Λ be a closed set of f Î Diff(M). If f has the asymptotic average

shadowing property on Λ then Λ is a chain transitive set.

The following Lemma is in [14].

Lemma 2.10 There is a residual set G ⊂ Diff(M)such that for any f ∈ G , a compact

f-invariant set Λ is a chain transitive set if and if Λ is a sequence {Pn} of periodic orbits

of f with the Hausdorff topology.

Theorem 1.4 follows the result:

Lemma 2.11 [[11], Corollary 2.7.1.] Let Λ be a transitive set. Then there are a

sequence {gn} of diffeomorphism and a sequence {Pn} of periodic orbits of gn with period

π(Pn) ® ∞ such that gn ® f in the Cl-topology and Pn ® H Λ as n ® ∞, where ® H is

the Hausdorff limit, and π(Pn) is the period of Pn.
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