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Abstract

In this paper, we study some p-adic Frobenius-Euler measure related to umbral
calculus in the p-adic case. Finally, we derive some identities of Frobenius-Euler
polynomials from our study.
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1 Introduction
Let p be a fixed prime number. Throughout this paper Z,, Q, and C, will denote the ring
of p-adic integers, the field of p-adic rational numbers and the completion of algebraic
closure of Q,, respectively.

For f € Nwith (f,p) =1, let

X =1lmZ,/fpNZ;
N

a+prZp={xeX|xza(modpr)}, 0<a<fN -1,

X = U (a +prZp), N € N (see [1-7]).

0<a<fp,(a,p)=1

Note that the natural map Z /fpNZ — 7,/ pN7Z induces
7 X — Zp.

If g is a function on Z,, we denote by the same g the function g o w on X. Namely, we can
consider g as a function on X.
For k> 0 and A € C, with |1 - |, > 1, the Frobenius-Euler measure on X is defined by

SN
i (x +prZp) = I{W (see [5, 8]), 1.1)

where the p-adic absolute value on C,, is normalized by |p|, = 117.

As is well known, the Frobenius-Euler polynomials are defined by the generating func-
tion to be

1-4 e’“:eH(“Wf:iH (x|x)ﬁ (see [5,7,9]) 1.2)
et —\ e " n! B ’
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with the usual convention about replacing H”(x|A) by H,(x|1). In the special case, x = 0,
H,(0|A) = H,(A) are called the nth Frobenius-Euler numbers

e ¢]

Hylh) = (HO) +2)" = (7)H;(A)x""l (see [6,9, 10]). (1.3)
=0

Thus, by (1.2) and (1.3), we easily get

(H(A) +1)" = AH,(A) = (01— 1)8o,n  (see [1-19]), (1.4)

where §,,x is the Kronecker symbol.
For r € N, the Frobenius-Euler polynomials of order r are defined by the generating

function
L\ e (L2 o (R e
et -\ el -\ el — A
r-times
o0 t”
=D H @l (see [5,9)). (15)

n=0

In the special case, x = 0, H,(f) 0[n) = Hﬁ,r) (1) are called the nth Frobenius-Euler numbers
of order r. The nth Frobenius-Euler polynomials can be represented by (1.1) as follows:

ML) fx(my)"dm(y) - /Zp(my)”dm(y)
pPN-1
= Jim — XO:(H Y (see [6,7]). (1.6)
=

Let F be the set of all formal power series in the variable ¢ over C, with

inf(t):Z%tk‘ake(Cp}. (17)
k=0 "

Let P = C,[x] and P denote the vector space of all linear functionals on PP.
The formal power series

o]

f0=3" %tk e F (see[ll,15]) (1.8)

k=0

defines a linear functional on P by setting
(f(t)|x”) =a, foralln>0. 1.9)
From (1.8) and (1.9), we have

(e"x") = ndup (m,k > 0). (1.10)
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Here, F denotes both the algebra of formal power series in ¢ and the vector space of all
linear functionals on P, and so an element f(¢) of F will be thought of as both a formal
power series and a linear functional (see [11, 15]). We will call F the umbral algebra. The
umbral calculus is the study of umbral algebra (see [11, 15]).

The order o(f(t)) of power series f(¢) (# 0) is the smallest integer k for which a; does not
vanish (see [11, 15]). A series f(£) for which o(f(¢)) = 1 is called a delta series. If a series f(£)
has o(f(¢)) = 0, then f(¢) is called an invertible series (see [11, 15]). Let f(¢),g(t) € F. Then
we easily see that (f(£)g(¢)|p(x)) = (f(0)|g(®)p(x)) = (g®)|f (t)p(x)). From (1.10), we note that

(1" =y" (€' Ip) =pO), (1.11)
e O
fm‘%} ot fOeF, (1.12)
and
e (p@) p ) .
p) =)~ p) € P (see [15)). (113)
k=0

For fi(2),£5(t), ..., fu(t) € F, we have

(@S- foul)2") = Z (h " ; )(fl(t)|xil) @), (1.14)
By (1.13), we get
dk “ N k!
PN () = P(x) _ Z<tl|p(x)><k> Fxl—k (115)
I=k ’
and
P(0) = (t“1p() = {11p® ).
Thus, by (1.15), we get
k
%m@:ﬁW@:dpf)(wﬂuJﬂy (1.16)
dx
By (1.16), we easily see that
&'px) =px+y) (see[l5]). (1.17)

Let S,(x) denote a polynomial of degree n. Suppose that f(t),g(t) € F with o(f(¢)) = 1
and o(g(t)) = 0. Then there exists a unique sequence S,(x) of polynomials satisfying
() (©)¥|S,.(x)) = n!8,.x for all m,k > 0. The sequence S, (x) is called the Sheffer sequence
for (g(¢),f(¢)), which is denoted by S,,(x) ~ (g(£),f(£)). If S,,(x) ~ (g(¢), £), then S, (x) is called
the Appell sequence for g(t) (see [15]).
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For p(x) € P, we have

{fOlxp) = (0 @) Ip@) = (f ) Ipx)), (1.18)
(¢ = 1lp()) = p(y) - p(0). (1.19)

If S, (x) ~ (g(2),f(2)), then we have

h(t)=ZM OFfOF, ht) e F, (1.20)
k=0
0 k
p<x>=kZWsk(x), ) P, (1.21)
=0
S(©)Su(x) = nS,1(x), (1.22)
and
o Sk(9) &
£ forallyeC,, 1.23
G LT forallye 123)

where f (¢) is compositional inverse of f(t) (see [11, 15]). In [9], Kim and Kim have stud-
ied some identities of Frobenius-Euler polynomials arising from umbral calculus. In this
paper, we study some p-adic Frobenius-Euler integral on Z, related to umbral calculus in
the p-adic case. Finally, we derive some new and interesting identities of Frobenius-Euler
polynomials from our study.

2 Frobenius-Euler polynomials associated with umbral calculus
Let

el — A
1-X

g(tr) = e F. (2.1)

Then we see that g(¢; 1) is an invertible series. From (1.2), we have

iH(xM)ﬁ— 1 et (2.2)
A R T e '

Hence, by (2.2), we get

1-2y, 1

By (2.2) and (2.3), we get

Hy(x|2) ~ (gt 1), 8).

From (1.6), we have

f N dus(y) = . ex, (2.4)
Z, el — A
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and

/ e(x+y+1)t dﬂx(y) _ )\/ e(x+y)t dﬂk(y) _ )Lext.
Zp

Zyp

By (2.5), we get

@+y+1Vduﬂw—kL;@+yfduﬂw=kf-

Zp
From (1.6) and (2.6), we have

2

A
——H,(x+1|1) —

Hy(x]) = 2,
-1 [ nleld) = A

From (2.2), we can easily derive

_g&2)
g(tn)

Hy(x]A) = (x )Hn(xlk).
By (2.8), we get

(&M Hya1 (x|1) = g(& A)xH, (x[1) — g (8 1) Hy (%[ 1).
Thus, from (2.9), we have

(€' = A)Hyia (x[2) = (€ — X)xH,(x[1) — €' H,(x(|1).
By (2.10), we get

Hypq (% + 1|A) = AH a1 (6|A) = x(Hy(x + 1|A) — AH,,(x([1)).
From (2.11), we note that

H,(x + 1|A) = AH,, (x| A) = %(Hyo (6 + 1[A) = AH,,_1(x]1))

&% (Hyo (6 + 1|A) = AH 2 (x]2)) = - -+

=" (Ho(x + 1|A) — AHo(x[1)) = 2" (1 - ).

Let us consider the linear functional f(¢) such that

(mwmhépwmmm

P

for all polynomials p(x) can be determined from (1.12) to be

— OIS, < £ ut
f@®= kXo: Tt" = ;/ZP ukdux(u)ﬁ = /Zpe dj; (u).

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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By (2.4) and (2.14), we get

A

. 2.15
Y (2.15)

£6) = fZ e dyi; () =

Therefore, by (2.15), we obtain the following theorem.

Theorem 2.1 For p(x) € P, we have

A
<et_A >=/pr(u)dm(u).

In particular,

A t
T H0) = < Zpey

From (1.6), we have

oo t” oo t”
> / (o4 3 dpis ) = / I () =3 / & d s (2.16)
n=0 Y Zp n: Z n=0 Y Zp n:

P

By (1.6), (2.4) and (2.16), we get

A A
—H xlk)—/ eldu, (y)x" = )Lx”, for n> 0. (2.17)

1-
Therefore, by (2.17), we obtain the following theorem.

Theorem 2.2 For p(x) € P, we have

)-

/ Pl +9)dpiay) = / & dyi, ()plx) =
Zp

In particular,

A A
—H A = | du ()" = 2" (n=>0).
1-A Zp et - A

By (1.6) and (2.16), we get

el —A
L) ~ ( - ,t>. (218)

From Appell identity and (2.18), we can derive the following identities:
n

Hyxayn) =Y (Z)Hk(xmy"-k. (2.19)

k=0
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Let

g’(t;k):(etk_k)r=<et;k>x...x(et;)\)ef. (2.20)

r-times

Then g’(¢; 1) is an invertible functional in F. By (1.5) and (2.20), we get

1, SR "
= HD (x|A)—=. 2.21
g’(t;k)e Ty kZO: o (%] )n! (2.21)

Thus, from (2.21), we have

1 2\
o T ) HO(x)0), 2.22
g,(m)x (1_1) W (x[A) (2.22)
and
A\ n A\
=) tHD (x|2) = o ) HY (x)). .
(l—k) tH,” (x|\) g’(t;A)x n<1_k> o1 (x|2) (2.23)

By (2.22) and (2.23), we see that

A

(ﬂ) HD(x|2) ~ (¢" (1), 1). (2.24)

From (2.4), we can derive the following identity:

/ e / plFLtx2 e +)t dp; (x1) -+ - dus(x,)
——

r-times
A\ P\ t"
- S HY (x|A)—. 2.25
(et—,\> ¢ (1—)\) 2(; R (2:25)
By (1.10) and (2.25), we get
A, r
) H(x|2
(1_X> n (%]2)
. < [ o [ et st x> (226)
Zp Zp
————
r-times

From (1.14), we have

</ . / e(x1+x2+~~+xr)t d,lL)L(-’Q) . duA(x,)

—
r-times

oy (7 e

n=iy+---+iy

x”>
xll> X oo
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X </ et duy (x,) xi’>
ZP

n A\
=y (zlz)(ﬁ> H;, (x|A) -+ - Hy, (x|2).

n=iy+---+iy

By (2.26) and (2.27), we get

(r) _
HO @)= ) <i

n=ip+-+iy

" i)Hh(xM)mH,-,(xM),

Ireeertr

where (i " i) = —_ From (2.25), we note that

1yeeer » ileeip!”

1

Page80of 11

(2.27)

4

r-times
Thus, by (2.28), we get

1
g (M)

ZP ZP
) S
= HD (x]3)—=.
(1 -1 = n!

By (2.29), we see that

AR
(1_k) H,”(x|)

/ / (1 o) () - djon (o)
Zp Zp

o ——
r-times

/ - / QL+t dps (x1) - -+ dpy ()%™

r-times

Therefore, by (2.30), we obtain the following theorem.

Theorem 2.3 For p(x) € P and r € N, we have

/ / P +xy + -+ X+ x) dpp(x) - - dpg ()
Zp Zp

r-times

_(et—)\>r (2.28)
B pr...fZ elr+aatx)t gy () - - dpg () A ’ ’

¢= / / et g (1) - - dpus ()€
Zp Zp

(%)

(2.29)

(2.30)

)\' r
= (e,_k> p().
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In particular,
)\‘ r
(ﬁ) H;S’)(xlk)=/ / el gy (o) - - dp ()%
- Zyp Zyp
Moreover,

(_A )rH(’)(xl)») ~ ( ! t)
1-2 " pr . fzp ettt gy () - dg () )

Let us consider the function f"(¢) in F such that
O] = [ [ s ) dis) - duss)
Zp Zp

for all polynomials p(x) can be determined from (1.12) to be

oo i k

k
Z/ /Zp X ) dp () - dm(xr)z

r- tlmes

— / .. / e(x1+"'+x’)t dpy (1) - - dy ().
7, Jz,

———
r-times

Therefore, by (2.31) and (2.32), we obtain the following theorem.

p(x)>

=/ / P+ 2y + -+ x) dpa () - - dp(x).
Zp Zp

Theorem 2.4 For p(x) € P, we have

</ N / 1ttt dua(xn) - - duy ()
—

r-times

r-times

In particular,
A, r
el —\ P

Indeed, the nth Frobenius-Euler number of order r is given by

)\' r
(—) H,S’>(x|x):<f f B2t s (1) - - dpaa ()
-2 Zp Zp
N —’

r-times

r-times

x">,

where n > 0.

(")>=/Z "'/Zp(x1+x2+"'+xr)dlb\(x1)"'dﬂx(xr)~
‘P ‘P

(2.31)

(2.32)
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Remark From (1.2) and (1.5), we note that

d(1-2\ 1-¢ 1 1-1)2 1-x
ﬁ<et-x)‘(et-)\)2‘(1-)\)<(et-,\)2_et-x)
b (Hf?()\)—h{,q(x))ﬁ (2.33)

1- ) & !

and

d> (1= o 1-¢ 2 (1-2)2 @1-1)2
W(ff—/\)_ '(ef—k)?'_(l—k)2((et—k)3_(e‘—k)2>
t}’l

I Y
T (1= ;(Hn () - H, ()‘)) P (2.34)

Continuing this process, we obtain the following equation:

d(1-1\ K L=k Q=)
W(et—k) - (1—k)k((ef—k)’”1 - (et—k)k)

S n
- G S0 - HI ) 235)
n=0 N

By (1.2), (1.5) and (2.35), we get

d—kH (A) = ke (H* D) - HPO ()
7 (L-a)kV? " ’

where k is a positive integer.
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