
Yamaoka Advances in Difference Equations 2012, 2012:218
http://www.advancesindifferenceequations.com/content/2012/1/218

RESEARCH Open Access

Oscillation criteria for second-order nonlinear
difference equations of Euler type
Naoto Yamaoka*

*Correspondence:
yamaoka@ms.osakafu-u.ac.jp
Department of Mathematical
Sciences, Osaka Prefecture
University, Sakai, 599-8531, Japan

Abstract
The purpose of this paper is to present a pair of an oscillation theorem and a
nonoscillation theorem for the second-order nonlinear difference equation

�2x(n) +
1

n(n + 1)
f (x(n)) = 0,

where f (x) is continuous on R and satisfies the signum condition xf (x) > 0 if x �= 0. The
obtained results are best possible in a certain sense. Proof is given by means of the
Riccati technique and phase plane analysis of a system. A discrete version of the
Riemann-Weber generalization of Euler-Cauchy differential equation plays an
important role in proving our results.
MSC: 39A12; 39A21
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1 Introduction
We consider the second-order nonlinear difference equation

�x(n) +


n(n + )
f
(
x(n)

)
= , n≥ n, (.)

where f (x) is a real-valued continuous function satisfying

xf (x) >  if x �= . (.)

Here the forward difference operator � is defined as �x(n) = x(n + ) – x(n) and �x(n) =
�(�x(n)).
A nontrivial solution x(n) of (.) is said to be oscillatory if for every positive integer N

there exists n ≥ N such that x(n)x(n + ) ≤ . Otherwise, it is said to be nonoscillatory,
that is, the solution x(n) is nonoscillatory if it is either eventually positive or eventually
negative.
When f (x) = λx, equation (.) becomes the linear difference equation

�x(n) +
λ

n(n + )
x(n) = , (.)
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which is called the Euler-Cauchy difference equation. It is known that (.) has the general
solution

x(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K

n–∏
j=n

(
 +

z
j

)
+K

n–∏
j=n

(
 +

 – z
j

)
if λ �= 


,

n–∏
j=n

(
 +


j

){
K +K

n–∑
k=n


k + 

}
if λ =



,

where K, K, K, K are arbitrary constants and z satisfies z – z+λ =  (for the proof, see
[–]). Hence, all nontrivial solutions of equation (.) are oscillatory if λ > /, and other-
wise they are nonoscillatory (see the Appendix). In other words, / is the lower bound for
all nontrivial solutions of equation (.) to be oscillatory. Such a number is generally called
the oscillation constant. Other results on the oscillation constant for difference equations
can be found in [–] and the references cited therein.
Equation (.) is a discrete analogue of the Euler-Cauchy differential equation

x′′ +
λ

t
x = . (.)

It is well known that an oscillation constant for equation (.) is also / (see []). The
oscillation constant for equation (.) plays an important role in the oscillation problem
for linear, half-linear and nonlinear differential equations. For example, those results can
be found in [–]. In particular, using phase plane analysis of Liénard system, Sugie and
Kita [] considered the second-order nonlinear differential equation

x′′ +

t
f (x) = , (.)

and gave a pair of an oscillation theorem and a nonoscillation theorem (see [, Theo-
rems . and .]). We note that their results are proved by using exact solutions of the
Riemann-Weber version of Euler differential equation

x′′ +

t

{


+

λ

(log t)

}
x = .

By their results, we can show that an oscillation constant for equation (.) is / provided

f (x) =
(


+

λ

(logx)

)
x (.)

for |x| sufficiently large. A natural question now arises. What is an oscillation constant for
equation (.) where f (x) satisfies (.) for |x| sufficiently large? The purpose of this paper
is to answer the question. Our main results are stated as follows.

Theorem . Assume (.) and suppose that there exists λ with λ > / such that

f (x)
x

≥ 

+

λ

(logx)
(.)

for |x| sufficiently large. Then all nontrivial solutions of equation (.) are oscillatory.
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Theorem . Assume (.) and suppose that

f (x)
x

≤ 

+


(logx)

(.)

for x >  or x < , |x| sufficiently large. Then equation (.) has a nonoscillatory solution.

Remark . As a discrete analogue of Euler-Cauchy differential equation (.), the linear
difference equation

�x(n) +
λ

n(n + )
x(n + ) =  (.)

is often considered instead of (.) (for example, see [, , ]), because Sturm’s separa-
tion and comparison theorems can be applied to equation (.). However, it is not easy
to find an exact solution of equation (.). On the other hand, equation (.) has the gen-
eral solution, and therefore, we can get more precise information for discrete analogues of
equation (.). In this paper, we consider the nonlinear term for equation (.) as f (x(n))
instead of f (x(n + )) to use exact solutions of linear difference equations.

This paper is organized as follows. In Section , we give general solutions of a discrete
version of the Riemann-Weber generalization of Euler differential equation and decide
an oscillation constant for the discrete equation. In Section , we complete the proof of
Theorem . by means of the Riccati technique. In Section , using phase plane analysis,
we prove Theorem ..

2 General solutions of linear difference equations
Consider the second-order linear difference equation

�x(n) +


n(n + )

{


+

λ

l(n)l(n + )

}
x(n) = , (.)

where the function l(n) is positive and satisfies �l(n) = /(n+ ). Note that l(n)∼ logn as
n → ∞. Here if a(n) and b(n) are positive functions, the notation a(n) ∼ b(n) as n → ∞
means that limn→∞ a(n)/b(n) = . Then we have the following result.

Proposition . Equation (.) has the general solution

x(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K

n–∏
j=n

(
 +


j

+
z

jl(j)

)
+K

n–∏
j=n

(
 +


j

+
 – z
jl(j)

)
if λ �= 


,

n–∏
j=n

(
 +


j

+


jl(j)

){
K +K

n–∑
k=n


(k + )l(k) + 

}
if λ =



,

where K, K, K, K are arbitrary constants and z is the root of the characteristic equation

z – z + λ = . (.)
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Proof Put

ϕ(n) =
n–∏
j=n

(
 +


j

+
z

jl(j)

)
and ψ(n) =

n–∏
j=n

(
 +


j

+
 – z
jl(j)

)
.

Then ϕ(n) and ψ(n) are the solutions of equation (.). We prove only the case that ϕ(n)
is a solution of equation (.), because the other case is carried out in the same manner.
Here, we compute �ϕ(n) and �ϕ(n). Then we have

�ϕ(n) =
(


n

+
z

nl(n)

)
ϕ(n),

�ϕ(n) =
{
�

(

n

)
+�

(
z

nl(n)

)}
ϕ(n) +

(


(n + )
+

z
(n + )l(n + )

)
�ϕ(n)

=
{
–


n(n + )

–
z�(nl(n))

n(n + )l(n)l(n + )

}
ϕ(n)

+


n + 

(


+

z
l(n + )

)

n

(


+

z
l(n)

)
ϕ(n)

= –


n(n + )

{


+
z{l(n) + (n + )�l(n)}

l(n)l(n + )

–
(


+

z
l(n)

+
z

l(n + )
+

z

l(n)l(n + )

)}
ϕ(n)

= –


n(n + )

{


+
z{l(n) + (n + )�l(n) – l(n + ) – l(n)}

l(n)l(n + )
–

z

l(n)l(n + )

}
ϕ(n)

= –


n(n + )

{


+
z(n + )�l(n)
l(n)l(n + )

–
z

l(n)l(n + )

}
ϕ(n)

= –


n(n + )

{


+

z – z

l(n)l(n + )

}
ϕ(n).

Since z satisfies (.), ϕ(n) is a solution of equation (.).We also see that ϕ(n) andψ(n) are
linearly independent if λ �= /. In fact, the CasoratianW (n) of ϕ(n) and ψ(n) is given by

W (n) = det

(
ϕ(n) ψ(n)

�ϕ(n) �ψ(n)

)
=
 – z
nl(n)

ϕ(n)ψ(n) �= .

Hence, Kϕ(n) +Kψ(n) is a general solution of (.).
We next consider the case that λ = /. Then (.) has the double root /. Hence, by a

direct computation, we can show that

ϕ̃(n) =
n–∏
j=n

(
 +


j

+


jl(j)

)
and ψ̃(n) = ϕ̃(n)

n–∑
k=n


(k + )l(k) + 

are linearly independent solutions of equation (.), and therefore, Kϕ̃(n) + Kψ̃(n) is a
general solution of (.). �

To establish the oscillation constant for equation (.), we need the following lemma
which is a corollary of the discrete l’Hospital rule (for example, see []).
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Lemma . Let a(n) and b(n) be defined for n≥ n. Suppose that b(n) is positive and sat-
isfies

∞∑
n=n

b(n) = ∞.

If a(n) ∼ b(n) as n → ∞, then

n∑
j=n

a(j)∼
n∑

j=n

b(j)

as n→ ∞.

Proposition . The oscillation constant for equation (.) is /. To be precise, equation
(.) can be classified into two types as follows.

(i) If λ > /, then all nontrivial solutions of equation (.) are oscillatory.
(ii) If λ ≤ /, then all nontrivial solutions of equation (.) are nonoscillatory.

Proof We consider only the case that λ �= / because the other case can be proved easily.
In case λ > /, equation (.) has the conjugate roots z = (± iα)/, where α =

√
λ – .

Hence, by Proposition . and Euler’s formula, the real solution of equation (.) can be
written as

x(n) = K

( n–∏
j=n

r(j)

)
cos

( n–∑
j=n

θ (j)

)
+K

( n–∏
j=n

r(j)

)
sin

( n–∑
j=n

θ (j)

)
,

where r(j) and θ (j) satisfy  < θ (j) < π/,

r(j) cos θ (j) =  +

j

+


jl(j)
and r(j) sin θ (j) =

α

jl(j)

for n ≤ j ≤ n – . If (K,K) = (, ), then x(n) is the trivial solution. On the other hand, if
(K,K) �= (, ), then

x(n) = K

( n–∏
j=n

r(j)

)
sin

( n–∑
j=n

θ (j) +K

)
,

where K =
√
K
 +K

 , sinK = K/K and cosK = K/K. Since

tan θ (n) =
α

nl(n) + l(n) + 
→ 

as n → ∞, we obtain θ (n) ∼ tan θ (n) ∼ α/(nl(n)) ∼ α/(n logn) as n → ∞. Using
Lemma ., we have

n–∑
j=n

θ (j) ∼
n–∑
j=n

α

j log j
∼ α


log(logn)

http://www.advancesindifferenceequations.com/content/2012/1/218
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as n→ ∞, because

n–∑
j=n

α

j log j
∼ α



∫ n

n

dx
x logx

dx =
α


{
log(logn) – log(logn)

} → ∞

as n→ ∞. We note that, for any sufficiently large p ∈N, there exists n ∈N such that

pπ ≤
n–∑
j=n

θ (j) +K < (p + )π

because θ (n) ↘  as n→ ∞. Thus, we conclude that x(n) is oscillatory.
We next consider the case that λ < /. Put

ϕ(n) =
n–∏
j=n

(
 +


j

+
z

jl(j)

)
and ψ(n) =

n–∏
j=n

(
 +


j

+
 – z
jl(j)

)
,

where z satisfies (.). Then, without loss of generality, we may assume that z > /. From
Proposition ., the solution of equation (.) can be represented as

x(n) = Kϕ(n) +Kψ(n) = ϕ(n)
{
K +K

ψ(n)
ϕ(n)

}

for some K ∈R and K ∈R. Since

ψ(n)
ϕ(n)

=
n–∏
j=n

(
 –

z – 
jl(j) + l(j)/ + z

)
≤ exp

(
–

n–∑
j=n

z – 
jl(j) + l(j)/ + z

)
→ 

as n→ ∞, we see that all nontrivial solutions of equation (.) are nonoscillatory. �

3 Oscillation theorem
To begin with, we prepare some lemmas which are useful for proving oscillation criteria,
Theorem ..

Lemma . Assume (.) and suppose that equation (.) has a positive solution. Then the
solution is increasing for n sufficiently large and it tends to ∞ as n→ ∞.

Proof Let x(n) be a positive solution of equation (.). Then there exists n ∈ N such that
x(n) >  for n≥ n. Hence, by (.) we have

�x(n) = –


n(n + )
f
(
x(n)

)
<  (.)

for n≥ n.
We first show that �x(t) >  for n ≥ n. By way of contradiction, we suppose that there

exists n ≥ n such that �x(n) ≤ . Then, using (.), we have �x(n) < �x(n) ≤  for
n > n, and therefore, we can find n > n such that �x(n) < . Using (.) again, we get
�x(n) ≤ �x(n) <  for n ≥ n. Hence, we obtain x(n) ≤ �x(n)(n – n) + x(n) → –∞ as

http://www.advancesindifferenceequations.com/content/2012/1/218
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n → ∞, which is a contradiction to the assumption that x(n) is positive for n ≥ n. Thus,
x(n) is increasing for n≥ n.
We next suppose that x(n) is bounded from above. Then there exists L >  such that

limn→∞ x(n) = L. Since f (x) is continuous on R, we have limn→∞ f (x(n)) = f (L), and there-
fore, there exists n ≥ n such that  < f (L)/ < f (x(n)) for n ≥ n. Hence, we have

�x(m) = �x(n) +
n–∑
j=m


j(j + )

f
(
x(j)

)
>
f (L)


n–∑
j=m


j(j + )

=
f (L)


(

m

–

n

)

for n >m ≥ n. Taking the limit of this inequality as n → ∞, we get �x(m) ≥ f (L)/m for
m ≥ n, and therefore, we obtain

x(m)≥ x(n) +
f (L)


m–∑
k=n


k

→ ∞

as m → ∞. This contradicts the assumption that x(n) is bounded from above. Thus, we
have limn→∞ x(n) = ∞. The proof is now complete. �

Lemma . Suppose that the difference inequality

�w(n) +


n +w(n)

(
w(n) –




)

≤  (.)

has a positive solution. Then the solution is nonincreasing and tends to / as n→ ∞.

Proof Let w(n) be a positive solution of (.). Then there exists n ∈N such that w(n) > 
for n≥ n. Hence, we see that w(n) is nonincreasing because w(n) satisfies

�w(n) ≤ –


n +w(n)

(
w(n) –




)

≤ 

for n ≥ n. Thus, we can find α ≥  such that w(n) ↘ α as n → ∞. If α �= /, then there
exists n ≥ n such that |w(n) – /| > |α – /|/ for n ≥ n. Since w(n) is nonincreasing,
there exists n ≥ n such that w(n) < n for n ≥ n. Hence, we have

�w(n) ≤ –


n +w(n)

(
w(n) –




)

≤ –

n

(
α – /



)

for n≥ n, and therefore, we get

w(n) ≤ w(n) –



(
α – /



) n–∑
j=n


j

→ –∞

as n→ ∞. This is a contradiction to the assumption that w(n) is positive for n≥ n. �

We are now ready to prove Theorem ..

Proof of Theorem . By way of contradiction, we suppose that equation (.) has a
nonoscillatory solution x(n). Then we may assume, without loss of generality, that x(n) is

http://www.advancesindifferenceequations.com/content/2012/1/218
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eventually positive. Let R be a large number satisfying the assumption (.) for |x| ≥ R.
From Lemma ., x(n) is increasing and limn→∞ x(n) = ∞, and therefore, there exists
n ∈N such that x(n)≥ R and �x(n) >  for n≥ n.
We define

w(n) =
n�x(n)
x(n)

.

Then, using (.), we have

�w(n) =
�(n�x(n))x(n) – n(�x(n))

x(n)x(n + )

=
�x(n) + (n + )�x(n)

x(n + )
– n

(�x(n))

x(n)x(n + )

=
�x(n) – f (x(n))/n

x(n)
x(n)

x(n + )
–

n

(
n

�x(n)
x(n)

) x(n)
x(n + )

=

n

{
n

�x(n)
x(n)

–
f (x(n))
x(n)

–
(
n

�x(n)
x(n)

)} x(n)
x(n + )

≤ 
n

{
w(n) –

(


+

λ

(logx(n))

)
–w(n)

}
x(n)

x(n + )

= –

n

{(
w(n) –




)

+
λ

(logx(n))

}
x(n)

x(n + )

= –


n +w(n)

{(
w(n) –




)

+
λ

(logx(n))

}

for n ≥ n. From Lemma ., we see that w(n) ↘ / as n → ∞, because w(n) is positive
and satisfies (.) for n≥ n.
Since λ > /, we can find ε >  such that



<


( + ε) < λ. (.)

Then we see that there exists n > n such that w(n) ≤ / + ε for n ≥ n, that is, x(n)
satisfies

x(n + )
x(n)

≤
{
 +

(


+ ε

)

n

}

for n≥ n. Hence, we have

x(n)
x(n)

=
n–∏
j=n

x(j + )
x(j)

≤
n–∏
j=n

{
 +

(


+ ε

)

j

}

for n≥ n. Since log( + z) ≤ z for z > –, we get

logx(n)≤
n–∑
j=n

log

{
 +

(


+ ε

)

j

}
+ logx(n)≤

n–∑
j=n

(


+ ε

)

j
+ logx(n)

http://www.advancesindifferenceequations.com/content/2012/1/218
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for n ≥ n. Recall that l(n) satisfies �l(n) = /(n + ) ∼ /n as n → ∞. Using Lemma .,
we see that

l(n)∼
n–∑
j=n


j

as n→ ∞. Hence, there exists n ≥ n such that

logx(n)≤  + ε


l(n)≤  + ε


l(n + )

for n≥ n. We therefore conclude that

�w(n) ≤ –


n +w(n)

{(
w(n) –




)

+
λ

( + ε)l(n)l(n + )

}
(.)

for n≥ n.
Let v(n) be the function satisfying v(n) = w(n) >  and v(n + ) = F(n, v(n)), where the

function F :N× [,∞)→R defined by

F(n, v) = v –


n + v

{(
v –




)

+
λ

( + ε)l(n)l(n + )

}
.

Using mathematical induction on n, we show that the function v(n) is well defined and
satisfies v(n) ≥ w(n) >  for n ≥ n. It is clear that the assertion is true for n = n. Assume
that the assertion is true for n = p. Then v(p + ) = F(p, v(p)) exists because v(p) > . Since

d
dv

F(p, v) =


(p + v)

{(
p +




)

+
λ

( + ε)l(p)l(p + )

}
≥ ,

F(p, v) is nondecreasing with respect to v ∈ [,∞) for each fixed p. Hence, together with
(.), we have

v(p + ) = F
(
p, v(p)

) ≥ F
(
p,w(p)

) ≥ w(p + ) > .

Thus, the assertion is also true for n = p + .
Letting

y(n) =
n–∏
j=n

(
 +

v(j)
j

)
,

we can easily see that y(n) is a positive solution of the difference equation

�y(n) +


n(n + )

{


+

λ

( + ε)l(n)l(n + )

}
y(n) = .

Hence, from Proposition ., we have

λ

( + ε)
≤ 


,

which is a contradiction to (.). �

http://www.advancesindifferenceequations.com/content/2012/1/218
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4 Nonoscillation theorem
In this section, we give a sufficient condition for equation (.) to have a nonoscillatory
solution. Let x(n) be a solution of equation (.) and put y(n) = n�x(n) – x(n). Then we
have

�y(n) = �x(n) + (n + )�x(n) –�x(n) = –

n
f
(
x(n)

)
,

and therefore, we can transform (.) into the system

n�x(n) = y(n) + x(n), n�y(n) = –f
(
x(n)

)
. (.)

To prove Theorem ., we need the following results.

Lemma . Let (x(n), y(n)) be a nontrivial solution of system (.). If (x(n), y(n)) ∈Dk , then
(x(n + ), y(n + )) ∈Dk ∪Dk+ for k = , , , , where

D =
{
(x, y) ∈R

 : x > , y ≥ –x
}
, D =

{
(x, y) ∈R

 : x > , y < –x
}
,

D =
{
(x, y) ∈R

 : x < , y ≤ –x
}
, D =

{
(x, y) ∈R

 : x < , y > –x
}

and D =D.

Proof We prove only the case k = , because the other cases are carried out in the same
manner. Let (x(n), y(n)) ∈ D. Then we have n�x(n) = y(n) + x(n) ≥ , and therefore, we
obtain x(n + ) ≥ x(n). Hence, we conclude that (x(n + ), y(n + )) ∈D ∪D. �

Lemma . Suppose that θ (n) and ϕ(n) satisfy θ (n) = ϕ(n) and

θ (n + ) ≥ F
(
n, θ (n)

)
, ϕ(n + ) = F

(
n,ϕ(n)

)
for n ≤ n < n, where F(n,x) is nondecreasing with respect to x ∈ R for each fixed n. Then
θ (n) ≥ ϕ(n) for n ≤ n ≤ n.

Proof We use mathematical induction on n. It is clear that the assertion is true for n = n.
Assume that θ (n) ≥ ϕ(n) for n = p < n. Since F(p,x) is nondecreasing with respect to x
for each fixed p, we have θ (p + ) ≥ F(p, θ (p)) ≥ F(p,ϕ(p)) = ϕ(p + ). Thus, the assertion
is also true for n = p + . This completes the proof. �

We are now ready to prove Theorem ..

Proof of Theorem . We give only the proof of the case that

f (x)
x

≤ 

+


(logx)

for x >  sufficiently large. The proof is by contradiction. Suppose that all nontrivial solu-
tions of equation (.) are oscillatory. Let (x(n), y(n)) be the solution of system (.) satis-
fying the initial condition

(
x(n), y(n)

)
=

(
el(n+)/,

(
–


+


l(n)

)
el(n+)/

)
.

http://www.advancesindifferenceequations.com/content/2012/1/218
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Then x(n) is a nontrivial oscillatory solution of equation (.) and

(
x(n), y(n)

) ∈ {
(x, y) : x > , y≥ –x/

} def= D̃,

and therefore, (x(n), y(n)) cannot stay in D̃ ⊂ D. By Lemma ., there exists n > n such
that

(
x(n), y(n)

) ∈ D̃ for n ≤ n < n and
(
x(n), y(n)

) ∈ {
(x, y) : y < –x/ < 

}
.

Hence, we see that

n�x(n) = y(n) + x(n)≥ –
x(n)


+ x(n) =
x(n)


for n ≤ n < n, and therefore, we have x(n+ )≥ { + /(n)}x(n) for n ≤ n < n. Thus, we
get

x(n)
x(n)

=
n–∏
j=n

x(j + )
x(j)

≥
n–∏
j=n

(
 +


j

)

for n ≤ n < n. Hence, we obtain

logx(n) ≥
n–∑
j=n

log

(
 +


j

)
+ logx(n) =

n–∑
j=n

log

(
 +


j

)
+
l(n + )



≥
n–∑
j=n

{

j

–



(

j

)}
+
l(n + )


=



n–∑
j=n

(

j
–


j

)
+
l(n + )



≥ 


n–∑
j=n


j + 

+
l(n + )


=



{ n–∑
j=n

�l(j + ) + l(n + )

}
=
l(n + )


≥ l(n)



for n ≤ n < n. We define θ (n) = y(n)/x(n). Then, using (.), we have

�θ (n) =
(�y(n))x(n) – y(n)�x(n)

x(n)x(n + )
=
–f (x(n))x(n) – y(n)(y(n) + x(n))

nx(n)x(n + )

= –
x(n)

nx(n + )

{
f (x(n))
x(n)

+
y(n)
x(n)

+
y(n)
x(n)

}

= –


θ (n) + n + 

{
θ(n) + θ (n) +

f (x(n))
x(n)

}

≥ –


θ (n) + n + 

{
θ(n) + θ (n) +



+


(logx(n))

}

≥ –


θ (n) + n + 

{(
θ (n) +




)

+


l(n)l(n + )

}

for n ≤ n < n. Note that θ (n) satisfies

θ (n) =
x(n)
y(n)

= –


+


l(n)

and θ (n) < –


. (.)

http://www.advancesindifferenceequations.com/content/2012/1/218
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We compare the function θ (n) with a solution

ϕ(n) = –


+


l(n)

(.)

of the equation

�ϕ(n) = –


ϕ(n) + n + 

{(
ϕ(n) +




)

+


l(n)l(n + )

}
.

It follows from Lemma . that ϕ(n) ≤ θ (n) for n ≤ n≤ n because ϕ(n) = θ (n). Hence,
together with (.) and (.), we have

–


< ϕ(n) ≤ θ (n) < –



,

which is a contradiction. This completes the proof. �

Appendix: Euler-Cauchy difference equations
In this appendix, we show that the oscillation constant for Euler-Cauchy difference equa-
tion (.) is /, that is, we prove the following result.

Proposition A. Equation (.) can be classified into two types as follows.
(i) If λ > /, then all nontrivial solutions of equation (.) are oscillatory.
(ii) If λ ≤ /, then all nontrivial solutions of equation (.) are nonoscillatory.

Proof The general solution of equation (.) is given by

x(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K

n–∏
j=n

(
 +

z
j

)
+K

n–∏
j=n

(
 +

 – z
j

)
if λ �= 


,

n–∏
j=n

(
 +


j

){
K +K

n–∑
k=n


k + 

}
if λ =



,

(A.)

where K, K, K, K are arbitrary constants and z satisfies

z – z + λ =  (A.)

(for the proof, see [–]). Hence, we consider only the case that λ �= / because we can
easily check that all nontrivial solutions of equation (.) are nonoscillatory if λ = /.
In case λ > /, equation (A.) has the conjugate roots z = (± iα)/, where α =

√
λ – .

Hence, by (A.) and Euler’s formula, the real solution of equation (.) can be written as

x(n) = K

( n–∏
j=n

r(j)

)
cos

( n–∑
j=n

θ (j)

)
+K

( n–∏
j=n

r(j)

)
sin

( n–∑
j=n

θ (j)

)
,

where r(j) and θ (j) satisfy  < θ (j) < π/,

r(j) cos θ (j) =  +

j

and r(j) sin θ (j) =
α

j

http://www.advancesindifferenceequations.com/content/2012/1/218
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for n ≤ j ≤ n – . If (K,K) �= (, ), then

x(n) = K

( n–∏
j=n

r(j)

)
sin

( n–∑
j=n

θ (j) +K

)
,

where K =
√
K
 +K

 , sinK = K/K and cosK = K/K. Since

tan θ (n) =
α

n + 
→ 

as n→ ∞, we obtain θ (n) ∼ tan θ (n) as n → ∞. Using Lemma ., we have

n–∑
j=n

θ (j) ∼
n–∑
j=n

α

j + 
∼ α


logn

as n→ ∞. Hence, for any sufficiently large p ∈N, there exists n ∈N such that

pπ ≤
n–∑
j=n

θ (j) +K < (p + )π ,

and therefore, x(n) is oscillatory.
We next consider the case that λ < /. Put

ϕ(n) =
n–∏
j=n

(
 +

z
j

)
and ψ(n) =

n–∏
j=n

(
 +

 – z
j

)
,

where z satisfies (A.). Then, without loss of generality, we may assume that z > /. From
(A.), the solution of equation (.) can be represented as

x(n) = Kϕ(n) +Kψ(n) = ϕ(n)
{
K +K

ψ(n)
ϕ(n)

}

for some K ∈R and K ∈R. By Stirling’s formula for the gamma function, we see that


(t + )∼ √
π t

(
t
e

)t

as t → ∞, where 
 is the gamma function (as to Stirling’s formula, for example, see []).
Hence, we have

ϕ(n) =
n–∏
j=n

(
 +

z
j

)
=


(n)
(n + z)

(n + z)
(n)

∼ 
(n)

(n + z)

nz and ψ(n) ∼ 
(n)

(n +  – z)

n–z

as n→ ∞, and therefore, we obtain

lim
n→∞

ψ(n)
ϕ(n)

= .

Thus, we conclude that all nontrivial solutions of equation (.) are nonoscillatory. �
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