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Abstract

In this article, we introduce some properties of higher-order-twisted g-Euler numbers
and polynomials with weight ¢, and we observe some properties of higher-order-
twisted g-Euler numbers and polynomials with weight o for several cases. In
particular, by using the the fermionic p-adic g-integral on Z,, we give a new concept
of twisted g-Euler numbers and polynomials with weight o
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1. Introduction
Let p be a fixed odd prime. Throughout this article Z,, Qp, C, and C,, will, respectively,
denote the ring of p-adic rational integers, the field of p-adic rational numbers, the
complex number field, and the completion of algebraic closure of Q. Let N be the set
of natural numbers and Z, = NU{0}. Let v, be the normalized exponential valuation of
C, with |P|p =p ) = p1 (see [1-14]). When one speaks of g-extension, g can be
regarded as an indeterminate, a complex number g € C, or p-adic number g € C,; it
is always clear from context. If g € C, we assume |q| < 1. If g € C,, then we assume |
1-¢ql, <1 (see [1-14]).
In this article, we use the notation of g-number as follows (see [1-14]):
X
[x]y = 11 _2 :
Note that lim,_,;[x], = x for any x with |x|, < 1 in the p-adic case.
Let C(Z,) be the space of continuous functions on Z,. For fe C(Z,), Kim defined the
fermionic p-adic g-integral on Z, as follows (see [6,7]):

pr-1
L) = [ 1 = Jim > - N
N b P .
= Jim ;p XZ:Ojf(x)(—q).
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From (1), we note that

ql—q(f1) +1-4(f) = [2]4f (0),

where fi(x) = flx + 1).
It is well known that the ordinary Euler polynomials are defined by

2

el +1

0 n
t _ JE(x)t _ t
et ='W = E E,,(x)n!,
n=0

with the usual convention of replacing E”(x) by E,,(x).
In the special case, x = 0, E,,(0) = E, are called the nth Euler numbers (see [1-14]).
By (2), we get the following recurrence relation as follows:

2,ifn=0,

0,ifn > 0. 2)

Eo =1, and(E+1)"+E={

Recently, (4, g)-Euler numbers are defined by

2,ifn=0,

(h)_ 2 h (h) n (h)_
Eoq= 1, g 044" @E" + 1)+ Ey _{O,ifn>0,

0,9 1

. . . m\" (h) B}
with the usual convention about replacing ( E; by E,’ 7 (see [1-16]).

Note that limqﬁlEgg =E,.

Let Ty = Un=1Cpv = limn- oo Cpy, where Cpv = {wjw”" = 1} is the cyclic group of order
pN. Forwe T,, we denote by ¢,, : Z,, = C,, the locally constant function x - w”.

For ¢ e Nand we T, the twisted g-Euler numbers with weight o are also defined by

(2], ifn=0,

~ 2] - n ~
() _ [ q o fle) @ =
E = , and wq(q Eguw+ 1) +Enquw= {0’ ifn>o0,

0w = g + 1

with the usual convention about replacing (Ega,z,)n by ngtq)lw (see [2,5]).

The main purpose of this article is to present a systemic study of some families of higher-
order-twisted ¢g-Euler numbers and polynomials with weight o. In Section 2, we investigate
higher-order-twisted g-Euler numbers and polynomials with weight ¢ and establish interest-
ing properties. In Sections 3, 4, and 5, we observe some properties for special cases.

2. Higher-order-twisted g-Euler numbers and polynomials with weight o
Forhe Z,a, ke N,we T, and n € Z,, let us consider the expansion of higher-
order-twisted g-Euler polynomials with weight ¢ as follows:

EL) (1 klx)

k n
k
[ Wy w {Zxﬁx] GO Ry () dp (). )
z, z, = i=1

P
k—times

From (1) and (3), we note that

[2]p & 7

=(@) _ n\, iy
E"rqu(h’ka) - (1 _ qa)ﬂ ; (l ) ( 1) (1 +wqal+h) . (1 +wqal+h7k+l)'

(4)
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In the special case, x = 0 E,(f’q)w(h k|0) = Eil"‘q)w(h, k) are called the higher-order-
twisted g-Euler numbers with weight o
By (3), we get

ES) (k) = (¢ — DEE, o (h — o, k) + By (h — o, ). (5)

From (5) and mathematical induction, we get the following theorem.
Theorem 1. For o, k € N and n € Z,, we have

n—1

3 (1) g - 1R, (k)

i=0

= (@ — )" ES (h— o k) + (—1)"E) (h— o, k).

For complex number g € C,, m € Z,, we get the following;

q“(x1+"'+xk+1)m - (1 -(1- qa(x1+'"+xk+1)))m

<;n>( 1 ( PGS +xk+1))

AV l( “(x1+'"+xk+1))l
(1) eva-e e

1

M-

1=0

M-

l

0

M-

(1) 0= v el

I

]
(=]

From (3), (4), and above property, we have

qu(ma k+1)

- / - / WG DNy ) - dp g ()
ZP ZP

=i<3")(““‘”1/ 1, 2”’[2%}["2’”’@ ) - dug (i)
e

=0 j=1

i( )(q l)Elqw(O k+1)

1=0

(6)

[2]Z+1
T (1 wgem) (1 +wgem=1) . (1 + wgemk)

From (3), we can derive the following equation.

j=0

— Z=1x5

= e w 53
[of=]x

Xsi| ¢ (h—s)qua(ZS:l xs)ﬁ_l)dﬂw (x1) - dpa—g(xe) 7)
s=1 q

i—1
= Z (6] 1)] ( )Eﬁa)m l/lw(hf k)~
j=0

Z()(q ] e [Zx} )

n—i
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By (3), (4), (5), and (6), we see that
i N - i—1 1)~
Z (qa - 1)] (j)Egla)lJrj,q,w(h -, k) = Z (qa - 1)] ( ] )Eila)iwtj,q,w(h’ k)
j=0 j=0

Therefore, we obtain the following theorem.
Theorem 2. For o, k € N and n, i € Z,, we have

i

i—1
i\, o i=( o i(1— 1)\ %«
() 6 Btk = S 1y (1) B
j=0 j=0

By simple calculation, we easily see that

" k
M\ o 1yif@ _ [2]5
; ( j ) (" = 1) E g (0. 1) = (1 +wg@)(1 +wgem=1) .- (1 + wgem=k+1)’

3. Polynomials Ef{f‘q)yw(o, k|x)
We now consider the polynomials Eﬁ‘i},w(of k|x) (in g%) by

Ena(0, Tlx)
k n
= / e / T |:x + in] q Zﬁljxjdﬂ—q(xl) wedp—g (). ®)
Zp Zp =1 g
—_——
k—times

By (8) and (4), we get

_ qynple) _ [~k = (n alx(1yn—1 1
W P Hu(0k) = 21 (D 0™ ey 1wty ©)
From (8) and (9), we can derive the following equation.
/ L wX1+w+xqu?=1 (an*j)x,’mmxdﬂiq(xl) .. 'dﬂfq(xk)
ZP ZP
n n ) '
=30 (4 )lelita - B0 ),
=0
and
/ . / uf'f]+~~~+xqu;;l (Otnfj)x]‘ﬂ)mxdﬂiq(xl) . dﬂfq(xk)
ZP ZP
(10)

) [2]kqem
T (1 +wgn) - (1 + wgen—te1)

Therefore, by (9) and (10), we obtain the following theorem.
Theorem 3. For ¢ € N and n, k€ Z,, we have

21} §

~ (@) n | alx 1
Eyguw(0,klx) = " -1 /
., ( | ) [C{]q(l _ q) ; ( l )( ) q (_wqal—k-#l : q)k
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and

n

4™ (2]

n 1 17(e)
o —1)E w 0, k|x = ’
( 1 )[ ]q(q ) 14, ( ) (_wqomfk+1 . q)k

1=0
where (@ : q)o =1 and (a: q)r = (1 - a)(1 - aq) ... (1 - aq/"l).
Let d € N with d =1 (mod 2). Then we have

k n
./ B |:x i Zx]:| 4 g (1) - dpi—g ()
Zp ZP

.
J P

[dr. 42 . "
=[d15 Do w1y b

=4 ay, ,a,=0
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(11)

k k "
x+ Y5 a -
/ / wAba++a) 2 ]+ij q_dzjﬂjxfdﬂ—qd(xl)"~dl’«—qd(xk)
Zy Z, d j=1

qmd

Thus, by (11), we obtain the following theorem.
Theorem 4. For d € N with d =1 (mod 2), we have

E) (0, klx)

[d]gu d-1 Ayt — Sk, (i-1)a; () X+d1+---+a
Lt > (rw)rng ZR S, (oK .
=4 ay,,a,=0

Moreover,

EL) (0, kldx)

).

d, d—1 - ) -
B SR e Gnagle) (0t T

(]t d

4 ay,,a,=0

By (8), we get
~ n n -
Eriu(0/ ke = 3 ( I ) [l g Ef, (0, %)
1=0
~(a n
= ([x]qa + qosz[(Lu),(O, k)) p
where Efl‘f,},w(o, k|0) = Ef;fq),w(o, k).

Thus, we note that
~ n n ~
EC) (0 klx+y=) ( I ) I ES) (0, klx)
1=0
~(a n
= (Ml + 4 ES2(0, 1))
4. Polynomials Eﬁl‘/",},w(h, 1|x)
Let us define polynomials Effq),w(h, 1|x) as follows:

Bl 1) = | w0 s iug 0Dy (),
14

(12)
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From (12), we have

n
= (@) [ ]q I als 1
E h, 1]x) = -1 .
0= (o 3 (1)
By the calculation of the fermionic p-adic g-integral on Z,, we see that

¢ | wlx e ]pgtVdu_g(x)

Zy

(13)
@ -1 / w0 )+ [ sl g 0 D o),
Thus, by (13), we obtain the following theorem.
Theorem 5. For « € N and / € 7, we have
¢ Enu(h, 112) = (¢ = DEY gu(h = o, 1) + B (h — e, 1),
It is easy to show that
Eﬁdnu@=/lwu+mmfﬂ*uwﬂm)
ZP
" (n
=2 ( l)[x]g; g / wh g Dy (x1)
1=0 Zy (14)
" (n
-3 ( l)[x]g; "E,(‘;)w(h, 1)
1=0
= ( axE(“)(h 1) + [x]qa)n, forn>1,
with the usual convention about replacing (E(“)(h 1))" by £ qw(h 1).
From gl ,(fi) + L,(f) = [2],0), we have
w¢ﬂ/ uﬁﬂx+x1+]];q“m_”du_ﬂxﬂ-+/,uﬁﬂx+xﬂ}qﬁm_ndu_ﬂxﬂ
z, z, (15)
= [2]qlx]G.
By (13) and (15), we get
wq"ES) o (h, 1x + 1) + EG) (b, 1) = [2]g[x] (16)
For x = 0 in (16), we have
wq B = (@) (2], ifn=0,
Engw(h 111) + Eyyg (b, 1) = {0’ =0 17)

Therefore, by (14) and (17), we obtain the following theorem.
Theorem 6. For 1 € 7 and n € 7,, we have

2], ifn =0,

(a) nple) =
wq" (¢ Eqra(h, 1) + 1) Eyg(h, 1) = {o, ifn >0,

with the usual convention about replacing (E(“)(h 1))" by £ qw(h 1).
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From the fermionic p-adic g-integral on Z,, we easily get

2],

E(()?,w(h' 1) =/ w g "Dy (x) = o
Z, [ ]wqh

By (12), we see that

ES::‘CI)*],W’] (h, l|l —_— x) = / w_l [l — X+ xI]Z—aq_xl(h_l)dM_qfl (x])

Z,
2] " (n 1
n,. on+h— q 1 _alx 18
=(_1) wq 1(1_q0{)”2(l>(_1)q 1+wqo¢l+h ( )
=0
_ (_1)anan+h71E'(;‘q),w(h, 1|X)

Therefore, by (18), we obtain the following theorem.
Theorem 7. For c € N, h € 7Z and n € Z,, we have

B (11 = x) = (1) wg™ B (h, 1)),
In particular, for x = 1, we get

). 1)
= (= 1)"wg™™ B (h, 111)
= (1) g ES) (1) if > 1

Let d € N with d =1 (mod 2). Then we have

w g Dk x [fdpg(x1)

z

p[d]n d—1 X+a (19)
_ g a_ha; _qya dx, " a(h-1)d

., ;:O w'q"™(—1) /pr [ J +x1]qndq dp_gi(x1).

Therefore, by (19), we obtain the following theorem.
Theorem 8 (Multiplication formula). For d € N with d =1 (mod 2), we have

= (o [d]2 & 2 ha ~ (o x+a
(1) = Y w0 B, (),
ldl_ ) d

5. Polynomials £ (h,k|x)and k = h

n/q,w
In (3), we know that

ES:(,Xq),w (h/ k"x)

= / / W oy 4k x4 X g O Gye ) dp g ().
ZP ZP

Thus, we get

n alx
o _ 1ynple) _ k 2 : n\ iyl q
(q 1) E”rq'“’(h’ k|x) - [2]‘1 ( 1 >( 1) (1 + wqal+h) - (1 + wqald—hfka-l)'

1=0

Page 7 of 10
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and
k . )
wq'" / e | w1 Y g O g () - dieg ()
Zy Zy i=1

k
[ e Yl () - dpg (o) (20)
ZP ZP

i=1

k
k N
+[2]q/Z ‘/Z w4y g A (x) - dpeg ().
’ ’ i

Therefore, by (3) and (20), we obtain the following theorem.
Theorem 9. For e Z, x € N and n € Z,, we have

wq B (el + 1) + B (h, Rix) = [2),ES) (h = 1,k — 1]x).

Note that

k
qax/Z /Z w"”“‘*wk[x+2xi]gmqﬂ=' (h’i)"fdu_,,(xl)---du_,,(xk)
P 7]

i=1

k
* .
= (qa — 1)f .. / wh e [x + xi]":'qux:l (h*afl)xidui (x ) - d’u7 (xk)
z, Jz, Z T e I (21)

N f W' +x’«[x+Zx1" g () ()
z, z,

i=1

= (¢ = DEY, o (h— o, klx) + EDu(h — o, RIx).

n+l,q,w
Therefore, by (21), we obtain the following theorem.
Theorem 10. For n € Z,, we have

axE(a)w(h kjx) = (% — 1)E(a) (h— o, klx) + Efsq),w(h — a, klx).

n+1,q,w

Let d € N with d =1 (mod 2). Then we get

[ we e Y g P (a1) - dieg ()
z, z, =

[d];’u 1 RS =5 (-1)a, Y g
S D DI G

q ay,-,a,=0

/ / wre) l 14 Ek X n ¥ (=) (x1)---d (%)
1 = d s d(Xr ).
., ., ; q 1 ga (1 g (X

j=1 ged

(22)

Therefore, by (22), we obtain the following theorem.
Theorem 11. For d € N with d =1 (mod 2), we have

B (h, kldz)

[d]‘;u = A1 +-+4] hzk aj—Zk (—1a; Z’.‘ a; p(@) a +---+ay

= [ ]kq Z w™ kq" = j-2 i(—1)&m }En,qd,wd (h, klx + i )
_ ay, - ng=0
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Let Eﬁlaq)w(k klx) = Egl“q)w(k|x). Then we get
n k
n(@) n n—I1 _alx [2161
E = -1 ,
(@ = ) = 3 (1) 0 i g

1=0

and

i=1

k
[ e e e Yl O (1) g )
P
k
2

q n alx 1
= (1- a)"[ LZZ([)(_Ulq : (1 +wge*1) - - - (1 + wqel)

k alx
__1nna(z) 2 i (7)o
=(-1)"9"q ) 2= (14w

( qotl+l) (1 + wqal+k)

(23)

)
an+
- (-1)q (2 B (klx).

Therefore, by (23), we obtain the following theorem.
Theorem 12. For n € Z,, we have

k
(klk — x) = (=1)"w +(2)E(“’ k
nq w1 q n,q,w( |x)
Let x = k in Theorem 12. Then we see that

k)
@ n ( @ (24)
E) L (kI0) = (—1)"whq ELD(klk).

nq'w-
From (15), we note that
wq B (el + 1) + B, (klx) = [216EY) (ke — 1]x). (25)
It is easy to show that
n k
o 7(a) n l+n [2]q
(q - l)nEn,q,w(kw) = Z ( )(_1) al+1 al+k
—~\1 (1 +wg™1) .- (1 + wgehk)

By simple calculation, we get

n k

n o ko * (h—i)x;
Z(l) (¢ - 1)1/2 L whin k[Zxk]fz”qZ’:’ =g (x1) - - dp—g(xe)
=0 4 » i=1

_ (215
- (1 + wqom+k)(1 + wqan+k71) . (1 + wqan+l)'

(26)

From (26), we note that

s 21}
() } p
;( )(C] —1)Elqw(k|0)_ (1+wq°‘"+k)(1+wq°‘"+k*1)---(1+wqan+1)’

Page 9 of 10
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and

(‘,"q)w(k|x) —/ / W 1xk[x+Zxk]" qz DNy () - dpg ()

i( >[x]n 1 aszl(t;)w(km)

1=0

_ ( xaE(a)(k|0) [x]qa)n,n e,

with the usual convention about replacing (E("‘)(k|0))” by Egl"‘q),w(km).

Put x = 0 in (25), we get
wg " ES) (k1) + B (RI0) = [21,E%) (= 1]0).
Thus, we have
wq (@ ES)(k10) + 1)" + B, (kI0) = [2]4ES) . (k — 1]0),

with the usual convention about replacing (E("‘)(k|0))” by Egl"‘q),w(km).
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