RESEARCH Open Access

Some identities on the higher-order-twisted q-Euler numbers and polynomials with weight α

Hui Young Lee*, Nam Soon Jung, Jung Yoog Kang and Cheon Seoung Ryoo

Abstract

In this article, we introduce some properties of higher-order-twisted q-Euler numbers and polynomials with weight α , and we observe some properties of higher-order-twisted q-Euler numbers and polynomials with weight α for several cases. In particular, by using the the fermionic p-adic q-integral on \mathbb{Z}_p , we give a new concept of twisted q-Euler numbers and polynomials with weight α .

2000 Mathematics Subject Classification: 11B68; 11S40; 11S80.

Keywords: Euler numbers and polynomials, *q*-Euler numbers and polynomials, higher-order-twisted *q*-Euler numbers and polynomials with weight *q*

1. Introduction

Let p be a fixed odd prime. Throughout this article \mathbb{Z}_p , \mathbb{Q}_p , \mathbb{C} , and \mathbb{C}_p , will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field, and the completion of algebraic closure of \mathbb{Q}_p . Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Let v_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-v_p(p)} = p^{-1}$ (see [1-14]). When one speaks of q-extension, q can be regarded as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_p$; it is always clear from context. If $q \in \mathbb{C}$, we assume |q| < 1. If $q \in \mathbb{C}_p$, then we assume |q| < 1 (see [1-14]).

In this article, we use the notation of q-number as follows (see [1-14]):

$$[x]_q = \frac{1 - q^x}{1 - q}.$$

Note that $\lim_{q\to 1} [x]_q = x$ for any x with $|x|_p \le 1$ in the p-adic case.

Let $C(\mathbb{Z}_p)$ be the space of continuous functions on \mathbb{Z}_p . For $f \in C(\mathbb{Z}_p)$, Kim defined the fermionic p-adic q-integral on \mathbb{Z}_p as follows (see [6,7]):

$$I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_{-q}} \sum_{x=0}^{p^N - 1} f(x) (-q)^x,$$

$$= \lim_{N \to \infty} \frac{[2]_q}{1 + q^{p^N}} \sum_{x=0}^{p^N - 1} f(x) (-q)^x.$$
(1)

^{*} Correspondence: normaliz@hnu.kr Department of Mathematics, Hannam University, Daejeon 306-791, Korea

From (1), we note that

$$qI_{-q}(f_1) + I_{-q}(f) = [2]_q f(0),$$

where $f_1(x) = f(x + 1)$.

It is well known that the ordinary Euler polynomials are defined by

$$\frac{2}{e^t + 1}e^{xt} = e^{E(x)t} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!},$$

with the usual convention of replacing $E^n(x)$ by $E_n(x)$.

In the special case, x = 0, $E_n(0) = E_n$ are called the *n*th Euler numbers (see [1-14]). By (2), we get the following recurrence relation as follows:

$$E_0 = 1$$
, and $(E+1)^n + E = \begin{cases} 2, & \text{if } n = 0, \\ 0, & \text{if } n > 0. \end{cases}$ (2)

Recently, (h, q)-Euler numbers are defined by

$$E_{0,q}^{(h)} = \frac{2}{1+q^h}, \text{ and } q^h (q E_q^{(h)} + 1)^n + E_q^{(h)} = \begin{cases} 2, \text{ if } n = 0, \\ 0, \text{ if } n > 0, \end{cases}$$

with the usual convention about replacing $\left(E_q^{(h)}\right)^n$ by $E_{n,q}^{(h)}$ (see [1-16]).

Note that $\lim_{q\to 1} E_{n,q}^{(h)} = E_n$.

Let $T_p = \bigcup_{N \ge 1} C_{p^N} = \lim_{N \to \infty} C_{p^N}$, where $C_{p^N} = \{w | w^{p^N} = 1\}$ is the cyclic group of order p^N . For $w \in T_p$, we denote by $\varphi_w : \mathbb{Z}_p \to \mathbb{C}_p$ the locally constant function $x \mapsto w^x$.

For $\alpha \in \mathbb{N}$ and $w \in T_p$, the twisted *q*-Euler numbers with weight α are also defined by

$$\tilde{E}_{0,q,w}^{(\alpha)} = \frac{[2]_q}{wq+1}, \text{ and } wq \left(q^{\alpha} \tilde{E}_{q,w}^{(\alpha)} + 1\right)^n + \tilde{E}_{n,q,w}^{(\alpha)} = \begin{cases} [2]_q, & \text{if } n = 0, \\ 0, & \text{if } n > 0, \end{cases}$$

with the usual convention about replacing $\left(\tilde{E}_{q,w}^{(\alpha)}\right)^n$ by $\tilde{E}_{n,q,w}^{(\alpha)}$ (see [2,5]).

The main purpose of this article is to present a systemic study of some families of higher-order-twisted q-Euler numbers and polynomials with weight α . In Section 2, we investigate higher-order-twisted q-Euler numbers and polynomials with weight α and establish interesting properties. In Sections 3, 4, and 5, we observe some properties for special cases.

2. Higher-order-twisted q-Euler numbers and polynomials with weight lpha

For $h \in \mathbb{Z}$, α , $k \in \mathbb{N}$, $w \in T_p$ and $n \in \mathbb{Z}_+$, let us consider the expansion of higher-order-twisted g-Euler polynomials with weight α as follows:

$$\widetilde{E}_{n,q,w}^{(\alpha)}(h,k|x) = \underbrace{\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} w}_{k-\text{times}} \sum_{i=1}^k x_i \left[\sum_{i=1}^k x_i + x \right]_{q^{\alpha}}^n q^{x_1(h-1)+\cdots+x_k(h-k)} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k). \tag{3}$$

From (1) and (3), we note that

$$\tilde{E}_{n,q,w}^{(\alpha)}(h,k|x) = \frac{[2]_q^k}{(1-q^{\alpha})^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \frac{q^{\alpha lx}}{(1+wq^{\alpha l+h})\cdots(1+wq^{\alpha l+h-k+1})}.$$
 (4)

In the special case, x=0 $\tilde{E}_{n,q,w}^{(\alpha)}(h,k|0)=\tilde{E}_{n,q,w}^{(\alpha)}(h,k)$ are called the higher-order-twisted q-Euler numbers with weight α .

By (3), we get

$$\tilde{E}_{n,q,w}^{(\alpha)}(h,k) = (q^{\alpha} - 1)\tilde{E}_{n+1,q,w}^{(\alpha)}(h - \alpha, k) + \tilde{E}_{n,q,w}^{(\alpha)}(h - \alpha, k). \tag{5}$$

From (5) and mathematical induction, we get the following theorem.

Theorem 1. For α , $k \in \mathbb{N}$ and $n \in \mathbb{Z}_+$, we have

$$\begin{split} &\sum_{i=0}^{n-1} (-1)^{i-1} (q^{\alpha} - 1)^{n-1-i} \tilde{E}_{n-i,q,w}^{(\alpha)}(h,k) \\ &= (q^{\alpha} - 1)^{n-1} \tilde{E}_{n,q,w}^{(\alpha)}(h - \alpha, k) + (-1)^n E_{1,q,w}^{(\alpha)}(h - \alpha, k). \end{split}$$

For complex number $q \in \mathbb{C}_p$, $m \in \mathbb{Z}_+$, we get the following;

$$q^{\alpha(x_{1}+\cdots+x_{k+1})m} = \left(1 - \left(1 - q^{\alpha(x_{1}+\cdots+x_{k+1})}\right)\right)^{m}$$

$$= \sum_{l=0}^{m} {m \choose l} \left(-1\right)^{l} \left(1 - q^{\alpha(x_{1}+\cdots+x_{k+1})}\right)^{l}$$

$$= \sum_{l=0}^{m} {m \choose l} \left(-1\right)^{l} \left(1 - q^{\alpha}\right)^{l} \frac{\left(1 - q^{\alpha(x_{1}+\cdots+x_{k+1})}\right)^{l}}{\left(1 - q^{\alpha}\right)^{l}}$$

$$= \sum_{l=0}^{m} {m \choose l} \left(-1\right)^{l} \left(1 - q^{\alpha}\right)^{l} [x_{1} + x_{2} + \cdots + x_{k+1}]_{q^{\alpha}}^{l}.$$

From (3), (4), and above property, we have

$$\tilde{E}_{0,q,w}^{(\alpha)}(m\alpha, k+1) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} w^{\sum_{j=1}^{k+1} x_j} q^{\sum_{j=1}^{k+1} (m\alpha-j)x_j} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_{k+1})
= \sum_{l=0}^m {m \choose l} (q^{\alpha}-1)^l \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} w^{\sum_{j=1}^{k+1} x_j} \left[\sum_{j=1}^{k+1} x_j \right]_{q^{\alpha}}^l q^{-\sum_{j=1}^{k+1} jx_j} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_{k+1})
= \sum_{l=0}^m {m \choose l} (q^{\alpha}-1)^l \tilde{E}_{l,q,w}^{(\alpha)}(0, k+1)
= \frac{[2]_q^{k+1}}{(1+wq^{\alpha m})(1+wq^{\alpha m-1}) \cdots (1+wq^{\alpha m-k})}.$$
(6)

From (3), we can derive the following equation.

$$\sum_{j=0}^{i} {i \choose j} (q^{\alpha} - 1)^{j} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{\sum_{s=1}^{k} x_{s}} \left[\sum_{s=1}^{k} x_{s} \right]_{q^{\alpha}}^{n-i+j} q^{\sum_{s=1}^{k} (h-\alpha-s)x_{s}} d\mu_{-q}(x_{1}) \cdots d\mu_{-q}(x_{k})$$

$$= \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{\sum_{s=1}^{k} x_{s}} \left[\sum_{s=1}^{k} x_{s} \right]_{q^{\alpha}}^{n-i} q^{\sum_{s=1}^{k} (h-s)x_{s}} q^{\alpha} \left(\sum_{s=1}^{k} x_{s} \right)^{(i-1)} d\mu_{-q}(x_{1}) \cdots d\mu_{-q}(x_{k})$$

$$= \sum_{i=0}^{i-1} (q^{\alpha} - 1)^{j} {i-1 \choose j} \tilde{E}_{n-i+j,q,w}^{(\alpha)}(h,k). \tag{7}$$

By (3), (4), (5), and (6), we see that

$$\sum_{j=0}^{i} (q^{\alpha} - 1)^{j} {i \choose j} \tilde{E}_{n-1+j,q,w}^{(\alpha)}(h-\alpha,k) = \sum_{j=0}^{i-1} (q^{\alpha} - 1)^{j} {i-1 \choose j} \tilde{E}_{n-i+j,q,w}^{(\alpha)}(h,k).$$

Therefore, we obtain the following theorem.

Theorem 2. For α , $k \in \mathbb{N}$ and n, $i \in \mathbb{Z}_+$, we have

$$\sum_{j=0}^{i} \binom{i}{j} (q^{\alpha}-1)^{j} \tilde{E}_{n-i+j,q,w}^{(\alpha)}(h-\alpha,k) = \sum_{j=0}^{i-1} (q^{\alpha}-1)^{j} \binom{i-1}{j} \tilde{E}_{n-i+j,q,w}^{(\alpha)}(h,k).$$

By simple calculation, we easily see that

$$\sum_{i=0}^{m} {m \choose j} (q^{\alpha} - 1)^{j} \tilde{E}_{j,q,w}^{(\alpha)}(0,k) = \frac{[2]_{q}^{k}}{(1 + wq^{\alpha m})(1 + wq^{\alpha m-1}) \cdots (1 + wq^{\alpha m-k+1})}.$$

3. Polynomials $\tilde{E}_{n,q,w}^{(\alpha)}(0,k|x)$

We now consider the polynomials $\tilde{E}_{n,q,w}^{(\alpha)}(0,k|x)$ (in q^x) by

$$\tilde{E}_{n,q,w}^{(\alpha)}(0,k|x) = \underbrace{\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} w^{x_1 + \dots + x_k}}_{l_{k-1} \text{ times}} \left[x + \sum_{i=1}^k x_i \right]_{q^{\alpha}}^n q^{-\sum_{j=1}^k j x_j} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k).$$
(8)

By (8) and (4), we get

$$(q^{\alpha}-1)^{n}\tilde{E}_{n,q,w}^{(\alpha)}(0,k|x) = [2]_{q}^{k} \sum_{l=0}^{n} {n \choose l} q^{\alpha l x} (-1)^{n-1} \frac{1}{(1+wq^{\alpha l})\cdots(1+wq^{\alpha l-k+1})}.$$
 (9)

From (8) and (9), we can derive the following equation.

$$\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} w^{x_1 + \dots + x_k} q^{\sum_{j=1}^k (\alpha n - j) x_j + \alpha n x} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)$$

$$= \sum_{j=0}^n \binom{n}{j} [\alpha]_q^j (q-1)^j \tilde{E}_{j,q,w}^{(\alpha)}(0,k|x),$$

and

$$\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} w^{x_1 + \dots + x_k} q^{\sum_{j=1}^k (\alpha n - j) x_j + \alpha n x} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)$$

$$= \frac{[2]_q^k q^{\alpha n x}}{(1 + w q^{\alpha n}) \cdots (1 + w q^{\alpha n - k + 1})}.$$
(10)

Therefore, by (9) and (10), we obtain the following theorem.

Theorem 3. For $\alpha \in \mathbb{N}$ and $n, k \in \mathbb{Z}_+$, we have

$$\tilde{E}_{n,q,w}^{(\alpha)}(0,k|x) = \frac{[2]_q^k}{[\alpha]_q^n (1-q)^n} \sum_{l=0}^n \binom{n}{l} (-1)^l q^{\alpha l x} \frac{1}{(-wq^{\alpha l - k + 1} : q)_k},$$

and

$$\sum_{l=0}^{n} \binom{n}{l} [\alpha]_{q}^{l} (q-1)^{l} \tilde{E}_{l,q,w}^{(\alpha)}(0,k|x) = \frac{q^{\alpha nx} [2]_{q}^{k}}{(-wq^{\alpha n-k+1}:q)_{k}},$$

where $(a:q)_0 = 1$ and $(a:q)_k = (1-a)(1-aq)$... $(1-aq^{k-1})$. Let $d \in \mathbb{N}$ with $d \equiv 1 \pmod 2$. Then we have

$$\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{x_{1}+\cdots+x_{k}} \left[x + \sum_{j=1}^{k} x_{j} \right]_{q^{\alpha}}^{n} q^{-\sum_{j=1}^{k} j x_{j}} d\mu_{-q}(x_{1}) \cdots d\mu_{-q}(x_{k})
= \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}^{k}} \sum_{a_{1},\cdots,a_{k}=0}^{d-1} w^{a_{1}+\cdots+a_{k}} q^{-\sum_{j=2}^{k} (j-1)a_{j}} (-1)^{\sum_{j=1}^{k} a_{j}} \times
\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{d(x_{1}+\cdots+x_{k})} \left[\frac{x + \sum_{j=1}^{k} a_{j}}{d} + \sum_{j=1}^{k} x_{j} \right]_{q^{\alpha d}}^{n} q^{-d\sum_{j=1}^{k} j x_{j}} d\mu_{-q^{d}}(x_{1}) \cdots d\mu_{-q^{d}}(x_{k})$$
(11)

Thus, by (11), we obtain the following theorem.

Theorem 4. For $d \in \mathbb{N}$ with $d \equiv 1 \pmod{2}$, we have

$$\tilde{E}_{n,q,w}^{(\alpha)}(0,k|x) = \frac{[d]_{q^{\alpha}}^{n}}{[d]_{q^{\alpha}}^{k}} \sum_{\substack{d=0 \ d}}^{d-1} (-w)^{a_{1}+\cdots+a_{k}} q^{-\sum_{j=2}^{k} (j-1)a_{j}} \tilde{E}_{n,q^{d},w^{d}}^{(\alpha)} \left(0,k|\frac{x+a_{1}+\cdots+a_{k}}{d}\right).$$

Moreover,

$$\tilde{E}_{n,q,w}^{(\alpha)}(0,k|dx) = \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}^{k}} \sum_{a_{1},\dots,a_{k}=0}^{d-1} (-w)^{a_{1}+\dots+a_{k}} q^{-\sum_{j=2}^{k} (j-1)a_{j}} \tilde{E}_{n,q^{d},w^{d}}^{(\alpha)} \left(0,k|x+\frac{a_{1}+\dots+a_{k}}{d}\right).$$

By (8), we get

$$\begin{split} \tilde{E}_{n,q,w}^{(\alpha)}\big(0,k|x&=\sum_{l=0}^n\binom{n}{l}[x]_{q^\alpha}^{n-l}q^{\alpha lx}\tilde{E}_{l,q,w}^{(\alpha)}\big(0,k\big)\\ &=\left([x]_{q^\alpha}+q^{\alpha x}\tilde{E}_{q,w}^{(\alpha)}\big(0,k\big)\right)^n, \end{split}$$

where $\tilde{E}_{n,q,w}^{(\alpha)}(0,k|0) = \tilde{E}_{n,q,w}^{(\alpha)}(0,k)$.

Thus, we note that

$$\begin{split} \tilde{E}_{n,q,w}^{(\alpha)}\big(0,k|x+\gamma &= \sum_{l=0}^n \binom{n}{l} [\gamma]_{q^\alpha}^{n-l} q^{\alpha l \gamma} \tilde{E}_{l,q,w}^{(\alpha)}\big(0,k|x\big) \\ &= \left([\gamma]_{q^\alpha} + q^{\alpha \gamma} \tilde{E}_{q,w}^{(\alpha)}\big(0,k|x\big) \right)^n. \end{split}$$

4. Polynomials $\tilde{E}_{n,q,w}^{(\alpha)}(h,1|x)$

Let us define polynomials $\tilde{E}_{n,q,w}^{(\alpha)}(h,1|x)$ as follows:

$$\tilde{E}_{n,q,w}^{(\alpha)}(h,1|x) = \int_{\mathbb{Z}_n} w^{x_1} [x+x_1]_{q^{\alpha}}^n q^{x_1(h-1)} d\mu_{-q}(x_1). \tag{12}$$

From (12), we have

$$\tilde{E}_{n,q,w}^{(\alpha)}(h,1|x) = \frac{[2]_q}{(1-q^\alpha)^n} \sum_{l=0}^n \binom{n}{l} (-1)^l q^{\alpha l x} \frac{1}{(1+wq^{\alpha l + h})}.$$

By the calculation of the fermionic *p*-adic *q*-integral on \mathbb{Z}_p , we see that

$$q^{\alpha x} \int_{\mathbb{Z}_p} w^{x_1} [x + x_1]_{q^{\alpha}}^n q^{x_1(h-1)} d\mu_{-q}(x_1)$$

$$= (q^{\alpha} - 1) \int_{\mathbb{Z}_p} w^{x_1} [x + x_1]_{q^{\alpha}}^{n+1} q^{x_1(h-\alpha-1)} d\mu_{-q}(x_1) + \int_{\mathbb{Z}_p} w^{x_1} [x + x_1]_{q^{\alpha}}^n q^{x_1(h-\alpha-1)} d\mu_{-q}(x_1).$$
(13)

Thus, by (13), we obtain the following theorem.

Theorem 5. For $\alpha \in \mathbb{N}$ and $h \in \mathbb{Z}$, we have

$$q^{\alpha x} \tilde{E}_{n,q,w}^{(\alpha)}(h,1|x) = (q^{\alpha}-1) \tilde{E}_{n+1,q,w}^{(\alpha)}(h-\alpha,1|x) + \tilde{E}_{n,q,w}^{(\alpha)}(h-\alpha,1|x).$$

It is easy to show that

$$\tilde{E}_{n,q,w}^{(\alpha)}(h,1|x) = \int_{\mathbb{Z}_p} w^{x_1} [x+x_1]_{q^{\alpha}}^n q^{x_1(h-1)} d\mu_{-q}(x_1)
= \sum_{l=0}^n \binom{n}{l} [x]_{q^{\alpha}}^{n-1} q^{\alpha l x} \int_{\mathbb{Z}_p} w^{x_1} [x_1]_{q^{\alpha}}^l q^{x_1(h-1)} d\mu_{-q}(x_1)
= \sum_{l=0}^n \binom{n}{l} [x]_{q^{\alpha}}^{n-1} q^{\alpha l x} \tilde{E}_{l,q,w}^{(\alpha)}(h,1)
= (q^{\alpha x} \tilde{E}_{q,w}^{(\alpha)}(h,1) + [x]_{q^{\alpha}})^n, \quad \text{for } n \ge 1,$$
(14)

with the usual convention about replacing $(\tilde{E}_{q,w}^{(\alpha)}(h,1))^n$ by $\tilde{E}_{n,q,w}^{(\alpha)}(h,1)$.

From $qI_{-q}(f_1) + I_{-q}(f) = [2]_q f(0)$, we have

$$wq^{h} \int_{\mathbb{Z}_{p}} w^{x_{1}} [x + x_{1} + 1]_{q^{\alpha}}^{n} q^{x_{1}(h-1)} d\mu_{-q}(x_{1}) + \int_{\mathbb{Z}_{p}} w^{x_{1}} [x + x_{1}]_{q^{\alpha}}^{n} q^{x_{1}(h-1)} d\mu_{-q}(x_{1})$$

$$= [2]_{q} [x]_{q^{\alpha}}^{n}.$$
(15)

By (13) and (15), we get

$$wq^{h}\tilde{E}_{n,d,w}^{(\alpha)}(h,1|x+1) + \tilde{E}_{n,d,w}^{(\alpha)}(h,1|x) = [2]_{d}[x]_{d^{\alpha}}^{n}.$$
(16)

For x = 0 in (16), we have

$$wq^{h}\tilde{E}_{n,q,w}^{(\alpha)}(h,1|1) + \tilde{E}_{n,q,w}^{(\alpha)}(h,1) = \begin{cases} [2]_{q'} & \text{if } n=0, \\ 0, & \text{if } n>0. \end{cases}$$
(17)

Therefore, by (14) and (17), we obtain the following theorem.

Theorem 6. For $h \in \mathbb{Z}$ and $n \in \mathbb{Z}_+$, we have

$$wq^h(q^\alpha \tilde{E}_{q,w}^{(\alpha)}(h,1)+1)^n \tilde{E}_{n,q,w}^{(\alpha)}(h,1) = \begin{cases} [2]_{q'} \text{ if } n=0,\\ 0, \text{ if } n>0, \end{cases}$$

with the usual convention about replacing $(\tilde{E}_{q,w}^{(\alpha)}(h,1))^n$ by $\tilde{E}_{n,q,w}^{(\alpha)}(h,1)$.

From the fermionic *p*-adic *q*-integral on \mathbb{Z}_p , we easily get

$$\tilde{E}_{0,q,w}^{(\alpha)}(h,1) = \int_{\mathbb{Z}_p} w^{x_1} q^{x_1(h-1)} d\mu_{-q}(x_1) = \frac{[2]_q}{[2]_{wq^h}}.$$

By (12), we see that

$$\tilde{E}_{n,q^{-1},w^{-1}}^{(\alpha)}(h,1|1-x) = \int_{\mathbb{Z}_p} w^{-1} [1-x+x_1]_{q^{-\alpha}}^n q^{-x_1(h-1)} d\mu_{-q^{-1}}(x_1)
= (-1)^n w q^{\alpha n+h-1} \frac{[2]_q}{(1-q^{\alpha})^n} \sum_{l=0}^n \binom{n}{l} (-1)^l q^{\alpha lx} \frac{1}{1+wq^{\alpha l+h}}
= (-1)^n w q^{\alpha n+h-1} \tilde{E}_{n,q,w}^{(\alpha)}(h,1|x)$$
(18)

Therefore, by (18), we obtain the following theorem.

Theorem 7. For $\alpha \in \mathbb{N}$, $h \in \mathbb{Z}$ and $n \in \mathbb{Z}_+$, we have

$$\tilde{E}_{n,q^{-1},w^{-1}}^{(\alpha)}(h,1|1-x) = (-1)^n w q^{\alpha n+h-1} \tilde{E}_{n,q,w}^{(\alpha)}(h,1|x).$$

In particular, for x = 1, we get

$$\begin{split} \tilde{E}_{n,q,w}^{(\alpha)}(h,1) &= (-1)^n w q^{\alpha n + h - 1} \tilde{E}_{n,q,w}^{(\alpha)}(h,1|1) \\ &= (-1)^{n+1} q^{\alpha n - 1} \tilde{E}_{n,q,w}^{(\alpha)}(h,1) \text{ if } n \ge 1. \end{split}$$

Let $d \in \mathbb{N}$ with $d \equiv 1 \pmod{2}$. Then we have

$$\int_{\mathbb{Z}_{p}} w^{x_{1}} q^{x_{1}(h-1)} [x + x_{1}]_{q^{\alpha}}^{n} d\mu_{-q}(x_{1})$$

$$= \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}} \sum_{a=0}^{d-1} w^{a} q^{ha} (-1)^{a} \int_{\mathbb{Z}_{p}} w^{dx_{1}} \left[\frac{x+a}{d} + x_{1} \right]_{q^{\alpha d}}^{n} q^{x_{1}(h-1)d} d\mu_{-q^{d}}(x_{1}). \tag{19}$$

Therefore, by (19), we obtain the following theorem.

Theorem 8 (Multiplication formula). For $d \in \mathbb{N}$ with $d \equiv 1 \pmod{2}$, we have

$$\tilde{E}_{n,q,w}^{(\alpha)}(h,1|x) = \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}} \sum_{a=0}^{d-1} w^{a} q^{ha} (-1)^{q} \tilde{E}_{n,q^{d},w^{d}}^{(\alpha)}(h,1|\frac{x+a}{d}).$$

5. Polynomials $\tilde{E}_{n,q,w}^{(\alpha)}(h,k|x)$ and k=h

In (3), we know that

$$\tilde{E}_{n,q,w}^{(\alpha)}(h,k|x) = \int_{\mathbb{Z}_2} \cdots \int_{\mathbb{Z}_2} w^{x_1 + \dots + x_k} [x_1 + \dots + x_k + x]_{q^{\alpha}}^n q^{(h-1)x_1 + \dots + (h-k)x_k} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k).$$

Thus, we get

$$(q^{\alpha}-1)^{n} \tilde{E}_{n,q,w}^{(\alpha)}(h,k|x) = [2]_{q}^{k} \sum_{l=0}^{n} {n \choose l} (-1)^{n-l} \frac{q^{\alpha lx}}{(1+wq^{\alpha l+h})\cdots(1+wq^{\alpha l+h-k+1})},$$

and

$$wq^{h} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{x_{1}+\cdots+x_{k}} [x+1+\sum_{i=1}^{k} x_{i}]_{q^{\alpha}}^{n} q^{\sum_{i=1}^{k} (h-i)x_{i}} d\mu_{-q}(x_{1}) \cdots d\mu_{-q}(x_{k})$$

$$= -\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{x_{1}+\cdots+x_{k}} [x+\sum_{i=1}^{k} x_{i}]_{q^{\alpha}}^{n} q^{\sum_{i=1}^{k} (h-i)x_{i}} d\mu_{-q}(x_{1}) \cdots d\mu_{-q}(x_{k})$$

$$+ [2]_{q} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{x_{2}+\cdots+x_{k}} [x+\sum_{i=2}^{k} x_{i}]_{q^{\alpha}}^{n} q^{\sum_{i=2}^{k} (h-i)x_{i}} d\mu_{-q}(x_{2}) \cdots d\mu_{-q}(x_{k}).$$

$$(20)$$

Therefore, by (3) and (20), we obtain the following theorem.

Theorem 9. For $h \in \mathbb{Z}$, $\alpha \in \mathbb{N}$ and $n \in \mathbb{Z}_+$, we have

$$wq^{h}\tilde{E}_{n,q,w}^{(\alpha)}(h,k|x+1)+\tilde{E}_{n,q,w}^{(\alpha)}(h,k|x)=[2]_{q}\tilde{E}_{n,q,w}^{(\alpha)}(h-1,k-1|x).$$

Note that

$$q^{\alpha x} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{x_{1} + \dots + w_{k}} \left[x + \sum_{i=1}^{k} x_{i} \right]_{q^{\alpha}}^{n} q^{\sum_{i=1}^{k} (h-i)x_{i}} d\mu_{-q}(x_{1}) \cdots d\mu_{-q}(x_{k})$$

$$= (q^{\alpha} - 1) \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{x_{1} + \dots + x_{k}} \left[x + \sum_{i=1}^{k} x_{i} \right]_{q^{\alpha}}^{n+1} q^{\sum_{i=1}^{k} (h-\alpha-i)x_{i}} d\mu_{-q}(x_{1}) \cdots d\mu_{-q}(x_{k})$$

$$+ \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{x_{1} + \dots + x_{k}} \left[x + \sum_{i=1}^{k} x_{i} \right]_{q^{\alpha}}^{n} q^{\sum_{i=1}^{k} (h-\alpha-i)x_{i}} d\mu_{-q}(x_{1}) \cdots d\mu_{-q}(x_{k})$$

$$= (q^{\alpha} - 1) \tilde{E}_{n+1, d, w}^{(\alpha)}(h-\alpha, k|x) + \tilde{E}_{n, d, w}^{(\alpha)}(h-\alpha, k|x).$$

$$(21)$$

Therefore, by (21), we obtain the following theorem.

Theorem 10. For $n \in \mathbb{Z}_+$, we have

$$q^{\alpha x} \tilde{E}_{n,q,w}^{(\alpha)} \big(h,k|x\big) = \big(q^{\alpha}-1\big) \tilde{E}_{n+1,q,w}^{(\alpha)} \big(h-\alpha,k|x\big) + \tilde{E}_{n,q,w}^{(\alpha)} \big(h-\alpha,k|x\big).$$

Let $d \in \mathbb{N}$ with $d \equiv 1 \pmod{2}$. Then we get

$$\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{x_{1}+\cdots+x_{k}} \left[x + \sum_{j=1}^{k} x_{j}\right]_{q^{\alpha}}^{n} q^{\sum_{j=1}^{k} (h-j)x_{j}} d\mu_{-q}(x_{1}) \cdots d\mu_{-q}(x_{k})$$

$$= \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}^{k}} \sum_{a_{1},\dots,a_{k}=0}^{d-1} w^{d_{1}+\dots+a_{k}} q^{h\sum_{j=1}^{k} a_{j} - \sum_{j=2}^{k} (j-1)a_{j}} (-1)^{\sum_{j=1}^{k} a_{j}} \times$$

$$\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{d(x_{1}+\dots+x_{k})} \left[\frac{x + \sum_{j=1}^{k} a_{j}}{d} + \sum_{j=1}^{k} x_{j} \right]_{q^{\alpha d}}^{n} q^{d\sum_{j=1}^{k} (h-j)x_{j}} d\mu_{-q^{d}}(x_{1}) \cdots d\mu_{-q^{d}}(x_{k}).$$
(22)

Therefore, by (22), we obtain the following theorem.

Theorem 11. For $d \in \mathbb{N}$ with $d \equiv 1 \pmod{2}$, we have

$$\begin{split} & \tilde{E}_{n,q,w}^{(\alpha)}(h,k|dx) \\ & = \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}^{k}} \sum_{a_{1},\cdots,a_{k}=0}^{d-1} w^{a_{1}+\cdots+a_{k}} q^{h\sum_{j=1}^{k} a_{j} - \sum_{j=2}^{k} (j-1)a_{j}} (-1)^{\sum_{j=1}^{k} a_{j}} \tilde{E}_{n,q^{d},w^{d}}^{(\alpha)} \left(h,k|x + \frac{a_{1}+\cdots+a_{k}}{d}\right). \end{split}$$

Let $\tilde{E}_{n,q,w}^{(\alpha)}(k,k|x) = \tilde{E}_{n,q,w}^{(\alpha)}(k|x)$. Then we get

$$(q^{\alpha}-1)^{n} \tilde{E}_{n,q,w}^{(\alpha)}(k|x) = \sum_{l=0}^{n} \binom{n}{l} (-1)^{n-l} q^{\alpha l x} \frac{[2]_{q}^{k}}{(1+wq^{\alpha l+k})\cdots(1+wq^{\alpha l+1})}$$

and

$$\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{-(x_{1}+\cdots+x_{k})} [k-x+\sum_{i=1}^{k} x_{i}]_{q^{-\alpha}}^{n} q^{-\sum_{i=1}^{k} (k-i)x_{i}} d\mu_{-q^{-1}}(x_{1}) \cdots d\mu_{-q^{-1}}(x_{k})$$

$$= \frac{q^{\binom{k}{2}}}{(1-q^{-\alpha})^{n}} [2]_{q}^{k} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} q^{\alpha l x} \frac{1}{(1+wq^{\alpha l+1}) \cdots (1+wq^{\alpha l+k})}$$

$$= (-1)^{n} q^{n \alpha} q^{\binom{k}{2}} \frac{[2]_{q}^{k}}{(1-q^{\alpha})^{n}} \sum_{l=0}^{n} \frac{\binom{n}{l} (-1)^{l} q^{\alpha l x}}{(1+wq^{\alpha l+1}) \cdots (1+wq^{\alpha l+k})}$$

$$= (-1)^{n} q^{\alpha n + \binom{k}{2}} \tilde{E}_{n,q,w}^{(\alpha)}(k|x).$$
(23)

Therefore, by (23), we obtain the following theorem.

Theorem 12. For $n \in \mathbb{Z}_+$, we have

$$\tilde{E}_{n,q^{-1},w^{-1}}^{(\alpha)}(k|k-x) = (-1)^n w^k q^{\alpha n + \binom{k}{2}} \tilde{E}_{n,q,w}^{(\alpha)}(k|x).$$

Let x = k in Theorem 12. Then we see that

$$\tilde{E}_{n,q^{-1},w^{-1}}^{(\alpha)}(k|0) = (-1)^n w^k q^{\alpha n + \binom{k}{2}} \tilde{E}_{n,q,w}^{(\alpha)}(k|k). \tag{24}$$

From (15), we note that

$$wq^{k}\tilde{E}_{n,q,w}^{(\alpha)}(k|x+1) + \tilde{E}_{n,q,w}^{(\alpha)}(k|x) = [2]_{q}\tilde{E}_{n,q,w}^{(\alpha)}(k-1|x). \tag{25}$$

It is easy to show that

$$(q^{\alpha}-1)^{n}\tilde{E}_{n,q,w}^{(\alpha)}(k|0)=\sum_{l=0}^{n}\binom{n}{l}(-1)^{l+n}\frac{[2]_{q}^{k}}{(1+wq^{\alpha l+1})\cdots(1+wq^{\alpha l+k})}$$

By simple calculation, we get

$$\sum_{l=0}^{n} {n \choose l} (q^{\alpha} - 1)^{l} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} w^{\sum_{i=1}^{k} x_{k}} \left[\sum_{i=1}^{k} x_{k} \right]_{q^{\alpha}}^{l} q^{\sum_{l=i}^{k} (k-i)x_{i}} d\mu_{-q}(x_{1}) \cdots d\mu_{-q}(x_{k}) \right] \\
= \frac{[2]_{q}^{k}}{(1 + wq^{\alpha n+k})(1 + wq^{\alpha n+k-1}) \cdots (1 + wq^{\alpha n+1})}.$$
(26)

From (26), we note that

$$\sum_{l=0}^{n} \binom{n}{l} (q^{\alpha} - 1)^{l} \tilde{E}_{l,q,w}^{(\alpha)}(k|0) = \frac{[2]_{q}^{k}}{(1 + wq^{\alpha n + k})(1 + wq^{\alpha n + k - 1}) \cdots (1 + wq^{\alpha n + 1})},$$

and

$$\tilde{E}_{n,q,w}^{(\alpha)}(k|x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} w^{\sum_{i=1}^k x_k} [x + \sum_{i=1}^k x_k]_{q^{\alpha}}^n q^{\sum_{i=1}^k (k-i)x_i} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)
= \sum_{l=0}^n \binom{n}{l} [x]_{q^{\alpha}}^{n-l} q^{\alpha l x} \tilde{E}_{l,q,w}^{(\alpha)}(k|0)
= \left(q^{x \alpha} \tilde{E}_{q,w}^{(\alpha)}(k|0) + [x]_{q^{\alpha}} \right)^n, n \in \mathbb{Z}_+,$$

with the usual convention about replacing $(\tilde{E}_{a,w}^{(\alpha)}(k|0))^n$ by $\tilde{E}_{n,a,w}^{(\alpha)}(k|0)$.

Put x = 0 in (25), we get

$$wq^k \tilde{E}_{n,q,w}^{(\alpha)}(k|1) + \tilde{E}_{n,q,w}^{(\alpha)}(k|0) = [2]_q \tilde{E}_{n,q}^{(\alpha)}(k-1|0).$$

Thus, we have

$$wq^{k}(q^{\alpha}\tilde{E}_{d,w}^{(\alpha)}(k|0)+1)^{n}+\tilde{E}_{n,d,w}^{(\alpha)}(k|0)=[2]_{d}\tilde{E}_{n,d,w}^{(\alpha)}(k-1|0),$$

with the usual convention about replacing $(\tilde{E}_{q,w}^{(\alpha)}(k|0))^n$ by $\tilde{E}_{n,q,w}^{(\alpha)}(k|0)$.

Acknowledgements

The authors express their gratitude to the referee for his/her valuable comments.

Authors' contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 19 September 2011 Accepted: 29 February 2012 Published: 29 February 2012

References

- Ryoo, CS: On the generalized Barnes type multiple q-Euler polynomials twisted by ramified roots of unity. Proc Jangieon Math Soc. 13, 255–263 (2010)
- 2. Ryoo, CS: A note on the weighted q-Euler numbers and polynomials. Adv Stud Contemp Math. 21, 47–54 (2011)
- Moon, E-J, Rim, S-H, Jin, J-H, Lee, S-J: On the symmetric properties of higher-order twisted q-Euler numbers and polynomials. Adv Diff Equ 2010, 8 (2010). (Art ID 765259)
- Cangul, IN, Kurt, V, Ozden, H, Simsek, Y: On the higher-order w-q-Genocchi numbers. Adv Stud Contemp Math. 19, 39–57 (2009)
- Jang, LC: A note on Nörlund-type twisted q-Euler polynomials and numbers of higher order associated with fermionic invariant q-integrals. J Inequal Appl 2010, 12 (2010). (Art ID 417452)
- 6. Kim, T: q-Volkenborn integration. Russ J Math Phys. 9, 288–299 (2002)
- 7. Kim, T: A note on q-Volkenborn integration. Proc Jangjeon Math Soc. 8, 13–17 (2005)
- Kim, T, Choi, J, Kim, YH: On extended Carlitz's type q-Euler numbers and polynomials. Adv Stud Contemp Math. 20, 499–505 (2010)
- 9. Kim, T: The modified q-Euler numbers and polynomials. Adv Stud Contemp Math. 16, 161–170 (2008)
- Kim, T: q-Euler numbers and polynomials associated with p-adic q-integrals. J Nonlinear Math Phys. 14, 15–27 (2007). doi:10.2991/inmp.2007.14.1.3
- 11. Kim, T: Note on the Euler q-zeta functions. J Number Theory. 129, 1798-1804 (2009). doi:10.1016/j.jnt.2008.10.007
- Kim, T: Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on

 ¬Russ J Math Phys. 16, 484–491 (2009). doi:10.1134/S1061920809040037
- 13. Kim, T: Barnes type multiple q-zeta function and q-Euler polynomials. J Phys A: Math Theor 43, 11 (2010). (Art ID 255201)
- 14. Kim, T, Choi, J, Kim, YH, Ryoo, CS: On the fermionic *p*-adic integral representation of Bernstein polynomials associated with Euler numbers and polynomials. J Inequal Appl **2010**, 12 (2010). (Art ID 864247)
- Kim, T, Choi, J, Kim, YH, Ryoo, CS: A note on the weighted p-adic q-Euler measure on \(\mathbb{Q}_p\). Adv Stud Contemp Math. 21, 35–40 (2011)
- 16. Kurt, V. A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials. Appl Math Sci. 3, 53–56 (2009)

doi:10.1186/1687-1847-2012-21

Cite this article as: Lee et~al.: Some identities on the higher-order-twisted q-Euler numbers and polynomials with weight α . Advances in Difference Equations 2012 2012:21.