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1 Introduction
During the last few years, complex dynamic networks (CDNs), which is a set of inter-
connected nodes with specific dynamics, have received increasing attention from the real
world such as the Internet, the World Wide Web, social networks, electrical power grids,
global economic markets, and so on. Also, many models were proposed to describe vari-
ous complex networks, small-world network and scale-free network, etc. For more details,
see the literature [1-4]. In the implementation of many practical CDNS, there exists time-
delay because of the finite speed of information processing or amplifiers. It is well known
that time-delay often causes undesirable dynamic behaviors such as oscillation and insta-
bility of the network. Therefore, various approaches to synchronization analysis for CDNs
with time-delay have been investigated in the literature [5-12]. By using network mod-
eling with coupling delays, Li et al. [5] proposed, for the first time, the synchronization
criteria for the CDNs with time-delay which were expressed in the form of linear matrix
inequalities (LMIs). Koo et al. [9] presented a synchronization criterion for singular CDNs
with time-varying delays. In [10—12], various synchronization problems are addressed for
discrete-time CDNs with time-delay. In this regard, discrete-time modeling with time-
delay plays an important role in many fields of CDNs. Moreover, to implement the net-
work, the network uses digital computers (usually a microprocessor or microcontrollers)
with the necessary input/output hardware. The fundamental character of the digital com-
puter is that it computes answers at discrete steps.

On the other hand, in [13-15], the problems for various systems with randomly occur-

ring delay, uncertainties and nonlinearities were considered. The randomly occurring con-
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siderations in these literature works are described by the Bernoulli distribution. Here, the
Bernoulli distribution is recognized as the experiment for the combination of U/ identical
subexperiments. For more details, let A be the elementary event having one of the two
possible outcomes as its element. A is the only other possible elementary event. At this
time, we shall repeat the basic experiments U times and determine the probability that A
is observed exactly v times out of U trials. Such repeated experiments are called Bernoulli
trials [16]. Moveover, in [17], the stability of stochastic difference equations was addressed
based on the Lyapunov functionals.

Regarding the CDNs, the coupling strength is the information of coupling strength be-
tween agents and a leader. Since an environmental change exists in practical networks, the
change of coupling strength is a considerable factor affecting dynamics for the worse of
the networks. At this point, the randomly changing coupling strength is being put to use
in the problem of synchronization stability for CDNs. Moreover, to the best of authors’
knowledge, the synchronization analysis of CDNs with changing coupling strength has
not been formulated yet.

Motivated by the results mentioned above, in this paper, a synchronization stability
problem for discrete-time CDNs with interval time-varying delays and randomly changing
coupling strength will be studied. This information is one of randomly occurring coupling
strength with binomial distribution. Put simply, the first and simplest random variable is
the Bernoulli random variable. Let X be a random variable that takes on only two possi-
ble numerical values, X(€2) = {0,1}, where €2 represents the universal set consisting of the
collection of all objects of interest in a particular context. Multiple independent Bernoulli
random variables can be combined to construct more sophisticated random variables.
Suppose X is the sum of w independent and identically distributed Bernoulli random vari-
ables. Then X is called a binomial random variable with parameters w, the number of trials,
and p, the probability of success for each trial. Thus, the binomial distribution is a general-
ization of the Bernoulli distribution. Also, since delay-dependent analysis makes use of the
information on the size of time delay, more attention has been paid to the delay-dependent
analysis than to the delay-independent one [18]. That is, the former is generally less con-
servative than the latter. Therefore, a great number of results on a delay-dependent stabil-
ity condition for time-delay systems have been reported in the literature [19-24]. So, by
construction of a suitable Lyapunov-Krasovskii functional and utilization of a reciprocally
convex approach [24], a synchronization stability problem for discrete-time CDNs with
interval time-varying delays and randomly changing coupling strength is derived in terms
of LMIs which can be solved efficiently by use of standard convex optimization algorithms
such as interior-point methods [25]. Moreover, the discrete-time CDNs are represented
by use of the Kronecker product technique. Two numerical examples are included to show
the effectiveness of the proposed methods.

Notation R” is the n-dimensional Euclidean space, and R”*” denotes the set of all m x n
real matrices. For real symmetric matrices X and Y, X > Y (respectively, X > Y) means
that the matrix X — Y is positive definite (respectively, nonnegative). X denotes the basis
for the null-space of X. I, 0,, and 0,,, denote n x n identity matrix, n x n and m x n
zero matrices, respectively. E{-} stands for the mathematical expectation operator. || - ||
refers to the Euclidean vector norm or the induced matrix norm. diag{- - -} denotes the
block diagonal matrix. » represents the elements below the main diagonal of a symmetric
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matrix. Xir € R”*” means that the elements of matrix Xy include the scalar value of

f(@).

2 Problem statements
Consider the following discrete-time CDNs with interval time-varying delays in the cou-
pling term

N
yilk +1) = f (yi(k), yi (k = h(K))) + ¢ > " giTyj(k = h(k)), i=12,...,N. Q)

Jj=1

Here, N is the number of coupled nodes, # is the number of state of each node, y;(k) =
k), yia (k) ..., yi(k)]T € R" is the state vector of the ith node. f(y;(k)) = [f(ya(k)),
FBia(k),....f(yim(k))] € R” is a continuous differentiable vector function. The constant
¢ > 0 is the coupling strength. i(k) is an interval time-varying delay satisfying 0 < 4,, <
h(k) < hy, where h,, and hy; are known positive integers.

I" = [yji]luxn is the inner-coupling matrix of nodes, in which y;; # 0 means two coupled
nodes are linked through their ith and jth state variables; otherwise, y;; = 0. G = [gjjlnxn
is the outer-coupling matrix of the network, in which g; is defined as follows. If there is a
connection between node i and node j (j # i), then gj; = g; = 1; otherwise, g;; = g = 0 (j # i),
and the diagonal elements of the matrix G are defined by

N N
gii=—Zgi/=—Zgi, i=12,...,N. (2)
j=Li j=Li%

In order to investigate the synchronization stability analysis for discrete-time CDNs with
interval time-varying delays in the coupling term (1), we introduce the following definition

and lemmas.

Definition 1 ([5]) The discrete-time delayed dynamical network (1) is said to achieve
asymptotic synchronization if

y1(k) = y2(k) = - - = yn (k) =s(k) ast— oo, 3)
where s(k) € R” is a solution of an isolated node, satisfying s(k + 1) = f(s(k), s(k — h(k))).

Lemma 1 ([11]) Consider the network (1). Let 0 = 11 > Ay > --- > Ay be the eigenvalues of
the outer-coupling matrix G. If the following N — 1 linear delayed difference equations are

asymptotically stable about their zero solution
xy(k +1) = Joy(k) + Jaxi (k = h(k)) + cA Ty (k = h(k)), 1=2,3,...,N, (4)

where ] and ], are the Jacobian of f (x(k),x(k — h(k))) at s(k) and s(k — h(k)), respectively.
Then the synchronized states (3) are asymptotically stable.

For the convenience of synchronization analysis for the system (4), the following Kro-
necker product and its properties are used.
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Lemma 2 (Kronecker product [26]) Let ® denote the notation of the Kronecker product.
Then the following properties of the Kronecker product are easily established:
(i) (tA)®@ B=A® (aB),
(i) (A+B) C=AQC+B®C,
(iii) (A®B)(C®D)=(AC)® (BD).

Let us define

x(k) = [xL (), %L (K), ..., x5 (k)] e RN-D7,

A = diag{hy,..., Ay} € RNDmW=Dm,

where N is the number of agents.
Then the system (4) can be rewritten in the matrix form

x(k +1) = (In1 ® J)x(k) + (In-1 ®]d)x(k - h(k)) +c(A® F)x(k — h(k)). (5)

Moreover, it is assumed that the coupling strength has changed by the following assump-
tion.

Assumption 1 The coupling strength is randomly changing. This means that, p,, is a
stochastic process representing the information changing process of coupling strength;
that is, the transition of coupling strength is described by the following binomial proba-

bility:
l m l-m
Pr{pmzm}: m Lo (1_100) ) Wl=0,1,...,l,

where m is the number of changes, py is the probability of change in one term and p,,
satisfies

E{om} = Lpo.

With Assumption 1, a model of discrete-time CDNs with interval time-varying delays
in the coupling term and the above assumptions is considered as

x(k +1) = (v @ N)x(k) + (Iv1 @ Ju + pme(A ® T))x(k — h(k)). (6)

Remark 1 As mentioned in Section 1, the Bernoulli random variable takes on only two
possible numerical values, X(€2) = {0,1}, where Q2 represents the universal set consisting
of the collection of all objects of interest in a particular context. However, with parameters
w, the number of trials, and p, the probability of success for each trial, the binomial ran-
dom variable X is the sum of w independent and identically distributed Bernoulli random
variables. Thus, the former is more general than the latter. So, in this paper, the randomly
changing coupling strength is considered with the concept of binomial distribution. In
addition, the Bernoulli random variable has been used in the concept of randomly oc-
curring which has various types such as randomly occurring delay, randomly occurring
uncertainties, randomly occurring nonlinearities, and so on [13-15].
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Remark 2 From Assumption 1, the coupling strength per discrete step is changed with the
multiple of given strength, ¢, and the number of changes, m. Also, the probability of change
is given as po. Based on the results mentioned above, for the concerned discrete-time
CDN:ss (1), the coupling strength with the binomial random variable can be represented in
the model of discrete-time CDNs with randomly changing coupling strength (6). It should
be noted that this problem for the change of coupling strength has not been investigated
yet.

The aim of this paper is to investigate the delay-dependent synchronization stability
analysis for the system (6). In order to do this, we introduce the following definition and
lemmas.

Lemma 3 For any constant matrix 0 < M = MT € R™", integers h,, and hy; satisfying
hy, < iy, and vector function x : {hy,, by + 1, iy} — R”, the following inequality holds:

Iyt hy T Iyt
~(hyt = +1) Y &7 (s)Mx(s) < — (Z x(s)) M(Z x(s)). (7)

s=hy, s=hy s=hy,

Proof From Lemma 1 in [27], the following inequality holds for %, <s < hy;:

|:xT(s)Mx(s) xT(s)j| >0 ®)
x(s) M
Sum of the inequality (8) from #,, to ki yields
Zfﬁ’,‘,mth(s)Mx(s) Zfﬁm x7(s) =0 ©)
PR (hpg = hyy + DM!

Therefore, the inequality (9) is equivalent to the inequality (7) according to the Schur com-
plement [25]. O

Lemma 4 (Finsler’s lemma [28]) Let { € R", ® = ®T € R"™", and Y € R"™ " such that
rank(Y') < n. The following statements are equivalent:
(i) ¢T®r<0,YY:=0,¢ #0,
i) T+ oYt <o,
(iil) IFe R : d+FY + (FY)T <0.

3 Main results

In this section, we propose new synchronization criteria for the system (6). For the sake of
simplicity on matrix representation, e; € R>*¥, where k = (N — 1)n, are defined as block
entry matrices, e.g., ea = [0y, I, Oy, Oy, 0.]7. The notations of several matrices are defined
as:

Ax(k) = x(k + 1) — x(k),

¢ (k) = [T (), 67 (k = ), &7 (k = h(K)), %" (k = ag), AxT (0],
£(k) = [+ (), AxT ()],
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IT=[e; —e3,e3—esl,

E1 = (&1 +es5)(In1 @ P)(er +e5)” —er(Ing ® Pef,

]

s=e(ly1 ® Qe - er(In-1® (Q1 — Qz))egT —ea(Iy1 ® Qy)ey,
=ée5 (IN—I ® (hEan + (hM - hm)sz))eg (10)

+ (It = ) (e2(In-1 ® S1)eg — e3(In-1 ® (S1 = S2))ed — ea(In-1 ® Sy)ej ),

&3]
w

By=—(e1—e)In_1 @ Ry)(er —er)”

- INa®(Ry + 1) ‘ Ina®M or
* l Ina ® (Ry +52)

Es = (hyr — hy)* (el(IN-l ® R3)e] +es(Iy1 ® R4)€5T);

(S
]
03]
[x]
]

=81+ By + B3+ Eq + Bs,

T[pm] = [(IN—I & (]_In)): 0;(1 (IN—I ®]d + me(A ® r))r OK!_IK]'

Now, the following theorem is given for synchronization stability of the model of

discrete-time CDNs with interval time-varying delays in the coupling term (6).

Theorem 1 For given positive integers hy,, hy, [ and positive scalars c, po < 1, the system (6)
is asymptotically synchronous for h,, < h(k) < hyy, if there exist positive matrices P € R"*",
Q; e R™", R; € R™", any symmetric matrices S; € R"™", wherei=1,2andj=1,...,4, and
any matrix M € R"*" satisfying the following LMIs:

(Yitag1) " (Vi) < O (11)
I (Ry+ S Ina@M
N-1® ( 2+1)‘ N-1® > 0y, 12)
‘ Inai ® (R + 52)
INa®R; | INa®S)
> 02/(;
IN-1®Ry
(13)
INA®Rs | IN1® S,
> 02/(:
* Inoi @Ry
where ® and Y\, are defined in (10).
Proof Let us consider the following Lyapunov-Krasovskii functional candidate as
V(k) = Vi(k) + Va(k) + Va(k) + Va(k), (14)

where

Vi(k) = &7 (k) (In-1 ® P)x(k),
k1 k-1

Valk)= >~ & (5)Ina @ Qals) + Y &7 () ® Qa)als),

s=k—hy, s=k=hpr
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-1 k-1

Va(k) =l Y D AxT () Ina @ Ri) Ax(w)

s=—hy, u=k+s

—hm-1 k-1

+ (har = hy) Z Z Ax" () In-1 ® Ro) Ax(u),

s=—hps u=k+s

—hm—-1 k-1

Vak) = (g =) Y Y a7 () Iy © Ra)x(ue)

s=—hpr u=k+s

~hm-1 k-1

+ (g =) DY AxT () Iy ® Ra) Ax(u).

s=—hpr u=k+s

The mathematical expectation of the AV;(k) and AV, (k) are calculated as

E{AVi(k)} = &7 (k + 1)(In-1 ® P)a(k +1) — x" (k) (In-1 ® P)x(k)
= (Ax(K) + x(Kk)) " (In_1 ® P)(Ax(k) + x(k)) — x7 (k) (Iy_1 ® P)x(k)
=T (k)Ei¢ k),
E{AVa(k)} = 2" (k) (In-1 ® Qu)x(k)
—x" (k= hy) (In-1 ® (Q1 = Qo)) x(k = hy)
= x" (k= ) (In- ® Qa)xlk — hag)
= ¢ T (k) B¢ (k).

By calculating the E{A V3(k)}, we get
]E{AV3(I()} = AXT(k)(IN_l ® (h,z,an + (l’lM —hm)sz))Ax(k)

k-1
—hw Y AT (8)(Ino1 © R1)Ax(s)

s=k—hy,
k=hy -1
— (= h) Y AxT(5)(In ® Ro) Ax(s)
s=k—h(k)
k—h(k)-1
= (=) Y AxT($)(In1 @ Ro) Ax(s).
s=k—hpt

Page 7 of 17

(15)

17)

Inspired by the work of [29], the following two zero equalities hold with any symmetric

matrices S; and S»:

&7 (k = hy) Inoy ® SOx(k = hy) = &7 (k = h(k)) (In-1 ® S1)x(k = h(k))
ki1
= Z (7 (s + DI @ Si)als +1) = &7 (5) (In-1 © S1)ax(s))

D (A% (5)(UIn-1 ® S1) Ax(s) +2x7 (s)(In-1 ® 1) Ax(s)),
s=k—h(k)

(18)
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and

x" (k= h(k)) (In- ® Sa)a(k = h(k)) — x" (k = ha) (In-1 ® Sa)x(k = hag)
k=h(k)-1

= Z (27 (s + DUn-1 ® Sp)a(s + 1) + 27 () (In-1 ® S2)x(s))

s=k—hyg
k=h(k)-1
= Z (AxT(s)(IN_l ® 85)Ax(s) + 22T (s) Iy ® Sg)Ax(s)). (19)

s=k—hyg

Here, Eqgs. (18) and (19) still hold even when we multiply both sides by (/31 — /). So, by
adding the results into Eq. (17), we get
E{AV3(k)} = AxT (k) (In-1 ® (H2,Ry + (hat — hyw)*Ry) ) Ax(k)
+ (ot = )" (k = ) (D1 @ Sk = )
— Uint = )™ (k= h(R)) (I ® (51 = S2))e(k - (k)
= (hag = hin)x" (k = har)(Iny ® So)xlk = ag) + £ + ©y

=T (k)B3¢ (k) + T + Oy, (20)
where
k-1
S =t ) AxT(s) -1 ® Ri)Ax(s)
s=k—hyy,

k=hy—1

— (g =tw) Y AxT(5)(Inoa ® (Ry + 1)) Ax(s)
s=k—h(k)
k—h(k)-1

— (g =hm) Y AXT(8)(Inoa ® (Ry + ) Ax(s),
S=/<—hM
k=hy, -1 I ®S

—U—h) Y sT(s)[ — }é(s)

s=k—h(k) * Oy

k=h(k)-1 I ®S
—yi=h) Y ET(5) [—W} 5().
s=k—hpr OK

By Lemma 3, the term ¥ in (20) can be estimated as

k-1 T k-1
¥ < —( Z Ax(s)) (Ina ®R1)< Z Ax(s))

s=k—hyy, s=k—hyy,
k=hy,—1

s=k—h(k)

k=hym—-1
( Ax(s > Inoi® (Ry + Sl))< Z Ax(s))
k—h(k)-1
< Ax(S)) (Ina1 ® (R, +Sz))< > Ax(S))
s=k—hpp s=k—hpp

s=k—h(k)
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=~ T () (e1 — e2)(In1 ® Ri)(er — )¢ (K)
v ® Ry +5) | 0
ﬁ(lN—l ® (Ry + 52))

- (om [ } n’¢(k), (21)

*

where a(k) = (hyr — h(k))/ (har = h,).
Here, when #,, < h(t) < hyy, since a(k) satisfies 0 < «(t) < 1, by a reciprocally convex
approach [24], the following inequality for any matrix M holds:

(k)
—y/ Toam i 0 |: Inoi ® (Ry + 81) | Ina®M :|
* ‘ \/ l;?lg()l,( * | IN.i ® (Ry + 52)
[ _a(k)
X _ lix(k)lk O >0
2K
* ’ 1/ I;Lz,g() K

which implies

~ |: ﬁ(k)(b\z-l ® (Rz +81)) ‘ Ox :|
* Ao Ina ® Ry +55))
IN1® (Ry + 81) ‘ Ina®M
. . (22)
. | v @ Ry +5))
Also, when h(k) = h,, or h(k) = hy, we get
k=hy-1 k=hp—1
Z Ax(s) = Z (x(s +1) —x(s))
s=k—h(k) s=k—h(k)
= x(k = hy) — x(k — h(k))
= x(k - hm) _x(k - hm) = 0K><1
or
k=h(k)-1 k=h(k)-1
Ax(s) = Z (x(s +1) —x(s))
s=k—hyy s=k—hyy
= x(k - h(k)) —x(k = hypp)
= w(k = hp) = x(k = har) = Orexa, (23)
respectively.
Thus, if the inequality (12) holds, then from Eqs. (22) and (23), the following inequality
still holds:

% < g7 (k)(er - e2)(In-1 ® Ry)(er — €2) ¢ (k)
v @ Ry +8)) | 0x
ﬁ(lN—l ® (R +5))

-1 [ } n’¢ k)

*

Page9of 17
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< —¢T(K)(er — e2)(In1 ® Ri)(er — )" £ (k)

—;T(k)H[ a®R+S) | Iva®M
* l Inai @ (Ry + 82)

} ¢ (k)
= ¢ (k)Eag (K),
which means
lE{AV},(k)} <cT(k)(E5 + Ba)c (k) + Oy (24)
Lastly, the E{V,(k)} is calculated as

E{AV4(k)} = (har — h)* (6" (k) (In-1 ® R3)x(k) + Ax” (k)(In-1 ® Ra) Ax(k))
kb1

= (g =hm) Y (67 ()Unot ® Ra)x(s) + AxT (5)(In-1 ® Ra) Ax(s))
s=k—h(k)

k=h(l)-1
= (g =hm) Y (67(5)(Un-1 ® Ra)x(s) + Ax” (s)(Iy-1 ® Ra) Ax(s))
s=k—hpt

= T (k)Es5¢ (k) + O, (25)

where

kb1
"’ In1 ® R3 o
Oy = —(hy — hw) E £7(s) |: | :| £(s)
s=k—h(k) * | In_1 ® Ry

k—h(k)-1 Iv1 ®R 0,
~(hyi=h) Y s%[ = 3|1 o7 }as).
* N-1 4

S=k7hM

Furthermore, if the inequalities (13) hold, then the E{AV3(k)} + E{AV4(k)} has an upper
bound as follows:

E{AV3(k)} + E{AVa(k)} < ¢T(K)(Es + By + E5)¢ (k) + (O + ©5)
= ¢T(k)(E3 + By + Bs)¢ (k)
k- fim 1 [ INa®Rs | INaa®S) :| £(s)

— (hy — ) £7(s)
s=g1:(k) * Ino1 @ Ry

k=h(k)-1 Ivi@R | Iv @S
=) sT(s)[ N | N B }s(s)
In.1 @Ry

s=k—hpt

< ¢T(k)(Es + Bq + B5)C (K). (26)

Therefore, from Egs. (15)-(26) and by application of the S-procedure [25], the mathemat-
ical expectation on AV (k) has a new upper bound as

E{AV(K)} <E{¢" (k) (E1 + By + B3 + B4 + E5) C(K)}. (27)

]
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Also, the system (6) with the augmented vector ¢ (k) can be rewritten as

E{ (5,1 ()} = Ocs1, (28)

where Y|, is defined in (10).
Then a delay-dependent stability condition for the system (6) is

E{¢(k)®¢(k)} <0 (29)
subject to
]E{T[pm]é'(k)} = Ok x1-

From Lemma 4(iii) and Assumption 1, the inequality (29) is equivalent to the following

condition:

E{® + FYp,,) + (FY(,1) "} = @+ FYppp) + (FYp100)"

Plipo)

< 051(1 (30)

where F is any matrix with appropriate dimension.

Here, by utilizing Lemma 4(ii), the condition (30) is equivalent to the following inequal-

ity:

(T[JZ_PO])T(I)(T[JI_DO]) < Ogpc. (31

From the inequality (31), if the LMIs (11)-(13) are satisfied, then the synchronization sta-
bility condition (29) holds by Definition 1. This completes our proof. O

As a special case, consider the following discrete-time CDNs with only interval time-

varying delays in nodes and randomly changing coupling strength:
N
yi(k +1) =f(yi(k),yi(k - h(k))) + PmC Zgijfyj(k), i=1,2,...,N. (32)

j=1

By use of the similar method in the driven procedure of the model (6), a model of discrete-
time CDNs (32) can be obtained as

a(k+1) = (Ino1 ® + pc(A @ T))a(k) + (In-1 ® Ja)x(k — (k). (33)

The following is given for synchronization stability of the model of discrete-time CDNs

with only interval time-varying delays in nodes (33).

Theorem 2 For given positive integers hy,, hy, I, and positive scalars c, py < 1, the system
(33) is asymptotically synchronous for h,, < h(k) < huy, if there exist positive matrices P €
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R™", Q; € R"™", R; € R"™", any symmetric matrices S; e R"™",i=1,2,j=1,...,4, and any
matrix M € R"™" satisfying the following LMIs with (12) and (13):
SL N\ x5~ L
(Yitpo1)” @ (Titpg)) < O (34)

Proof The above criterion is derived in the similar method as the proof of Theorem 1,
instead of the matrix Y7,,;, using the following matrix:

Y‘[pm] = [(IN—I & U _In) + me(A ® F)); OK’ (IN—I ®]d)r 0K7 _IK]'

The other procedure is straightforward from the proof of Theorem 1, so it is omitted.
O

Remark 3 The systems (6) and (33) with randomly changing coupling strength and the
switched systems [30—-38] are similar in the concept of changing parameters. In [30-38],
the various problems for the switched neural networks with time-invariant delay were
addressed. However, since time delay has not only a fixed value in a practical system [39],
the concerned systems with interval time-varying delays were considered in this paper.
Moreover, the changing information of a parameter was considered with the probabilistic
rule; that is, the Bernoulli sequence.

4 Numerical examples
In this section, we provide two numerical examples to show the effectiveness of the pre-
sented stability criteria in this paper.

Example 1 Consider the following 2-order system with the structure in Figure 1 and the
inner-coupling matrix I" = 0.01/,,:

N
ya(k +1) = 0.8y, (k) — y3 (k) = 0.1y, (k - h(k)) +c Zglij,»l (k - h(k)),
j=1
Yin(k +1) = 0.05y;1(k) + 0.9y, (k) — yizl(k)yiz(k) - 0.2y, (k - h(k)) (35)
N
- 0.1y (k - h(k)) +c Zgijryﬂ (k = h(k)),
j=1

which is asymptotically stable at the equilibrium point s(k) = 0 and s(k — k(k)) = 0. To
analyse the synchronization stability for randomly changing coupling strength, the N —1

(a) (b)

Figure 1 The structures of CDNs: (a) N =5; (b) N=10.
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linear delayed difference equations (6) are
ak +1) = (Iy-1 @ N)x(k) + (Ino1 ® Ju + pme(A @ T))x(k — h(k))

with the Jacobian matrices

08 0 01 0
]:[0.05 0.9}’ ]d:[—o.z —0.1]

From Figure 1, the outer-coupling matrices are considered as two cases.

e Case1:
-2 1 0 0 1
1 -3 1 1 o0
G=|0 -2 1 0],
0 1 -3 1
1 0 0 1 =2
e Case 2:
(<4 1 0 o 1 1 1 0o 0 O]
1 -3 0 0 0 O O 1 1 o0
o 0 -1 0 0 O O 1 o0 O
o 0 0 -2 0 1 o0 1 o0 O
G 1 0o 0 0 -2 0 O 0O 1 o
1 0o 0 1 0 -2 0 0 0 O
1 0o 0o O O O -3 0 1 1
o 1 1 1 0o 0 0 -3 0 O
o 1 0 o0 1 o 0 -4 1
|0 0o 0 0 0 0 1 0 1 -2]

Moreover, from Case 1,

A = diag{-4.6180,-3.6180,-2.3820,-1.3820}

and from Case 2,

A = diag{-6.0399, -4.5664,-4.2269, -3.4438,-2.5493,

—-2.1762,-1.6301,-0.9225,-0.4448}.

(36)

The result of the maximum bound of time-delay with fixed ¢ = 0.5,/ =10, pp = 0.7, h,,, = 1

and G in Case 1 provided by Theorem 1 is 5. For Case 1, Figure 2 shows the simulation
results for the state trajectories of the network (36) with /(k) = 4| sin(krr/2)| + 1. When the
coupling strength is changeless, the size of overshoot shown in Figure 2(b) is smaller than

the one shown in Figure 2(a) at time 10~30 [sec]. Here, if we consider the setting time

and rise time on the basis of Figure 2(b), which are the results of an ideal model for CDNs

without the changing coupling strength, we know the effect of the change of coupling

Page 13 of 17
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(a) (b)
4 T T 4 T T
3 3
2 2
1 1
%* ol ~_|_—D._—\-—\__ %* o
. | JJJJJJJ/—j_,"’;
-2 1 -2
-3 -3
-4 i . . : -4
0 10 20 30 40 50 0 10 20 30 40 50
k k
Figure 2 State trajectories of Case 1: (a) With randomly changing coupling strength, pn,¢; (b) With
fixed coupling strength, c (Example 1).

I I I I
20 40 60 80 100
k

Figure 3 State trajectories of Case 2 with randomly changing coupling strength, pm,c (Example 1).

strength. Next, the result of maximum bound of time-delay with fixed ¢ = 1, py = 0.2, &, =
5,and G in Case 2 by Theorem 1 is 7. With the condition of time-varying delay as A(k) =
2| sin(km /2)| + 5, the simulation results for the state trajectories of the network (36) are
shown in Figure 3. Also, this figure shows that the trajectories between the synchronized
states converge to zero under the time-delay (k). Lastly, in Figure 4, the distribution of a

binomial random variable is drawn with the values of probability, pg, 0.7 and 0.2.

Example 2 Recall the system (35) in Example 1 and the structure shown in Figure 1. Thus,

consider the following coupled networks with only interval time-varying delay in nodes
x(k+1) = (v ®F + puc(A ® T)x(k) + (In1 ® Ja)x(k — h(k)), (37)

where the associated parameters are defined in Example 1.

The simulation results for the state trajectories of the network (37) and the curve of
mode with the probability po = 0.7 are shown in Figure 5 with the condition of time-
varying delay as (k) = 13|sin(kn/2)| +5 (¢ =1, [ =10, po = 0.7 and 4,, = 5). At this time,

by Theorem 2, the maximum bound of time-delay is 18.
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(@) (b)
10 T T 5 T T T T
4.5
n
35
sl
825
2L U L
15F u’
1r -
0.5
o 10 20 } % 20 s %o 20 20 ) 0 8 100
Figure 4 The curves of the operation modes: (a) po = 0.7; (b) po = 0.2 (Example 1).

4 10
3 1 9l
2 ] |
sl
! | |
7
2, fmanen, g |
" =
6
-1 —
5
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-3 - ar
" ; ; ; ; 3 ; ; I ;
0 20 40 60 80 100 0 20 40 60 80 100
k k
Figure 5 State trajectories and the curve of the operation modes (Example 2).

5 Conclusions

In this paper, new delay-dependent synchronization criteria for the discrete-time CDNs
with interval time-varying delays and randomly changing coupling strength are proposed.
The randomly changing coupling strength is considered with the concept of binomial dis-
tribution, which is a generalization of the Bernoulli distribution. To drive these results, the
suitable Lyapunov-Krasovskii functional and reciprocally convex approach are used to ob-
tain the feasible region of synchronization stability criteria. Two numerical examples have

been given to show the effectiveness and usefulness of the presented criteria.
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