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1 Introduction

The generalized Laguerre polynomials are defined by
ex
p( M ZL“ @t (¢ e Qwitha >-1). (11)

From (1.1), we note that

Lix) =) CEVGo (see [1-3]). (1.2)

r!
r=0

By (1.2), we see that L% (x) is a polynomial with degree #. It is well known that Rodrigues’
formula for L% (x) is given by

n!

gt (g
L) =2 (%(6_’%"“’)) (see [1-3]). (1.3)

From (1.3) and a part of integration, we note that

o r 1
/ et (L ) dx = DO D (1.4)
0

n!

where §,,, is a Kronecker symbol. As is well known, Bernoulli polynomials are defined by

the generating function to be

t = t"
—— lext = B _ ZB,,(x); (see [1—29]), (1.5)
n=0 :

with the usual convention about replacing B"(x) by B,,(x).
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In the special case, x = 0, B,(0) = B, are called the nth Bernoulli numbers. By (1.5), we

get
B,(x) = Z <7)Bn_1xl (see [1—29]).

=0

The Euler numbers are defined by
Ey =1, (E+1)"+E, =28, (see[27,28]),

with the usual convention about replacing E” by E,,.
In the viewpoint of (1.6), the Euler polynomials are also defined by

n

E,(x)=(E+x)" = Z (’;)En_lxl (see [11-24]).

=0

(1.6)

(1.8)

From (1.7) and (1.8), we note that the generating function of the Euler polynomial is given

by

e =™ =Y "E,(x)— (see [15-29]).

et +1
By (1.5) and (1.9), we get

2

1=0

Thus, by (1.10), we see that

- Ein
E(x) = -2 (”) Zlp ().
1Z=o: 1)1+1

By (1.7) and (1.8), we easily get

t o t 2e St 2e*t
et—-1 2\et+1 ee—1)\et+1)

Thus, by (1.12), we see that

Bw= Y (Z)kan_k(x>.

k=0,k1

1 2 te* [~ E (1 t"
Mo 2-2—— =2 u B,_i(x) | —.
ef+le t( et+1><ef—1> ;(Zl+l<l> 1) n!

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

Throughout this paper, we assume that e € Q with«a > —1. Let P, = {p(x) € Q[x]| degp(x) <

n} be the inner product space with the inner product

(), 4)) = / e p(x)q(x) dx,

0
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where p(x),q(x) € P,. From (1.4), we note that {L§(x),L{(x),...,L%(x)} is an orthogonal
basis for P,,.

In this paper, we give some interesting identities on Bernoulli and Euler polynomials
which can be derived by an orthogonal basis {L§(x), LS (x),...,L%(x)} for P,.

2 Some identities on Bernoulli and Euler polynomials
Let p(x) € IP,.. Then p(x) can be generated by {L{ (x), LS (x),...,L%(x)} in P, to be

px) =) GLi(x), 21)

where

(p(x), L} (%)) = Ci(L§ (%), L§ (%))
=Cy /0 OOx‘)‘e_"LZ‘ (%)LF (x) dx

r 1
- Ck%. (2.2)

From (2.2), we note that

k!
= Ty k) PO H)
k 1 > dk k+a e*
) WF/ <dxkx )P(x)dx
m/ (dxk €_x>p(x) dx. 03)

Let us take p(x) = Y " _ oAl ( )B E, — m(x) € P,. Then, from (2.3), we have

Op— foo & g Z ") BuEo() dx
k_F(a+k+1) o \dxk o\ e

Il OOl+o¢—x
)BE,,ml(l k)'/ x e dx

m=0,m#1 =k (
(Sl n_ n " B,,E b rlias)
F(a+k+1)m=0 - = <m)( )’””””(1 ororer
n-k n-m
X n -m I (+a)l+a-1)--«
D moz;q;(n)( l )BmEn_m_l(l—k)!(ot+k)(oz+k—1)---oz

n - l
= (-1)n! Z Zml (n—m- l (lﬂz) 24)

m=0,m#1 =k

Therefore, by (2.1) and (2.4), we obtain the following theorem.
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Theorem 2.1 For n € Z., we have

, " BiuEy_m(x)
20
s " BBy E-m—1 (l+a)\) .,
kzz(; (Z Z (n—m—1D)! (l—k))Lk(x)'

mOm-T/llk

From (1.13), we can derive the following corollary.

Corollary 2.2 For n € Z,, we have

- e
-t ( 8 S E (1) e

k=0 m=0,m#1 =k

Let us take p(x) = Y/, ( )Iifrll B,,_i(x). By the same method, we get

1 o dk " n Ell
C, = 4 kto —x + B,_ d
, F(a+k+1)f0 (xkx ¢ >=Z<l)l+1 1) dx
n-1 Eq *© dk k+a —
= B im e R P
(m)l+l ! ,/o<dxkx A

n—-0N E; m!
—B, . w———T 1
( )l+l ! (m - k) (m+ 1)

-y n-k n-1 (y[) (n—l) m!  Ejg B (@+m)a+m—-1)-a
. (I’ﬂ—k)!(l+1) et (Ol+k)(a+k_1)...a

A a+m\ Ei B im
' (+1)! (n=1-m)

Therefore, by (1.11), (2.1), and (2.5), we obtain the following theorem.

Theorem 2.3 For n € Z,, we have

n-k n-l
B . a+m\ Ena Bum o
'Z( 2 (Z k(m k) (m+1)!(n-m-1) )L ()

1=0 m=

For n € N with n > 2 and m € Z, with n — m > 0, we have

R [ e

(n— m)m

+ (=1t B,eP, (see [8]).

(2.5)

(2.6)

Page 4 of 8


http://www.advancesindifferenceequations.com/content/2012/1/201

Kim et al. Advances in Difference Equations 2012, 2012:201
http://www.advancesindifferenceequations.com/content/2012/1/201

Let us take p(x) = B,_u(x)B,,(x) € P,,. Then p(x) can be generated by an orthogonal basis
{Ly (%), LY (%), ..., L% (%)} in P, to be

@) =Y CL{(x). 2.7)
k,

From (2.3), (2.6), and (2.7), we note that

C, = 1 /OO dk k+a —x ()d
Ttk Jy \a* € Jpoe
51

(o ()]

B,, gk
X - —22r / (d—xkxk“"e‘x>8n2r(x) dx
51

1 n—m m By
F(a+k+1)r2:{< 2r )m+<2r>(n_m)}n—2r

0
= (n-2r A a )
XZ( >n2r1/0 <d_x’<x e)xdx

1 21 nor
d

BZan—Zr—l o k k+a —x )
X — /0 <dx"x e )xdx
(e m 0o
B a+k+1)X0:§k{( ) +(2r)(n—m)}( [ )
BZan—Zr—ll'
X —_—
(n=2r)(I=k)!

IM'a+1+1). (2.8)

It is easy to show that

MNa+1+1) B (c+D(a+1-1)---al' ()
Da+k+1)(-k)! (e+k)(a+k=1)---al(a)l-k)

~ (c+Da+1-1)---(a+k+1) ~ o+l
- (a = k)! _<l—k)'

(2.9)

By (2.8) and (2.9), we get

2]n 2r
-0 2 575 e ()]
r=0 [=k
n=2r\ (o +1\ !By,B,_2_;
X( ! )(l-k)W' (2.10)

Therefore, by (2.7) and (2.10), we obtain the following theorem.
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Theorem 2.4 Forne Nwithn>2 and m € Z, with n —m > 0, we have

n [”Tik]n—Zr
n—m m
Byn()B(x) = Z(—nk: > Z(( ) )m+ <2r)(n—m))

k=0 r=0 [=k
n-2r\ [o+10\1'ByB, o
——— L% (x).
X( ! )(l—k) (n—27) }k(x)

It is easy to show that

tZet(ery) tZet(ery—l) t2 d (et(x+y—1) )

(et—l)zz(ery_l) e -1  dt \ e—1 @11

From (2.11), we have

n

Z (:)Bk(x)B,,_k(y) =1-nB,(x+y)+(x+y—-1nB,1(x+y) (see [11]). (2.12)
k=0

Let x = y. Then by (2.12), we get

n

> (Z) B@)By i) = (1= m)By(2x) + (2 = By 1(2%). (2.13)
k=0

Let us take p(x) = >}, (Z)Bk(x)Bn_k(x) € P,. Then p(x) can be generated by an orthogonal
basis {L{(x), LS (x),...,L%(x)} in P, to be

=3 (:)Bk(x)Bn_k(x) =Y Gliw. (214)
k=0 k=0

From (2.3), (2.13), and (2.14), we can determine the coefficients C’s to be

C, = 1 /oo dk k+a —x ()d
Ttk Jy \aw* & )P

— 1 (1 )/00 dk k+a —x B(Z)d
T T(e+k+1) - 0 ¢ )

* dk k+a —x
+ n/ ( x e )(Zx -1)B,_1(2x) dx}. (2.15)
0

P
By simple calculation, we get
1 ©d e
_ —x*%e™ ) (2x - 1)B,_1(2x) d.
F(a+k+1)/0 (dxkx ¢ )(x 1 (22)

n-1
o VK n-1\_, a+l+1 \
=2(-1) E ( ; )28n_1_1<l_k+1)(1+l).

I=k-1

n-1
_1 !
NEE <" z )2’3,,_1_1((1)‘;/()1! (2.16)
1=k
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and

1 /oo d* k+o —x B(2x)d
Tla+k+1) Jy \ak™ ¢ )omsar

SEDD (Vl’) 2B, It (i i Z) (2.17)

I=k

Therefore, by (2.13), (2.14), (2.15), (2.16), and (2.17), we obtain the following theorem.

Theorem 2.5 Forn € Z,, we get

3 (Z )Bkoc)Bnk(x)

k=0

== > (1) (’Z)len_,n(jii) L (x)

k=0 I=k

n n-1
n-1 a+l+1
—1)k 2M1B, (1 +1)!
+nk§:0( ) §_< / > 110+ )(l_k+1>

I=k-1
Uy | o+l
_ Z ( )213,1_1_11!( ) LY (x).
—\ 1 I-k
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