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Abstract

In this article, we investigate the boundedness property of the solutions of linear and
nonlinear discrete Volterra equations in both convolution and non-convolution case.
Strong interest in these kind of discrete equations is motivated as because they
represent a discrete analogue of some integral equations. The most important result
of this article is a simple new criterion, which unifies and extends several earlier
results in both discrete and continuous cases. Examples are also given to illustrate
our main theorem.

1 Introduction
We consider the nonlinear system of Volterra difference equations

x(n + 1) =
n∑
j=0

f (n, j, x(j)) + h(n), n ≥ 0, (1:1)

with the initial condition

x(0) = x0, (1:2)

where

(A) The function f(n,j,.) : ℝd ® ℝd is a mapping for any fixed 0 ≤ j ≤ n, x0 Î ℝd and

h(n) Î ℝd, n ≥ 0.

(B) For any 0 ≤ j ≤ n, there exists an a(n, j) Î ℝ+, such that

||f (n, j, x)|| ≤ a(n, j)φ(||x||), 0 ≤ j ≤ n, x ∈ Rd,

and

sup
n≥0

||h(n)|| < ∞

hold. Here j : ℝ+ ® ℝ+ is a monotone non-decreasing mapping such that j (v) > 0,

v > 0, and j(0) = 0 where ||.|| is any fixed norm on ℝd.

In recent years, there has been an increasing interest in the study of the asymptotic

behavior of the solutions of both convolution and non-convolution-type linear and

nonlinear Volterra difference equations (see [1-17] and references therein). Appleby et

al. [2], under appropriate assumptions, have proved that the solutions of the discrete

linear Volterra equation converge to a finite limit, which in general is non-trivial. The

main result on the boundedness of solutions of a linear Volterra difference system in
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[2] was improved by Györi and Horváth [8]. In terms of the kernel of a linear system

Györi and Reynolds [10] found necessary conditions for the solutions to be bounded.

Also Györi and Reynolds [9] studied some connections between results obtained in

[2,8]. Elaydi et al. [6] have shown that under certain conditions there is a one-to-one

correspondence between bounded solutions of linear Volterra difference equations

with infinite delay and its perturbation. Also Cuevas and Pinto [4] have shown that

under certain conditions there is a one to one correspondence between weighted

bounded solutions of a linear Volterra difference equation with unbounded delay and

its perturbation. In most of our references linear and perturbed linear equations are

investigated, moreover the boundedness and estimation of the solutions are founded

by using the resolvent of the equations.

This article studies the boundedness of the solution of (1.1) under initial condition

(1.2). As an illustration, we formulate the following statement which is an interesting

consequence of our Corollary 5.7.

Consider the linear convolution-type Volterra equation

x(n + 1) =
n∑
j=0

A(n − j)x(j) + h(n), n ≥ 0, (1:3)

with the initial condition

x(0) = x0. (1:4)

Here A(n) Î ℝd × d are given matrices, h(n) Î ℝd are given vectors and x0 Î ℝd.

Proposition 1.1. Assume that one of the following conditions is satisfied:

(α)
∞∑
i=0

||A(i)|| < 1 and sup
n≥0

||h(n)|| < ∞;

(β)
∞∑
i=0

||A(i)|| = 1 and
n∑
i=0

||A(i)|| < 1,n ≥ 0, moreover

sup
n≥0

||h(n)||
∞∑

i=n+1
||A(i)||

< ∞.

Then the solution of (1.3) and (1.4) is bounded for any x0 Î ℝd.

We remark that the above proposition gives sufficient conditions for the bounded-

ness, but they are not necessary in general, see Remark 6.5 below.

To the best of our knowledge, this is the first article dealing with the boundedness

property of the solutions of a linear inhomogeneous Volterra difference system with

the critical case
∑∞

i=0 ||A(i)|| = 1. For some recent literature on the boundedness of the

solutions of linear Volterra difference equations, we refer the readers to [10-12]. We

give some applications of our main result for sub-linear, linear, and super-linear Vol-

terra difference equations. We study the boundedness of solutions of convolution cases

and we get a result parallel to the corresponding result of Lipovan [18] for integral

equation. Also we give some examples to illustrate our main results.

The rest of the article is organized as follows. In Section 2, we briefly explain some

notation and two definitions which are used to state and to prove our results. In Sec-

tion 3, we sate our main result with its proof. In Section 4, we give three applications
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based on our main result. In Section 5, some corollaries with convolution estimations

and boundedness of convolution infinite delay equation are given. Examples are also

given to illustrate our main theorem in Section 6.

2 Preliminaries
In this section, we give some notation and some definitions which are used in this

article.

Let ℝ be the set of real numbers, ℝ+ the set of non-negative real numbers, ℤ is the

set of integer numbers, and ℤ+ = {n Î ℤ : n ≥ 0}. Let d be a positive integer, ℝd is the

space of d-dimensional real column vectors with convenient norm ||.||. Let ℝd × d be

the space of all d × d real matrices. By the norm of a matrix A Î ℝd × d, we mean its

induced norm ||A|| = sup{||Ax|| |x Î ℝd, ||x|| = 1}. The zero matrix in ℝd × d is

denoted by 0 and the identity matrix by I. The vector x and the matrix A are non-

negative if xi ≥ 0 and Aij ≥ 0,1 ≤ i,j ≤ d, respectively. Sequence (x(n))n ≥ 0 in ℝd is

denoted by x :ℤ+ ® ℝd.

The following definitions will be useful to prove the main results.

Definition 2.1. Let the function j and the sequence a(n,j) Î ℝ+, 0 ≤ j ≤ n, be given in

condition (B). We say that the non-negative constant u has property (PN) with an inte-

ger N ≥ 0 if there is v >0, such that

N∑
j=0

a(N, j)φ(u) + ||h(N)|| ≤ v, (2:1)

and

N∑
j=0

a(n, j)φ(u) +
n∑

j=N+1

a(n, j)φ(v) + ||h(n)|| ≤ v, n ≥ N + 1 (2:2)

hold.

Definition 2.2. We say that the vector x0 Î ℝd belongs to the set S if there exist a

non-negative constant u and an integer N ≥ 0 such that u has property (PN) and the

solution x(n;x0), n ≥ 0, of (1.1) and (1.2) satisfies

‖ x(n; x0) ‖≤ u, 0 ≤ n ≤ N. (2:3)

Remark 2.3. x0 Î ℝd belongs to the set S if

a(0, 0)φ(‖ x0 ‖)+ ‖ h(0) ‖≤ v, (2:4)

and

a(n, 0)φ(‖ x0 ‖) +
n∑
j=1

a(n, j)φ(v)+ ‖ h(n) ‖≤ v, n ≥ 1 (2:5)

hold. In this case N = 0 and u = ||x0|| have property (P0).

Remark 2.4. If there exists an N ≥ 0 and two positive constants u and v such that

(2.2) holds, then

αN := sup
n≥N+1

N∑
j=0

a(n, j) < ∞, (2:6)
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βN := sup
n≥N+1

n∑
j=N+1

a(n, j) < ∞, (2:7)

γ := sup
n≥0

‖ h(n) ‖< ∞. (2:8)

Conditions (2.6) and (2.7) are equivalent to

sup
n≥0

n∑
j=0

a(n, j) < ∞. (2:9)

3 Main result
Our main goal in this section is to establish the following result with the proof.

Theorem 3.1. Let (A) and (B) be satisfied and assume that the initial vector x0
belongs to the set S. Then the solution x(n;x0), n ≥ 0, of (1.1) and (1.2) is bounded.

More exactly the solution satisfies (2.3) with suitable u and N, such that

‖ x(n; x0) ‖≤ v, n ≥ N + 1, (3:1)

where v is defined in (2.1) and (2.2).

Proof. Let x0 Î S and consider the solution x(n) = x(n; x0), n ≥ 0, of (1.1) with the

condition (1.2) and let u and N be defined in (2.3). Then

‖ x(N + 1) ‖ ≤
N∑
j=0

‖ f (N, j, x(j)) ‖ + ‖ h(N) ‖

≤
N∑
j=0

a(N, j)φ(‖ x(j) ‖)+ ‖ h(N) ‖

≤
N∑
j=0

a(N, j)φ(u)+ ‖ h(N) ‖≤ v,

where we used the monotonicity of j, and the definition of v. Thus (3.1) holds for n

= N + 1.

Now we show that (3.1) holds for any n ≥ N + 1. Assume, for the sake of contradic-

tion, that (3.1) is not satisfied for all n ≥ N + 1. Then there exists n0 ≥ N + 1 such that

‖ x(n0 + 1) ‖=‖ x(n0 + 1; x0) ‖> v, (3:2)

and

‖ x(n) ‖=‖ x(n; x0) ‖≤ v, N + 1 ≤ n ≤ n0. (3:3)

Hence, from Equation (1.1), we get

‖ x(n0 + 1) ‖ ≤
N∑
j=0

‖ f (n0, j, x(j)) ‖ +
n0∑

j=N+1

‖ f (n0, j, x(j)) ‖ + ‖ h(n0) ‖

≤
N∑
j=0

a(n0, j)φ(‖ x(j) ‖) +
n0∑

j=N+1

a(n0, j)φ(‖ x(j) ‖)+ ‖ h(n0) ‖ .
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Since j is a monotone non-decreasing mapping, (2.3) and (3.3) yield

‖ x(n0 + 1) ‖≤
N∑
j=0

a(n0, j)φ(u) +
n0∑

j=N+1

a(n0, j)φ(v)+ ‖ h(n0) ‖.

But x0 Î S and u has property (PN), and hence ||x(n0 + 1)|| ≤ v. This contradicts the

hypothesis that (3.1) does not hold for n0 ≥ N + 1. So inequality (3.1) holds.

4 Applications
In this section, we give some applications of our main result. Throughout this section

we take j (t) = tp, t > 0 with p > 0. There are three cases:

1. Sub-linear case when 0 <p < 1;

2. Linear case when p = 1;

3. Super-linear case when p > 1.

4.1 Sub-linear case

Our aim in this section is to establish a sufficient, as well as a necessary and sufficient,

condition for the boundedness of all solutions of (1.1) and the scalar case of (1.1),

respectively.

The next result provides a sufficient condition for the boundedness of solutions of

(1.1).

Theorem 4.1. Let (A), (B) be satisfied and j (t) = tp, t > 0, with fixed p Î (0,1). If

(2.8) and (2.9) hold, then for any x0 Î ℝd the solution x(n; x0), n ≥ 0 of (1.1) and (1.2)

is bounded.

The next Lemma provides a necessary and sufficient condition for the condition (2.2)

be satisfied, and will be useful in the proof of Theorem 4.1.

Lemma 4.2. Assume j (t) = tp, t > 0 and 0 <p < 1. Any positive constant u has prop-

erty (P0) if and only if (2.8) and (2.9) are satisfied.

Proof. Let the non-negative constant u have property (P0) (N = 0 in Definition 2.1).

Then the condition (2.2) is satisfied for some positive v and for all n ≥ 1, so

α0 := sup
n≥1

a(n, 0) < ∞, β0 := sup
n≥1

n∑
j=1

a(n, j) < ∞, (4:1)

and γ0 := sup
n≥1

‖ h(n) ‖< ∞, (4:2)

this imply that conditions (2.8) and (2.9) are satisfied.

Conversely, we assume (2.8), (2.9) and we prove that any positive constant u has

property (P0). Clearly, (2.9) is equivalent to a0 < ∞, b0 < ∞ and (2.8) implies g0 < ∞.

Since p Î (0,1), it is clear that for an arbitrarily fixed u > 0, (2.1) and

α0up

v
+ β0vp−1 +

γ0

v
≤ 1, (4:3)

are satisfied for any v large enough. From (4.3) we get

α0u
p + β0v

p + γ0 ≤ v,
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that (2.5) is satisfied for ||x0|| = u and all n ≥ 1. Then by Definition 2.1, u has prop-

erty (P0).

Now we prove Theorem 4.1.

Proof. Let (A) and (B) be satisfied. By Lemma 4.2, we have that for any x0 Î ℝd, u =

||x0|| has property (P0) (see Remark 2.3). Thus, the conditions of Theorem 3.1 hold,

and the initial vector x0 belongs to S, and hence the solution x(n; x0) of (1.1) and (1.2)

is bounded.

We consider the scalar case of Volterra difference equation

x(n + 1) =
n∑
j=0

a(n, j)xp(j) + h(n), n ≥ 0, (4:4)

x(0) = x0, (4:5)

where x0 Î ℝ+, a(n,j) Î ℝ+, h(n) Î ℝ+, 0 ≤ j ≤ n and p Î (0,1).

The following result provides a necessary and sufficient condition for the bounded-

ness of the solution of (4.4) and (4.5). The necessary part of the next theorem was

motivated by a similar result of Lipovan [18] proved for convolution-type integral

equation.

Theorem 4.3. Assume

lim inf
n→∞

⎛
⎝ n∑

j=0

a(n, j)

⎞
⎠ > 0, (4:6)

moreover for any n ≥ 0, there exists an index jn such that

0 ≤ jn ≤ n and a(n, jn) + h(n) > 0. (4:7)

For any x0 Î (0, ∞), the solution of (4.4) is bounded, if and only if (2.8) and (2.9) are

satisfied.

Proof. Assume (2.8) and (2.9) are satisfied. Clearly, by Theorem 4.1 the solution of

(4.4) is bounded. Conversely, let the solution x(n) = x(n;x0) of (4.4) be bounded on ℝ+,

with x0 > 0. Under condition (4.7), by mathematical induction we show that x(n) > 0,

n ≥ 0. For n = 0 this is clear. Suppose that required inequality is not satisfied for all n

≥ 0. Then there exists index ℓ ≥ 0 such that x(0) > 0, ..., x(ℓ) > 0 and x(ℓ+1) ≤ 0. But

by condition (4.7), we get

x(� + 1) =
�∑
j=0

a(�, j)xp(j) + h(�)

≥ a(�, j�)xp(j�) + h(�) > 0, 0 ≤ j� ≤ �,

which is a contradiction. So x(n) > 0 for all n ≥ 0. On the other hand, for any n ≥ N*

≥ 1

x(n + 1) ≥
N∗−1∑
j=0

a(n, j)xp(j) ≥
N∗−1∑
j=0

a(n, j) min
0≤j≤N∗

xp(j),

Györi and Awwad Advances in Difference Equations 2012, 2012:2
http://www.advancesindifferenceequations.com/content/2012/1/2

Page 6 of 20



hence

sup
n≥0

N∗−1∑
j=0

a(n, j) < ∞. (4:8)

Since x(n + 1) ≥ h(n) for all n ≥ 0, clearly supn≥0 h(n) is finite.

Define now

m = lim inf
n→∞ x(n),

which is finite. First we show that m > 0.

Assume for the sake of contradiction that m = 0. In this case we can find a strictly

increasing sequence (Nk)k≥1, such that

x(Nk) = min
0≤n≤Nk

x(n) > 0, and x(Nk) → 0 as k → ∞.

From (4.4) if n = Nk - 1, we deduce

x(Nk) =
Nk−1∑
j=0

a(Nk − 1, j)xp(j) + h(Nk − 1)

≥
Nk−1∑
j=0

a(Nk − 1, j) min
0≤j≤Nk

xp(j)

= xp(Nk)
Nk−1∑
j=0

a(Nk − 1, j).

Since x(Nk) > 0, we have that

x1−p(Nk) ≥
Nk−1∑
j=0

a(Nk − 1, j), k ≥ 1.

Since p Î (0,1) and x(Nk) ® 0, an k ® ∞, we get

lim inf
k→∞

⎛
⎝Nk−1∑

j=0

a(Nk − 1, j)

⎞
⎠ = 0,

which contradicts (4.6). So m > 0 and for 1
2m, there exists N* ≥ 0 such that

x(n) ≥ 1
2
m, n ≥ N∗.

Hence,

x(n + 1) =
n∑
j=0

a(n, j)xp(j) + h(n)

≥
n∑

j=N∗
a(n, j)xp(j) ≥ 1

2p
mp

n∑
j=N∗

a(n, j), n ≥ N∗.

Györi and Awwad Advances in Difference Equations 2012, 2012:2
http://www.advancesindifferenceequations.com/content/2012/1/2

Page 7 of 20



But the solution x(n) is a bounded sequence, and hence

sup
n≥N∗

n∑
j=N∗

a(n, j) < ∞.

This and (4.8) imply condition (2.9).

Remark 4.4. In general, without condition (4.7) the necessary part of Theorem 4.3 is

not true. In fact if a(0, 0) = 0, and h(0) = 0, that is (4.7) does not hold for n = 0, then

for any x0 Î (0, ∞) the solution of (4.4) satisfies x(1;x0) = 0, and hence

x(n + 1) =
n∑
j=0
j 	=1

a(n, j)xp(j) + h(n), n ≥ 1.

Thus, the solution x(n; x0) does not depend on the choice of the sequence (a(n, 1))n≥1.

This shows that the boundedness of the solutions does not imply (2.9), in general.

4.2 Linear case

Our aim in this section is to obtain sufficient condition for the boundedness of the

solution of (1.1) under the initial condition (1.2), but in the linear case of Volterra dif-

ference equation.

The following result gives a sufficient condition for the boundedness.

Theorem 4.5. Assume (A), (B) are satisfied and j (t) = t, t ≥ 0. Then the solution x(n;

x0), x0 Î S, n ≥ 0 of (1.1) and (1.2) is bounded, if (2.9) is satisfied and there exists an N

≥ 0 such that one of the following conditions holds:

(i) condition (2.8) holds and

βN = sup
n≥N+1

n∑
j=N+1

a(n, j) < 1; (4:9)

(ii) βN = sup
n≥N+1

n∑
j=N+1

a(n, j) = 1,

and for any n ∈ �
(1)
N
,

N∑
j=0

a(n, j) = 0, h(n) = 0 (4:10)

hold, moreover

sup
n∈�

(2)
N

⎛
⎝1 −

n∑
j=N+1

a(n, j)

⎞
⎠

−1
N∑
j=0

a(n, j) < ∞, (4:11)

and

sup
n∈�

(2)
N

⎛
⎝1 −

n∑
j=N+1

a(n, j)

⎞
⎠

−1

‖ h(n) ‖< ∞, (4:12)
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where

�
(1)
N =

⎧⎨
⎩n ≥ N + 1 :

n∑
j=N+1

a(n, j) = 1

⎫⎬
⎭ ,

and

�
(2)
N =

⎧⎨
⎩n ≥ N + 1 :=

n∑
j=N+1

a(n, j) < 1

⎫⎬
⎭ .

For the proof of Theorem 4.4, we need the following lemma.

Lemma 4.6. Assume j (t) = t, t ≥ 0. A positive constant u has property (PN) with an

integer N ≥ 0 if and only if the condition (2.9) and either (i) or (ii) are satisfied.

Proof. Necessity. We show that (PN) implies (2.9) and either (i) or (ii). Suppose a

positive constant u has property (PN) with an integer N ≥ 0, hence (2.1) and (2.2) are

satisfied for v > 0 and for any n ≥ N + 1.

From (2.1) and (2.2), it is clear that (2.8), (2.9) are satisfied and

N∑
j=0

a(n, j)u+ ‖ h(n) ‖≤
⎛
⎝1 −

n∑
j=N+1

a(n, j)

⎞
⎠ v, n ≥ N + 1. (4:13)

Therefore

1 −
n∑

j=N+1

a(n, j) ≥ 0, n ≥ N + 1,

and hence

βN = sup
n≥N+1

n∑
j=N+1

a(n, j) ≤ 1.

The latest inequality implies two cases with respect the value of bN.

• The first case bN < 1. In this case the condition (i) is satisfied.

• Consider now the second case where bN = 1. Clearly if
∑n

j=N+1 a(n, j) = 1, then

from (4.13), we get

N∑
j=0

a(n, j)u + h(n) = 0, n ∈ �
(1)
N ,

or equivalently (4.10).

But if
∑n

j=N+1 a(n, j) < 1, then

1 −
n∑

j=N+1

a(n, j) > 0, n ∈ �
(2)
N ,
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and (4.13) yields⎛
⎝1 −

n∑
j=N+1

a(n, j)

⎞
⎠

−1 ⎛
⎝ N∑

j=0

a(n, j)u+ ‖ h(n) ‖
⎞
⎠ ≤ v, n ∈ �

(2)
N

and hence (4.11) and (4.12) are satisfied. Then condition (ii) holds.

Sufficiency. We show that if (2.9) and one of the conditions (i) and (ii) is satisfied

with some u ≥ 0 and N ≥ 0, then u has property (PN). It is easy to observe that (2.9)

yields

sup
n≥N+1

N∑
j=0

a(n, j) < ∞, and sup
n≥N+1

n∑
j=N+1

a(n, j) < ∞.

Let (i) of Theorem 4.5 be satisfied, that is bN < 1. Then for u ≥ 0 and n ≥ N + 1, N ≥

0, there exists v > 0 such that

N∑
j=0

a(n, j)u+ ‖ h(n) ‖≤ (1 − βN)v, n ≥ N + 1.

It implies

N∑
j=0

a(n, j)u+ ‖ h(n) ‖≤
⎛
⎝1 −

n∑
j=N+1

a(n, j)

⎞
⎠ v,

i.e. (2.2) is satisfied and (2.1) also is satisfied for all v large enough, hence u has

property PN.

Now suppose bN = 1, and (4.10) holds. Then, clearly (2.1) and (2.2) are satisfied for

any v ≥ 0 and n ∈ �
(1)
N
.

If n ∈ �
(2)
N

and (4.11) and (4.12) are satisfied, then for u ≥ 0, we have

sup
n∈�

(2)
N

⎛
⎝1 −

n∑
j=N+1

a(n, j)

⎞
⎠

−1 ⎡
⎣ N∑

j=0

a(n, j)u+ ‖ h(n) ‖
⎤
⎦ < ∞.

Then there exists v > 0 large enough such that⎛
⎝1 −

n∑
j=N+1

a(n, j)

⎞
⎠

−1 ⎡
⎣ N∑

j=0

a(n, j)u+ ‖ h(n) ‖
⎤
⎦ ≤ v, n ∈ �

(2)
N ,

since 1 − ∑n
j=N+1 a(n, j) > 0, for all n ∈ �

(2)
N
.

Therefore

N∑
j=0

a(n, j)u+ ‖ h(n) ‖≤
⎛
⎝1 −

n∑
j=N+1

a(n, j)

⎞
⎠ v,

i.e. for all v large enough the conditions (2.2) and (2.1) are satisfied. Hence, u has

property (PN).
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The following lemma is extracted from [2] (Lemma 5.3) and will be needed in this

section.

Lemma 4.7. Assume (A), (B) are satisfied and j (t) = t, t ≥ 0. For every integer N > 0,

there exists a non-negative constant K1(N) independent of the sequence (h(n))n≥0 and x0,

such that the solution (x(n))n≥0 of (1.1) and (1.2), satisfies

‖ x(n) ‖≤ K1(N)
(

max
0≤m≤N

‖ h(m) ‖ + ‖ x0 ‖
)
, 0 ≤ n ≤ N. (4:14)

Now we give the proof of Theorem 4.5.

Proof. Let (A), (B), (2.9) and either (i) or (ii) in Theorem 4.5 be satisfied. By Lemma

4.7 the solution of (1.1) and (1.2) satisfies (4.14) for all 0 ≤ n ≤ N. This means that,

there exists a non-negative constant u such that

‖ x(n) ‖≤ u, 0 ≤ n ≤ N.

By Lemma 4.6 we have u has property (PN). Then the conditions of Theorem 3.1

hold for the initial vector x0 belonging to S, and hence the solution x(n; x0) of (1.1)

and (1.2) is bounded.

4.3 Super-linear case

Our aim in this section is to obtain sufficient condition for the boundedness in the

super-linear case.

Theorem 4.8. Assume that conditions (A) and (B) are satisfied with the function j(t)
= tp, t > 0, where p > 1. Suppose also (2.8) and (2.9) hold. Then the solution x(n;x0) of

(1.1) and (1.2) is bounded for some x0 Î ℝd if there exists v ∈
[(

1
pβ0

) 1
p−1 ,

(
1
β0

) 1
p−1

]

such that

a(0, 0) ‖ x0‖p+ ‖ h(0) ‖≤ v, (4:15)

and

α0 ‖ x0‖p + γ0 ≤ v − β0v
p, (4:16)

where a0, b0 and g0 are defined in (4.1) and (4.2).

Proof. Assume (2.8), (2.9), (4.15), and (4.16) are satisfied. The case b0 = 0 is clear. So

we assume that b0 > 0. In this case, clearly, v − β0vp ≥ 0 if

v ∈

⎡
⎢⎣0,

(
1
β0

) 1
p − 1

⎤
⎥⎦ ,

and the maximum value of the function g(v) = v − β0vp is
(

1
pβ0

)1/(p−1)
.

Then there exists v such that

v ∈

⎡
⎢⎣

(
1
pβ0

) 1
p − 1 ,

(
1
β0

) 1
p − 1

⎤
⎥⎦ ,
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and the conditions (2.4) and (2.5) hold. By Remark 2.3 we get that under conditions

(4.15) and (4.16), u = ||x0|| has property (P0) and x0 belongs to S. Then the conditions

of Theorem 3.1 hold, so the solution of (1.1) with the initial condition (1.2) is

bounded.

5 Some corollaries with convolution estimations
In this section we give some corollaries on the boundedness of the solutions of (1.1)

and (1.2) but in the convolution-type. Through out in this section we take a(n, i) = a
(n - i), n ≥ 0, and 0 ≤ i ≤ n, and the following condition

(C) For any n ≥ 0, there exists an a(n) Î ℝ+, such that

‖ f (n, j, x) ‖≤ α(n − j)φ(‖ x ‖),

with a monotone non-decreasing mapping j : ℝ+ ® ℝ+ and ||.|| is any norm on ℝd.

Remark 5.1. If a(n,j) = a(n - j), a(n) Î ℝ+, n ≥ 0, and j(t) > 0, t > 0, then the non-

negative constant u has property (PN) with an integer N ≥ 0 if and only if

N∑
j=0

α(j)φ(u)+ ‖ h(N) ‖≤ v, (5:1)

and

n∑
j=n−N

α(j)φ(u)+
n−N−1∑

j=0

α(j)φ(v)+ ‖ h(n) ‖≤ v, n ≥ N + 1 (5:2)

are satisfied.

Remark 5.2. x0 Î ℝd belongs to the set S if

α(0)φ(‖ x0 ‖)+ ‖ h(0) ‖≤ v, (5:3)

and

α(n)φ(‖ x0 ‖) +
n−1∑
j=0

α(j)φ(v)+ ‖ h(n) ‖≤ v, n ≥ 1 (5:4)

hold. In this case N = 0 and u = ||x0|| has property (P0).

By our main result, we have the following corollary.

Corollary 5.3. Let (A), (C) and supn≥0 ||h(n)|| < ∞ be satisfied, and assume that the

initial vector x0 belongs to the set S. Then the solution x(n;x0), n ≥ 0, of (1.1) and (1.2)

is bounded.

Proof. Assume (A), (C) are satisfied. By Theorem 3.1 and Remark 5.1, it is easy to

prove that the solution of (1.1) and (1.2) is bounded.

The following two corollaries are immediate consequence of Theorems 4.1 and 4.3 of

the sub-linear convolution case, respectively.

Corollary 5.4. Assume (A), (C) are satisfied and j(t) = tp, t > 0, with fixed p Î (0,1).

If

sup
n≥0

‖ h(n) ‖< ∞, and
∞∑
j=0

α(j) < ∞, (5:5)

then for any x0 Î ℝd the solution x(n; x0), n ≥ 0 of (1.1) and (1.2) is bounded.
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Corollary 5.5. Consider Equation (4.4) with p Î (0, 1) and non-negative coefficients.

Assume

∞∑
n=0

α(n) > 0,

and for any n ≥ 0 one has h(n) > 0 if a(j) = 0, 0 ≤ j ≤ n. Then the solution of (4.4)

and (4.5) is bounded if and only if the condition (5.5) is satisfied.

Proof. The proof is immediate consequence from proof of Theorem 4.3 with Remark

5.1.

Remark 5.6. The Corollary 5.5 is analogous to the corresponding result of Lipovan

(Theorem 3.1, [18]) for integral equation.

In the next corollary we assume that

∞∑
n=0

α(n) ≤ 1. (5:6)

Under condition (5.6) we have three cases

Case 1.
∞∑
n=0

α(n) < 1;

Case 2.
∞∑
j=0

α(j) = 1 and for any n ≥ 1,

n−1∑
j=0

α(j) < 1, or equivalently
∞∑
j=n

α(n) > 0;

Case 3. There exists an index M ≥ 0 such that
M∑
n=0

α(n) = 1, moreover a(M) ≠ 0 and

a(n) = 0, n ≥ M + 1.

Corollary 5.7. Assume (A), (C) and (5.6), and let j(t) = t, t ≥ 0. Then the solution of

(1.1) and (1.2) is bounded for any x0 Î ℝ, if one of the following conditions holds

(a) Case 1. holds and supn≥0 ||h(n)|| < ∞.

(b) Case 2. holds and

sup
n≥1

‖ h(n) ‖
∞∑
j=n

α(j)
< ∞.

(c) Case 3. holds and h(n) = 0, n ≥ M + 1.

Proof. (a) This part is an immediate consequence of (i) from Theorem 4.5 with

Remark 5.1.

(b) Assume that (b) is satisfied. For a fixed N ≥ 0 and u Î ℝ+, there exists a positive

constant v such that

Györi and Awwad Advances in Difference Equations 2012, 2012:2
http://www.advancesindifferenceequations.com/content/2012/1/2

Page 13 of 20



n∑
j=n−N

α(j)

∞∑
j=n−N

α(j)
u +

‖ h(n) ‖
∞∑

j=n−N
α(j)

≤ u +
‖ h(n) ‖
∞∑
j=n

α(j)
≤ v, n ≥ N + 1,

and

N∑
j=0

α(j)u+ ‖ h(N) ‖≤ v

hold. Thus

n∑
j=n−N

α(j)u+ ‖ h(n) ‖≤
∞∑

j=n−N

α(j)v ≤
⎛
⎝1 −

n−N−1∑
j=0

α(j)

⎞
⎠ v,

i.e.

n∑
j=n−N

α(j)u+
n−N−1∑

j=0

α(j)v+ ‖ h(n) ‖≤ v, n ≥ N + 1. (5:7)

By Remark 5.1, u has property (PN). For the initial value x0 Î ℝd applying Corollary

5.3, we get the boundedness of the solution of (1.1) and (1.2).

(c) Assume the condition (c). Clearly, for all v ≥ 0 the conditions (2.1) and (2.2) are

satisfied and u has property (PN). Then for any x0 Î S, the solution of (1.1) is bounded

according to Corollary 5.3.

The proof of the following corollary is an immediate consequence of Theorem 4.8

and Remark 5.1 and it is therefore omitted.

Corollary 5.8. Assume that conditions (A) and (C) are satisfied with the function j
(t) = tp, t > 0,p > 1, and (5.5) holds. Then for an x0 Î ℝd the solution x(n;x0) of (1.1)

and (1.2) is bounded, if there exists v ∈
[(

1
pβc

) 1
p−1 ,

(
1
βc

) 1
p−1

]
such that

α(0) ‖ x0‖p+ ‖ h(0) ‖≤ v,

and

αc ‖ x0‖p + γ0 ≤ v − βcv
p,

where

αc = sup
n≥1

α(n) < ∞, βc =
∞∑
j=0

α(j) < ∞, and γ0 = sup
n≥1

‖ h(n) ‖ ∞.

Now we show the application of Corollary 5.7 to the linear convolution Volterra dif-

ference equation with infinite delay

x(n + 1) =
n∑

i=−∞
Q(n − i)x(i), n ≥ 0, (5:8)
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with initial condition

x(n) = ϕ(n), n ≤ 0, (5:9)

where Q(n) Î ℝd × d, n ≥ 0 and �(m) Î ℝd, m ≤ 0.

From (5.8), we have

x(n + 1) =
n∑
i=0

Q(n − i)x(i)+
−1∑

i=−∞
Q(n − i)ϕ(i) n ≥ 0.

If we compare the latest equation with Equation (1.1), we have f(n, i, x) = Q(n - i)x

and

h(n) =
−1∑

i=−∞
Q(n − i)ϕ(i) n ≥ 0.

If Mϕ = sup
m≤−1

‖ ϕ(m) ‖, then we get

‖ h(n) ‖≤
∞∑

j=n+1

‖ Q(j) ‖ Mϕ .

Corollary 5.9. Assume Q(n) Î ℝd × d, n ≥ 0, and

∞∑
n=0

‖ Q(n) ‖≤ 1. (5:10)

Then the solution of (5.8) with the initial condition (5.9) is bounded, if

Mϕ = sup
m≤−1

‖ ϕ(m) ‖< ∞. (5:11)

Proof. To prove that the solution of (5.8) with the initial condition (5.9) is bounded,

it is enough to show that one of the hypotheses (a), (b), (c) of Corollary 5.7 holds. Let

(5.10) and (5.11) be satisfied. There are three cases.

First consider the case when

∞∑
n=0

‖ Q(n) ‖< 1,

and (5.11) are satisfied. This implies (a) of Corollary 5.7.

Second consider the case when

∞∑
j=0

‖ Q(j) ‖= 1, and
∞∑
j=n

‖ Q(j) ‖> 0, n ≥ 1.

This yields

sup
n≥1

‖ h(n) ‖
∞∑
j=n

‖ Q(j) ‖
≤ sup

n≥1

∞∑
j=n+1

‖ Q(j) ‖ Mϕ

∞∑
j=n

‖ Q(j) ‖
≤ Mϕ < ∞,

and hence condition (b) of Corollary 5.7 is satisfied.
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The last case is when there exists N ≥ 0, such that

N∑
j=0

‖ Q(j) ‖= 1, and ‖ Q(n) ‖= 0, for all n ≥ N + 1.

In this case, we get ||h(n)|| = 0 for all n ≥ N + 1, hence (c) of Corollary 5.7 holds.

6 Examples
In this section we give some examples to illustrate our results.

Example 6.1. Let us consider the case when

a(n, j) =
2n + 1

(n + j + 1)(n + j + 2)
for all 0 ≤ j ≤ n.

We have a(0, 0) = 1
2 , a(n, 0) =

2n+1
(n+1)(n+2) , supn≥1a(n, 0) =

1
2,

n∑
j=1

2n + 1
(n + j + 1)(n + j + 2)

=
n(2n + 1)

2(n + 1)(n + 2)
,

and

sup
n≥0

n∑
j=0

2n + 1
(n + j + 1)(n + j + 2)

= 1. (6:1)

One can easily see that conditions (2.4) and (2.5) are equivalent to the inequalities

1
2

φ(‖ x0 ‖)+ ‖ h(0) ‖≤ v, (6:2)

and

2n + 1
(n + 1)(n + 2)

φ(‖ x0 ‖) + n(2n + 1)
2(n + 1)(n + 2)

φ(v)+ ‖ h(n) ‖≤ v, n ≥ 1. (6:3)

Consider the scalar equation

x(n + 1) =
n∑
j=0

(2n + 1)
(n + j + 1)(n + j + 2)

xp(j) + h(n), n ≥ 0, (6:4)

with the initial condition

x(0) = x0 (6:5)

where x0 Î ℝ+, h(n) Î ℝ+, n ≥ 0 and p > 0. In fact there are three cases with respect

to the value of p.

(a1) p Î (0,1) and j (t) = tp, t > 0. If supn≥0 h(n) < ∞ and (6.1) are satisfied, then for

any x0 ≥ 0, the solution of (6.4) and (6.5) is bounded by Theorem 4.1.

(a2) p = 1 and j (t) = t, t >0. It is not difficult to see that for any v > 0 large enough

the inequalities (6.2) and (6.3) are equivalent to the inequalities

1
2
x0 + h(0) ≤ v,
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and

2(2n + 1)
5n + 4

x0 +
2(n + 1)(n + 2)

n(5n + 4)
nh(n) ≤ v, n ≥ 1. (6:6)

Let k = supn≥1 nh(n) < ∞, it is easily to see that the inequality (6.6) is satisfied if

4
5
x0 +

4
3
k ≤ v.

Hence (2.4) and (2.5) are satisfied, by Lemma 4.6, x0 has property (P0). It is worth to

note that in this case our Theorem 4.5 is applicable for any x0 Î ℝ+, but the results in

[2,8-12,14] are not applicable in this case.

(a3) p > 1 and j(t) = tp, t > 0. Assume k = supn≥1 h(n), and for x0 ≥ 0, there exists

v ∈
[(

1
p

) 1
p−1 , 1

]
, such that

1
2
xp0 + h(0) ≤ v

and

1
2
xp0 + k ≤ v − vp

hold. Hence x0 has property (P0), and by Theorem 4.8, for small x0, the solution of

(6.4) and (6.5) is bounded.

Summarizing the observations and applying Theorem 4.5, we get the next new result.

Proposition 6.2. If Equation (6.4) is linear, that is p = 1, and supn ≥ 1 n h(n) < ∞,

then every positive solution of (6.4) with initial condition (6.5) is bounded.

Proposition 6.3. Assume Equation (6.4) is super-linear, that is p > 1. If for some x0 ≥

0 there exists v ∈
[(

1
p

) 1
p−1 , 1

]
, such that

1
2
xp0 + h(0) ≤ v,

and

1
2
xp0 + k ≤ v − vp

hold, then the positive solution of (6.4) with initial condition (6.5) is bounded.

The following example shows that applicability of our result in the critical case.

Example 6.4. Consider the equation

x(n + 1) =
n∑
i=0

cqn−ix(i) + h(n), n ≥ 0, (6:7)

x(0) = x0, (6:8)

where x0 Î ℝ+, q Î (0,1), c Î (0,1) and h(n) Î ℝ+, n ≥ 0.

If q + c < 1 and supn≥0 h(n) < ∞, then our condition (a) in Corollary 5.7 holds. Rela-

tion q + c = 1 implies
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∞∑
n=0

cqn = 1.

Note that the results in [2,8-12] are not applicable. But our Corollary 5.7 is applic-

able under condition

sup
n≥1

h(n)
qn

< ∞,

since it implies condition (b) in Corollary 5.7:

sup
n≥1

h(n)
∞∑
j=n

cqj
= sup

n≥1

(1 − q)h(n)
cqn

< ∞.

Remark 6.5. By mathematical induction, it is easy to see the solution of (6.7) and

(6.8) is given in the form

x(n) = c(q + c)n−1x0 +
n−2∑
j=0

c(q + c)n−j−2h(j) + h(n − 1), n ≥ 2,

where x(0) = x0 and x(1) = cx0 + h(0). Let
∑∞

j=0 cq
j = 1 or equivalently q + c = 1

moreover h(n) = kn+1, 0 <q <k < 1. In this case the above solution is bounded for any x0
Î ℝ+. At the same time condition (b) in Corollary 5.7 does not hold, and hence condi-

tion (b) in Proposition 1.1 is not necessary.

Therefore by statements (a) and (b) of Corollary 5.7 we get the following.

Proposition 6.6. The solution of (6.7) and (6.8) is bounded if either q + c < 1 and

supn≥0 h(n) < ∞, or q + c = 1, and

sup
n≥1

h(n)
qn

< ∞.

The next example shows the sharpness of our Corollary 5.8.

Example 6.7. Consider the equation

x(n + 1) =
n∑
i=0

qn−ixp(i), n ≥ 0, (6:9)

where x(0) = x0 > 0, p > 1, q Î (0,1).

Since x0 > 0, implies x(n) > 0 for all n ≥ 0, therefore from (6.9), we have x(n + 1) ≥

xp(n), n ≥ 0. For fixed p > 1, inequality xp0 > x0 holds if and only if x0 > 1. In the latest,

by mathematical induction it is easy to prove that the sequence (x(n))n≥0 is strictly

increasing. Now for x0 > 1, we prove that x(n) ® ∞ as n ® ∞. Assume, for the sake of

contradiction, that the sequence (x(n))n≥0 is bounded. Since it is strictly increasing, x*

= limn®∞ x(n) is finite and x* >x0. On the other hand x(n+ 1) ≥ xp(n), and hence we

get x* ≥ (x*) p >x*, which is a contradiction. Hence for all x0 > 1 the solution of (6.9)

is unbounded. Now applying Corollary 5.8 to (6.9), there exists
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v ∈

⎡
⎢⎣

(
1 − q

p

) 1
p − 1 , (1 − q)

1
p − 1

⎤
⎥⎦ ,

such that xp0 ≤ v and

qxp0 ≤ v − 1
1 − q

vp.

Hence

v =
1
q

(
v − 1

1 − q
vp

)
implies v = (1 − q)

2
p − 1 ,

i.e.

x0 ≤ (1 − q)

2
p(p − 1) .

Then the solution of (6.9) with initial value
x0 ≤ (1 − q)

2
p(p − 1) is bounded, but the

solution of (6.9) with initial value x0 > 1 is unbounded. Our results do not give any

information about the boundedness of the solutions, whenever x0 ∈
(
(1 − q)

2
p(p−1) , 1

]
but this gap tends to zero if either p is large enough or q is very close to zero. Hence,

our results for the super-linear case are sharp in some sense. As a special case let p =

2. In this case, the solution of (6.9) with initial condition x(0) = x0 is bounded when-

ever x0 Î [0,1 - q] and it is unbounded whenever x0 > 1.

Based on our results we state the following conjecture as an open problem.

Conjecture 6.8. Let p > 1 and 0 <q <1. Then there exists a constant � > 1 such that

the solution of (6.9) with initial condition x(0) = x0 is bounded whenever x0 Î [0, �)

and it is unbounded whenever x0 >�.
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