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Abstract
The dynamics of fractional-order systems have attracted increasing attention in
recent years. In this paper a novel fractional-order hyperchaotic system with a
quadratic exponential nonlinear term is proposed and the synchronization of a new
fractional-order hyperchaotic system is discussed. The proposed system is also shown
to exhibit hyperchaos for orders 0.95. Based on the stability theory of fractional-order
systems, the generalized backstepping method (GBM) is implemented to give the
approximate solution for the fractional-order error system of the two new
fractional-order hyperchaotic systems. This method is called GBM because of its
similarity to backstepping method and more applications in systems than it.
Generalized backstepping method approach consists of parameters which accept
positive values. The system responses differently for each value. It is necessary to
select proper parameters to obtain a good response because the improper selection
of parameters leads to inappropriate responses or even may lead to instability of the
system. Genetic algorithm (GA), cuckoo optimization algorithm (COA), particle swarm
optimization algorithm (PSO) and imperialist competitive algorithm (ICA) are used to
compute the optimal parameters for the generalized backstepping controller. These
algorithms can select appropriate and optimal values for the parameters. These
minimize the cost function, so the optimal values for the parameters will be found.
The selected cost function is defined to minimize the least square errors. The cost
function enforces the system errors to decay to zero rapidly. Numerical simulation
results are presented to show the effectiveness of the proposed method.

Keywords: novel fractional-order hyperchaotic system; generalized backstepping
method; synchronization; genetic algorithm; cuckoo optimization algorithm; particle
swarm optimization algorithm; imperialist competitive algorithm; cost function

1 Introduction
Chaos synchronization has attracted a great deal of attention since Pecora and Carroll []
established a chaos synchronization scheme for two identical chaotic systems with dif-
ferent initial conditions. Various effective methods such as robust control [], the sliding
method control [], linear and nonlinear feedback control [], function projective [–],
adaptive control [], active control [], backstepping control [], generalized backstep-
ping method control [] and anti-synchronization [] have been presented to synchro-
nize various chaotic systems.
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The history of fractional calculus is more than three centuries old. It was found that the
behavior of many physical systems can be properly described by fractional-order systems.
Nowadays, it has been found that some fractional-order differential systems such as the
fractional-order jerk model [], the fractional-order Lorenz system [], the fractional-
order Chen system [], the fractional-order Lu system [], the fractional-order Rossler
system [], the fractional-order Arneodo system [], the fractional-order Chua circuit
[], the fractional-order Duffing system [] and the fractional-order Newton-Leipnik
system [] can demonstrate chaotic behavior. Due to their potential applications in secure
communication and control processing, the fractional-order chaotic systems have been
studied extensively in recent years in many aspects such as chaotic phenomena, chaotic
control, chaotic synchronization and other related studies.
Recently, chaos synchronization problems in fractional-order systems have been widely

investigated. For example, the synchronization of fractional-order chaotic systems uti-
lized feedback control method [], activation feedback control [], robust control [].
The hybrid projective synchronization of different dimensional fractional order chaotic
systems was investigated in []. Synchronization between two fractional-order systems
was achieved by utilizing a single-variable feedback method []. In [] the author uti-
lized active control technique to synchronize different fractional-order chaotic dynamical
systems. A novel active pinning control strategy was utilized for synchronization and anti-
synchronization of new uncertain fractional-order unified chaotic systems (UFOUCS)
[]. [] investigated the function projective synchronization between fractional-order
chaotic systems. In [] the synchronization of N-coupled fractional-order chaotic sys-
tems with ring connection was first firstly investigated in detail. A method to achieve
general projective synchronization of two fractional-order Rossler systems was proposed
in []. In [], the fractional-order Rossler system was synchronized by active control
method. In this work, we investigate a novel fractional-order hyperchaotic system with a
quadratic exponential nonlinear term and its synchronization.
The rest of the paper is organized as follows. In Section , the definition of fractional-

order derivative and its approximation is presented. In Section , a novel fractional-order
hyperchaotic system is presented. In Section , the generalized backstepping method is
described. In Section , synchronization between two novel fractional-order hyperchaotic
systems is achieved by generalized backstepping method. In Section , the designed con-
troller is optimized by evolutionary algorithms. Section  presents, simulation results.
Finally, Section  provides, conclusion of this work.

2 Fractional-order derivative and its approximation
To discuss fractional chaotic systems, we usually need to solve fractional-order differen-
tial equations. For the fractional differential operator, there are two commonly used def-
initions: Grünwald-Letnikov (GL) definition and Riemann-Liouville (RL) definition. The
GL definition of non-integer integration and differentiation is given as follows [, ]:

Dα
t f (t) = lim

h→∞
h–α

[(t–α)/h]∑
j=

(–)j
(

α

j

)
f (t – jh), ()
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where
(
α

j
)
= α(α–)···(α–j+)

j! . This formula can be reduced to

Dα
t y(tm) ≈ h–α

m∑
j=

ωα
j ym–j, ()

where ωα
j = (–)j

(
α

j
)
(j = , , , . . .) and h is the time step. The best-known RL definition of

fractional-order, described by [] is as follows:

dαf (t)
dtα

=


�(n – α)
dn

dtn
t



f (τ )
(t – τ )α–n+

dτ , ()

where n is an integer such that n– ≤ α < n, �(·) is the �-function. The Laplace transform
of the Riemann-Liouville fractional derivative is

L
{
dαf (t)
dtα

}
= sαL

{
f (t)

}
–

n–∑
k=

sk
[
dα––kf (t)
dtα––k

]
t=

, ()

where, L means the Laplace transform and s is a complex variable. Upon considering the
initial conditions to zero, this formula reduces to

L
{
dαf (t)
dtα

}
= sαL

{
f (t)

}
. ()

Thus, the fractional integral operator of order α can be represented by the transfer func-
tion H(s) = 

sα in the frequency domain []. The standard definitions of fractional-order
calculus do not allow direct implementation of the fractional operators in time-domain
simulations. An efficient method to circumvent this problem is to approximate fractional
operators by using standard integer-order operators. In Ref. [], an effective algorithm is
developed to approximate fractional-order transfer functions, which has been adopted in
[] and has sufficient accuracy for time-domain implementations. We will use the 

s.

approximation formula [] in the following simulation examples:


s.

≈ .s + .s + .
s + .s + .s + .

. ()

The 
s. approximation formula has a similar theoretical basis as the above analysis.

3 System description
Recently, Fei Yu and ChunhuaWang constructed the D autonomous chaotic systemwith
a quadratic exponential nonlinear term []. The system is described by

ẋ = a(y – x),

ẏ = bx – cxz,

ż = exy – dz,

()

where a, b, c, d are positive constants and x, y, z are variables of the system, when a = ,
b = , c = , d = ., system () is chaotic. See Figure .
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Figure 1 Strange attractors system (7).

Figure 2 Strange attractors system (8).

Here, the reverse structure form of system () is described by

ẋ = a(y – x),

ẏ = bx + cxz,

ż = –exy – dz.

()

Obviously, in system () the sign of the multiplier in the second equation is positive
and the sign of the quadratic exponential term in the third equation is negative, which
is the only difference between system () and system (). Similarly, when a = , b = ,
c = , d = ., the Lyapunov exponents of this system are obtained to be L = ., L = ,
L = –. by Wolf method []. And the Lyapunov dimension is DL = .. Appar-
ently, system () is also a chaotic system. The strange attractors of system () are shown
in Figure . From the figure, we can see the strange attractor is a reverse butterfly-shape
attractor. Therefore, system () is a reverse structure system ().
In order to obtain hyperchaos, we introduce an additional state w to system (), and add

it to the first and second equations of system (). Then we get the following D system:

ẋ = a(y – x) +w,

ẏ = bx + cxz +w, ()

http://www.advancesindifferenceequations.com/content/2012/1/194
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Figure 3 Lyapunov exponents spectrum of system (9).

ż = –exy – dz,

ẇ = hy,

where a, b, c, d are positive parameters of system () and h is a parameter to be determined,
its value can be varied within a certain range. When parameters a = , b = , c = ,
d = . and h = –, the four Lyapunov exponents of system () are L = ., L = .,
L = , L = –.. The Lyapunov exponent spectrumof new chaotic system () is shown
in Figure . The Lyapunov dimension of system () is given as follows:

DL = j +
∑j

i= Li
|Lj+| =  +

. + .
| – .| = .. ()

Therefore, system () with the parameter h = – shows hyperchaotic behavior. The hy-
perchaotic attractor is given in Figure .
The new fractional-order hyperchaotic system is given as follows:

dqx
dtq

= a(y – x) +w,

dqy
dtq

= bx + cxz +w,

dqz
dtq

= –exy – dz,

dqw
dtq

= hy.

()

Here, a = , b = , c = , d = . and h = –, where q is the fractional order. System
() exhibits chaotic attractor; see Figure . In the following, we choose q = ..

4 The generalized backsteppingmethod
Generalized backstepping method (GBM) [–] will be applied to a certain class of au-
tonomous nonlinear systems which are expressed as follows:

⎧⎨
⎩Ẋ = F(X) +G(X)η,

η̇ = f(X,η) + g(X,η)u,
()

http://www.advancesindifferenceequations.com/content/2012/1/194
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Figure 4 Phase portraits of the four-scroll hyperchaotic attractors (9).

Figure 5 Phase portraits of the new fractional-order hyperchaotic system (11).
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in which η ∈R and x = [x,x, . . . ,xn] ∈R. In order to obtain an approach to control these
systems, we may need to prove a new theorem as follows.

Theorem Suppose equation () is available, then suppose the scalar function ϕi(x) for the
ith state could be determined by inserting the ith term for η, the function V (x) would be a
positive definite equation () with negative definite derivative:

V (X) =



n∑
i=

xi . ()

Therefore, the control signal and also the general control Lyapunov function of this system
can be obtained by equations (), ():

u =


g(X,η)

{ n∑
i=

n∑
j=

∂ϕi

∂xj

[
fi(X) + gi(X)η

]
–

n∑
i=

xigi(X)

–
n∑
i=

ki
[
η – ϕi(X)

]
– f(X,η)

}
, ki > , i = , , . . . ,n, ()

Vt(X,η) =



n∑
i=

xi +



n∑
i=

[
η – ϕi(X)

]. ()

Proof Equation () can be represented as the extended form of equation ():

⎧⎨
⎩ẋi = fi(X) + gi(X)η; i = , , . . . ,n,

η̇ = f(X,η) + g(X,η)u.
()

V (X) is always positive definite, and therefore the negative definite of its derivative
should be examined; it means W (X) in equation () should always be positive definite
so that V̇ (X) would be negative definite.

V̇ (X) =
n∑
i=

xiẋi =
n∑
i=

xi
[
fi(X) + gi(X)ϕi(X)

] ≤ –W (X). ()

By u = f(X,η) + g(X,η)u and adding and subtracting gi(X)ϕi(X) to the ith term of (),
() be obtained

⎧⎨
⎩ẋi = [fi(X) + gi(X)ϕi(X)] + gi(X)[η – ϕi(X)],

η̇ = u; i = , , . . . ,n.
()

Now, we use the following change of a variable:

zi = η – ϕi(X) =⇒ żi = u – ϕ̇i(X), ()

ϕ̇i(X) =
n∑
j=

∂ϕi

∂xj

[
fj(X) + gj(X)η

]
. ()

http://www.advancesindifferenceequations.com/content/2012/1/194
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Therefore, equation () would be obtained as follows:

⎧⎨
⎩ẋi = [fi(X) + gi(X)ϕi(X)] + gi(X)[η – ϕi(X)],

żi = u – ϕ̇i(X); i = , , . . . ,n.
()

Regarding that zi has n states, then u can be considered with n terms provided that
equation () would be established as follows:

u =
n∑
i=

ui. ()

Therefore, the last term of equation () would be converted to equation ():

żi = ui – ϕ̇i(X) = λi. ()

At this stage, the control Lyapunov function would be considered as equation ():

Vt(X,η) =



n∑
i=

xi +



n∑
i=

zi ()

which is a positive definite function. Now, it is sufficient to examine negative definitely of
its derivative

V̇t(X,η) =
n∑
i=

∂V (X)
∂xi

[
fi(X) + gi(X)ϕi(X)

]
+

n∑
i=

∂V (X)
∂xi

gi(X) +
n∑
i=

ziλi. ()

In order that the function V̇t(X,η) would be negative definite, it is sufficient that the
value of λi would be selected as equation ()

λi = –
∂V (X)

∂xi
gi(X) – kizi; ki > . ()

Therefore, the value of V̇t(X,η) would be obtained from following equation:

V̇t(X,η) =
n∑
i=

xi
[
fi(X) + gi(X)ϕi(X)

]
–

n∑
i=

kizi ≤ –W (X) –
n∑
i=

kizi ()

which indicates negative finitely status of the function V̇t(X,η). Consequently, the control
signal function, using equations (), () and () would be converted to equation ()

u =
n∑
i=

n∑
j=

∂ϕi

∂xj

[
fj(X) + gj(X)η

]
–

n∑
i=

xigi(X) –
n∑
i=

ki
[
η – ϕi(X)

]
. ()

Therefore, using the variations of the variables which we carried out, equations (), ()
can be obtained. Now, considering the unlimited region of positive definitely of Vt(X,η)
and negative definitely of V̇t(X,η) and the radially unbounded space of its states, global
stability gives the proof. �
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5 Synchronization between the two novel fractional order hyperchaotic
systems

In order to achieve the behavior of synchronization between two new chaotic systems by
using the proposed method, suppose the drive system takes the following from:

dqx
dtq

= a(y – x) +w,

dqy
dtq

= bx + cxz +w,

dqz
dtq

= –exy – dz,

dqw

dtq
= hy.

()

And the response system is given as follows:

dqx
dtq

= a(y – x) +w + u(t),

dqy
dtq

= bx + cxz +w + u(t),

dqz
dtq

= –exy – dz + u(t),

dqw

dtq
= hy + u(t),

()

where u(t), u(t), u(t) and u(t) are control functions to be determined for achieving
synchronization between two systems () and (). Define state errors between systems
() and () as follows:

ex = x – x,

ey = y – y,

ez = z – z,

ew = w –w.

()

We obtain the following error dynamical system by subtracting drive system () from
response system ():

dqex
dtq

= a(ey – ex) + ew + u,

dqey
dtq

= bex + ew + c(xz – xz) + u,

dqez
dtq

= –dez + exy – exy + u,

dqew
dtq

= hey + u.

()

http://www.advancesindifferenceequations.com/content/2012/1/194
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In order to determine the controller, let

u = ,

u = –c(xz – xz),

u = exy – exy + v,

u = v,

()

where v(t) and v(t) are control inputs. Substituting equation () into equation ()
yields

dqex
dtq

= a(ey – ex) + ew,

dqey
dtq

= bex + ew,

dqez
dtq

= –dez + v,

dqew
dtq

= hey + v.

()

Thus, error system () is to be controlledwith control inputs v(t) and v(t) as functions
of error states ex, ey, ez and ew. When system () is stabilized by control inputs v(t) and
v(t), ex, ey, ez and ew will converge to zeros as time t tends to infinity, which. Implies that
systems () and () are synchronized. In order to use the theorem, it is sufficient to
establish equations () and ():

ϕ = –aey – kex, ()

ϕ = –bex – key. ()

According to the theorem, the control signals will be obtained from equations () and
()

v = –kez, ()

v = –(k + b)
(
a(ey – ex) + ew

)
– (k + a)(bex + ew) – ex – ey

– k(ew – ϕ) – k(ew – ϕ) – hey ()

and Lyapunov function as follows:

V (ex, ey, ez, ew) =


ex +



ey +



ez +



ew +



(ew – ϕ) +



(ew – ϕ). ()

Error system () is reduced to

dqex
dtq

= a(ey – ex) + ew,

dqey
dtq

= bex + ew, ()

http://www.advancesindifferenceequations.com/content/2012/1/194
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dqez
dtq

= –(d + k)ez,

dqew
dtq

= αex + βey + γ ew,

where
⎧⎪⎪⎨
⎪⎪⎩

α = (a – k)k – b(k + k) – ,

β = –(a(k + k + b) + kk + ),

γ = –(a + b + k + k + k + k), k,k,k,k,k > .

()

Take the Laplace transformation on both sides of equation (), let Ei(s) = L{ei(t)} and
utilize L{ dqeidtq } = sqEi(s) – sq–ei() (i = x, y, z,w), then we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sqEx(s) – sq–ex() = a(Ey(s) – Ex(s)) + Ew(s),

sqEy(s) – sq–ey() = bEx(s) + Ew(s),

sqEz(s) – sq–ez() = –(d + k)Ez(s),

sqEw(s) – sq–ew() = αEx(s) + βEy(s) + γEw(s).

()

Its solution can be explicitly expressed as follows:

Ex(s) =
sq–[ex()(sq(sq – γ ) – β) + ey()(a(sq – γ ) + β) + ew()(sq + a)]

sq[(sq – γ )(sq + a) – (α + β + ab)] + abc – aα – aβ – bβ
, ()

Ey(s) = sq–
[
–ex()

(
b
(
sq – γ

)
+ α

)
+ ey()

((
sq + a

)(
sq – γ

)
– α

)
+ ew()

(
sq + a + b

)]
/
(
sq

[(
sq – γ

)(
sq + a

)
– (α + β + ab)

]
+ abc – aα – aβ – bβ

)
, ()

Ew(s) =
sq–[ex()(bβ + sqα) + ey()(β(sq + a) + aα) + ew()(sq(sq + a) – ab)]

sq[(sq – γ )(sq + a) – (α + β + ab)] + abc – aα – aβ – bβ
, ()

Ez(s) =
sq–ez()
sq + d + k

. ()

According to the final value theorem of the Laplace transformation, considering the
assumed conditions, we have

lim
t→∞ ex(t) = lim

s→+
sEx(s)

= lim
s→+

sq
[
ex()

(
sq

(
sq – γ

)
– β

)
+ ey()

(
a
(
sq – γ

)
+ β

)
+ ew()

(
sq + a

)]
/
(
sq

[(
sq – γ

)(
sq + a

)
– (α + β + ab)

]
+ abc – aα – aβ – bβ

)
= , ()

lim
t→∞ ey(t) = lim

s→+
sEy(s)

= lim
s→+

sq
[
–ex()

(
b
(
sq – γ

)
+ α

)
+ ey()

((
sq + a

)(
sq – γ

)
– α

)
+ ew()

(
sq + a + b

)]
/
(
sq

[(
sq – γ

)(
sq + a

)
– (α + β + ab)

]
+ abc – aα – aβ – bβ

)
= , ()

http://www.advancesindifferenceequations.com/content/2012/1/194


Sahab et al. Advances in Difference Equations 2012, 2012:194 Page 12 of 21
http://www.advancesindifferenceequations.com/content/2012/1/194

lim
t→∞ ew(t) = lim

s→+
sEw(s)

= lim
s→+

sq
[
ex()

(
bβ + sqα

)
+ ey()

(
β
(
sq + a

)
+ aα

)
+ ew()

(
sq

(
sq + a

)
– ab

)]
/
(
sq

[(
sq – γ

)(
sq + a

)
– (α + β + ab)

]
+ abc – aα – aβ – bβ

)
= , ()

lim
t→∞ ez(t) = lim

s→+
sEz(s) = lim

s→+
sq–ez()
sq + d + k

= , ()

where abc – aα – aβ – bβ �=  and d + k �= . The above results manifest the novel
fractional-order hyperchaotic systems () and () which are synchronized under the
control law ().

6 Optimization of generalized backstepping controller
The Genetic algorithm (see Table ) [, ], cuckoo optimization algorithm (see Table )
[], particle swarm optimization algorithm (see Table ) [] and imperialist competitive
algorithm (see Table ) [] are used to search the optimal parameter (k) in order to guar-

Table 1 Genetic algorithm parameters

Parameters Values

Size population 80
Maximum of generation 30
Prob. crossover 0.75
Prob. mutation 0.001
k search interval [1, 30]

Table 2 Cuckoo optimization algorithm parameters

Parameters Values

Size clusters 2
Maximum number of cuckoo 80
Size initial population 5
Maximum iterations of cuckoo 30
k search interval [1, 30]

Table 3 Particle swarm optimization algorithm parameters

Parameters Values

Size population 80
Maximum iterations 30
Initial and final value of the global best acceleration factor 2 and 2
Initial and final value of the inertia factor 1 and 0.99
k search interval [1, 30]

Table 4 Imperialist competitive algorithm parameters

Parameters Values

Number of initial countries 80
Number of decades 30
Number of initial imperialists 8
Revolution rate 0.3
k search interval [1, 30]

http://www.advancesindifferenceequations.com/content/2012/1/194
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Table 5 Optimal parameters of generalized backstepping controller

k1 k2 k3 k4 k5
GA 29.95 29.61 26.24 21.39 28.67
COA 30 30 30 20.33 25.35
PSO 30 30 27.48 20.66 27.51
ICA 30 30 29.55 20.77 25.53

antee the stability of systems by ensuring negativity of the Lyapunov function and having
a suitable time response. The controller in equation () is optimized by the cost function
in equation ()

f (e, e, . . . , en) =

n

√√√√ n∑
i=

ei dt. ()

7 Numerical simulation
This section presents synchronization of numerical simulations between two new frac-
tional-order hyperchaotic systems. The generalized backstepping method (GBM) is used
as an approach to synchronize the new fractional order hyperchaotic system. The initial
values of drive and response systems are x() = ., y() = ., z() = –, w() = –
and x() = –., y() = –., z() = , w() =  respectively. The optimal parame-
ters of generalized backstepping controller using genetic algorithm, cuckoo optimization
algorithm, particle swarm optimization algorithm and imperialist competitive algorithm
are listed in Table .
The time response of x, y, z, w states for drive system () and response system ()

via generalized backstepping method is shown in Figure  to Figure . Synchronization
errors (ex, ey, ez, ew) in new fractional-order hyperchaotic systems are shown in Figure 
to Figure . The time response of the control inputs (u,u,u) for the synchronization
of new fractional-order hyperchaotic systems is shown in Figure  to Figure .

8 Conclusions
In this work, the synchronization in a novel fractional-order hyperchaotic system with
a quadratic exponential nonlinear term has been studied. This synchronization between
two new fractional-order systems was achieved by generalized backstepping method. The
designed controller consisted of parameters which accepted positive values. Improper se-
lection of the parameters causes improper behavior which may cause serious problems
such as instability of the system. It was needed to optimize these parameters. Evolution-
ary algorithms were well known optimization method. Genetic algorithm, cuckoo opti-
mization algorithm, particle swarm optimization algorithm and imperialist competitive
algorithm optimized the controller to gain optimal and proper values for the parameters.
For this reason these algorithms minimized the cost function to find minimum current
value for it. On the other hand, the cost function finds the minimum value to minimize
least square errors. Finally, numerical simulation was given to verify the effectiveness of
the proposed synchronization scheme.
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Figure 6 The time response of signals (x,y, z,w) for drive system (29) and response system (30)
optimized by GA.

Figure 7 The time response of signals (x,y, z,w) for drive system (29) and response system (30)
optimized by COA.
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Figure 8 The time response of signals (x,y, z,w) for drive system (29) and response system (30)
optimized by PSO.

Figure 9 The time response of signals (x,y, z,w) for drive system (29) and response system (30)
optimized by ICA.
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Figure 10 Synchronization errors (ex ,ey ,ez ,ew) in drive system (29) and response system (30)
optimized by GA.

Figure 11 Synchronization errors (ex ,ey ,ez ,ew) in drive system (29) and response system (30)
optimized by COA.
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Figure 12 Synchronization errors (ex ,ey ,ez ,ew) in drive system (29) and response system (30)
optimized by PSO.

Figure 13 Synchronization errors (ex ,ey ,ez ,ew) in drive system (29) and response system (30)
optimized by ICA.
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Figure 14 The time response of the control inputs (u2,u3,u4) optimized by GA.

Figure 15 The time response of the control inputs (u2,u3,u4) optimized by COA.
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Figure 16 The time response of the control inputs (u2,u3,u4) optimized by PSO.

Figure 17 The time response of the control inputs (u2,u3,u4) optimized by ICA.
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