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Abstract
The fractional complex transform is employed to convert fractional differential
equations analytically in the sense of the Srivastava-Owa fractional operator and its
generalization in the unit disk. Examples are illustrated to elucidate the solution
procedure including the space-time fractional differential equation in complex
domain, singular problems and Cauchy problems. Here, we consider analytic
solutions in the complex domain.
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1 Introduction
The theory of fractional calculus has been applied in the theory of analytic functions. The
classical concepts of a fractional differential operator and a fractional integral operator and
their generalizations have fruitfully been employed in finding, for example, the charac-
terization properties, coefficients estimate [], distortion inequalities [] and convolution
properties for difference subclasses of analytic functions.
Fractional differential equations are viewed as alternative models to nonlinear differ-

ential equations. Varieties of them play important roles and serve as tools not only in
mathematics, but also in physics, dynamical systems, control systems, and engineering to
create the mathematical modeling of many physical phenomena. Furthermore, they are
employed in social sciences such as food supplement, climate, and economics. Fractional
differential equations concerning the Riemann-Liouville fractional operators or the Ca-
puto derivative have been recommended by many authors (see [–]).
Recently, the complex modelings of phenomena in nature and society have been the ob-

ject of several investigations based on the methods originally developed in a physical con-
text. These systems are the consequence of the ability of individuals to develop strategies.
They occur in kinetic theory [], complex dynamical systems [], chaotic complex sys-
tems and hyperchaotic complex systems [], and the complex Lorenz-like system which
has been found in laser physics while analyzing baroclinic instability of the geophysical
flows in the atmosphere (or in the ocean) [, ]. Sainty [] considered the complex heat
equation using a complex valued Brownian. A model of complex fractional equations is
introduced by Jumarie [–] using different types of fractional derivatives. Baleanu et al.
[–] imposed several applications of fractional calculus including complex modelings.
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The author studied various types of fractional differential equations in complex domain
such as the Cauchy equation, the diffusion equation and telegraph equations [–].
Transform is a significant technique to solvemathematical problems.Many useful trans-

forms for solving various problems appeared in open literature such as wave transforma-
tion, the Laplace transform, the Fourier transform, the Bücklund transformation, the in-
tegral transform, the local fractional integral transforms and the fractional complex trans-
form (see [, ]).
In this paper, we shall introduce two generalizations of the wave transformation in the

complex domain. These generalizations depend on the fractional differential operators for
complex variables. These transformations convert the fractional differential equations in
complex domain into ordinary differential equations to obtain analytic solutions or exact
solutions. Examples are illustrated.
In [], Srivastava and Owa provided the definitions for fractional operators (derivative

and integral) in the complex z-plane C as follows.

Definition . The fractional derivative of order α is defined, for a function f (z), by

Dα
z f (z) :=


�( – α)

d
dz

∫ z



f (ζ )
(z – ζ )α

dζ ; ≤ α < ,

where the function f (z) is analytic in a simply-connected region of the complex z-plane C
containing the origin, and the multiplicity of (z – ζ )–α is removed by requiring log(z – ζ )
to be real when (z – ζ ) > .

Definition . The fractional integral of order α is defined, for a function f (z), by

Iαz f (z) :=


�(α)

∫ z


f (ζ )(z – ζ )α– dζ ; α > ,

where the function f (z) is analytic in a simply-connected region of the complex z-plane (C)
containing the origin, and the multiplicity of (z – ζ )α– is removed by requiring log(z – ζ )
to be real when (z – ζ ) > .

Remark . From Definitions . and ., we have

Dα
z z

β =
�(β + )

�(β – α + )
zβ–α , β > –;  ≤ α < 

and

Iαz z
β =

�(β + )
�(β + α + )

zβ+α , β > –;α > .

In [] the author derived a formula for the generalized fractional integral. Consider for
natural n ∈N = {, , . . .} and real μ, the n-fold integral of the form

Iα,μz f (z) =
∫ z


ζ

μ
 dζ

∫ ζ


ζ

μ
 dζ · · ·

∫ ζn–


ζμ
n f (ζn)dζn, ()
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which yields

∫ z


ζ

μ
 dζ

∫ ζ


ζμf (ζ )dζ =

∫ z


ζμf (ζ )dζ

∫ z

ζ

ζ
μ
 dζ =


μ + 

∫ z



(
zμ+ – ζμ+)ζμf (ζ )dζ .

Repeating the above step n –  times, we obtain

∫ z


ζ

μ
 dζ

∫ ζ


ζ

μ
 dζ · · ·

∫ ζn–


ζμ
n f (ζn)dζn =

(μ + )–n

(n – )!

∫ z



(
zμ+ – ζμ+)n–ζμf (ζ )dζ ,

which implies the fractional operator type

Iα,μz f (z) =
(μ + )–α

�(α)

∫ z



(
zμ+ – ζμ+)α–

ζμf (ζ )dζ , ()

where a and μ �= – are real numbers and the function f (z) is analytic in a simply-
connected region of the complex z-plane C containing the origin, and the multiplicity of
(zμ+ – ζμ+)–α is removed by requiring log(zμ+ – ζμ+) to be real when (zμ+ – ζμ+) > .
When μ = , we get the standard Srivastava-Owa fractional integral, which is applied to
define the Srivastava-Owa fractional derivatives. The computation implies []

Iα,μz zν =
zα(μ+)+ν

(μ + )α
�( ν+μ+

μ+ )

�(α + ν+μ+
μ+ )

. ()

When μ = , we obtain Iαz zν = �(ν+)
�(α+ν+)z

α+ν (see Remark .).
Corresponding to the generalized fractional integrals (), we imposed the generalized

differential operator.

Definition . The generalized fractional derivative of order α is defined, for a function
f (z), by

Dα,μ
z f (z) :=

(μ + )α

�( – α)
d
dz

∫ z



ζμf (ζ )
(zμ+ – ζμ+)α

dζ ;  ≤ α < , ()

where the function f (z) is analytic in a simply-connected region of the complex z-plane
C containing the origin, and the multiplicity of (zμ+ – ζμ+)–α is removed by requiring
log(zμ+ – ζμ+) to be real when (zμ+ – ζμ+) > . The calculation yields

Dα,μ
z zν =

(μ + )α–�( ν
μ+ + )

�( ν
μ+ +  – α)

z(–α)(μ+)+ν–. ()

When μ = , we obtain Dα
z zν = �(ν+)

�(ν+–α)z
ν–α (see Remark .).

For analytic functions of the form

f (z) =
∞∑
n=

anzn, z ∈U , ()

we have the following property:

Dα,μ
z Iα,μz f (z) = Iα,μz Dα,μ

z f (z) = f (z), z ∈U .
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2 Fractional complex transform
In recent times, one of the most important and useful methods for fractional calculus
called fractional complex transform has appeared [–]. Fractional complex transform
is to renovate the fractional differential equations into ordinary differential equations,
yielding a tremendously simple solution procedure. In this section, we illustrate some frac-
tional complex transform using properties of the Srivastava-Owa fractional operator and
its generalization. Analogous to wave transformation

η = az + bw + cu + · · · , ()

where a, b, and c are constants, the fractional complex transform is

η = azα + bwβ + cuγ + · · · ()

for the fractional differential equations in the sense of the Srivastava-Owa fractional op-
erators. While the fractional complex transform of the form

η = Azα(μ+) + Bwβ(μ+) +Cuγ (μ+) + · · · ()

is applied to fractional differential equations in the sense of the generalized operators ()
and (). It is obvious that when μ = , () reduces to (). Furthermore, in a real case,
() implies the fractional complex transform defined in []. We impose the fractional
complex transform

Dα
z f (z) =

∂f
∂Z

Dα
z Z, Z := zα ()

if we denote Dα
z f (z) :=

∂α f
∂zα , it yields

∂α f
∂zα

=
∂f
∂Z

∂αZ
∂zα

:=
∂f
∂Z

θα , ()

where θα is the fractal index, which is usually determined in terms of gamma functions.
Similarly, we can receive

Dα,μ
z f (z) =

∂f
∂Z

Dα,μ
z Z, Z := zα(μ+) ()

if we let Dα,μ
z f (z) := ∂α(μ+)f

∂zα(μ+) , which implies

∂α(μ+)f
∂zα(μ+) =

∂f
∂Z

∂α(μ+)Z
∂zα(μ+)

:=
∂f
∂Z

�α,μ. ()
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Example . Let Z = zα and f = Zn, n �=  then in view of Remark ., we obtain

∂α f
∂zα

=
∂f
∂Z

∂αZ
∂zα

=
�( + nα)znα–α

�( + nα – α)

:=
∂f
∂Z

θα

= nθαznα–α .

We hence can receive that

θα =
�( + nα)

n�( + nα – α)
.

Example . Let Z = zα(μ+) and f = Z
n

μ+ , n �=  then in virtue of (), we have

∂α(μ+)f
∂zα(μ+) =

∂f
∂Z

∂α(μ+)Zn

∂zα(μ+)

=
(μ + )α–�( nα

μ+ + )
�( nα

μ+ +  – α)
z(–α)(μ+)+nα–

:=
∂f
∂Z

�α,μ

=
n�α,μ

μ + 
z(–α)(μ+)+nα–.

We, therefore, have

�α,μ =
(μ + )α�( nα

μ+ + )
n�( nα

μ+ +  – α)
.

3 Applications
Example . Consider the following equation:

⎧⎨
⎩

ρt/
.

∂/u(t,z)
∂t/ +Dβ

z u(t, z) = , t ∈ J = [, ]

u(, z) = , in a neighborhood of z = ,
()

where u(t, z) is the unknown function ρ ∈ (, ) and β ∈ (, ].
We propose to show that () has a unique analytic solution by using the Banach fixed

point theorem. By assuming

u(t, z) = μ(z)t + v(t, z)
(
v(t, z) =O

(
t

))

as a formal solution, where μ(z) =O(zβ ), calculations imply

t/
∂/u(t, z)

∂t/
= .μ(z)t + t/vα(t, z), α = /,

http://www.advancesindifferenceequations.com/content/2012/1/192


Ibrahim Advances in Difference Equations 2012, 2012:192 Page 6 of 12
http://www.advancesindifferenceequations.com/content/2012/1/192

and

Dβ
z u(t, z) =Dβ

z
(
μ(z)t + v(t, z)

)
= tDβ

z μ(z) + vβ (t, z).

Therefore, μ(z) satisfies

ρμ(z) +Dβ
z μ(z) = ,

which is equivalent to

Dβ
z μ(z) = g

(
z,μ(z)

)
, ()

where

g
(
z,μ(z)

)
= –ρμ(z).

Now g(z,μ(z)) is a contraction mapping whenever ρ ∈ (, ); therefore, in view of the Ba-
nach fixed point theorem, Eq. () has a unique analytic solution in the unit disk and con-
sequently the problem ().
To calculate the fractal index for the equation

Dβ
z μ(z) + ρμ(z) = , μ() = , ()

we assume the transform Z = zβ and the solution can be expressed in a series in the form

μ(Z) =
∞∑
m=

μmZm, ()

where μm are constants. Substituting () into Eq. () yields

∂

∂Z

∞∑
m=

θβmμmZm + ρ

∞∑
m=

μmZm = . ()

Since

θβm =
�( +mβ)

m�( +mβ – β)
,

then the computation imposes the relation

�( +mβ)
�( +mβ – β)

μm + ρμm– = 

with μ() = , and consequently we obtain

μm =
(–ρ)m

�( +mβ)
.
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Thus, we have the following solution:

μ(Z) =
∞∑
m=

(–ρ)m

�( +mβ)
Zm

which is equivalent to

μ(z) =
∞∑
m=

(–ρ)m

�( +mβ)
zmβ = Eβ

(
–ρzβ

)
,

where Eβ is a Mittag-Leffler function. The last assertion is the exact solution for the prob-
lem () and consequently for ().

Example . Consider the following equation:

⎧⎨
⎩

t//
.

∂/u(t,z)
∂t/ + z ∂u(t,z)

∂z +Dβ
z u(t, z) = zβ t, t ∈ J = [, ],

u(, z) = , in a neighborhood of z = ,
()

where u(t, z) is the unknown function and β ∈ (, ]. In the same manner of Example .,
we let

u(t, z) = μ(z)t + v(t, z)
(
v(t, z) =O

(
t

))

as a formal solution, where μ(z) =O(zβ ) and

∣∣μ′(z) – ν ′(z)
∣∣ < λ

∣∣μ(z) – ν(z)
∣∣, λ <



.

Estimations imply

t/
∂/u(t, z)

∂t/
= .μ(z)t + t/vα(t, z), α = /,

z
∂u(t, z)

∂z
= ztμ′(z) + zvz(t, z)

and

Dβ
z u(t, z) =Dβ

z
(
μ(z)t + v(t, z)

)
= tDβ

z μ(z) + vβ (t, z).

Therefore, μ(z) satisfies

μ(z)


+ zμ′(z) +Dβ
z μ(z) – zβ = ,

which is equivalent to

Dβ
z μ(z) =G

(
z,μ(z), zμ′(z)

)
, ()

http://www.advancesindifferenceequations.com/content/2012/1/192
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where

G
(
z,μ(z), zμ′(z)

)
= zβ – /μ(z) – zμ′(z).

Now, to show that G(z,μ(z), zμ′(z)) is a contraction mapping,

∣∣G(
z,μ(z), zμ′(z)

)
–G

(
z,ν(z), zν ′(z)

)∣∣
=

∣∣zβ – /μ(z) – zμ′(z) –
(
zβ – /ν(z) – zν ′(z)

)∣∣
≤ 


∣∣μ(z) – ν(z)

∣∣ + λ
∣∣μ(z) – ν(z)

∣∣

=
(


+ λ

)∣∣μ(z) – ν(z)
∣∣.

Thus, in view of the Banach fixed point theorem, Eq. () has a unique analytic solution
in the unit disk and consequently the problem ().
To evaluate the fractal index for the equation

Dβ
z μ(z) +

μ(z)


+ zμ′(z) – zβ = , μ() = , ()

we assume the transform Z = zβ and the solution can be articulated as in (). Substitut-
ing () into Eq. (), we have

∂

∂Z

∞∑
m=

θβmμmZm +



∞∑
m=

μmZm + 
∞∑
m=

mμmZm – Z = , ()

where

θβm =
�( +mβ)

m�( +mβ – β)
.

Hence, the computation imposes the relation
(

�( +mβ)
�( +mβ – β)

+ m
)

μm +


μm– = 

with μ() = , and consequently we obtain

μm :=
(Bm)m

�( +mβ)
,

where Bm in terms of a gamma function. If we let B := maxm{Bm}, then the solution ap-
proximates to

μ(Z) �
∞∑
m=

(B)m

�( +mβ)
Zm,

which is equivalent to

μ(z) =
∞∑
m=

(B)m

�( +mβ)
zmβ = Eβ

(
Bzβ

)
.
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The last assertion is the exact solution for the problem () and consequently for ().
Next, we consider the Cauchy problem by employing the generalized fractional differ-

ential operator (). We shall show that the solution of such a problem can be determined
in terms of the Fox-Wright function []:

p�q

⎡
⎢⎣
(a,A), . . . , (ap,Ap);

w
(b,B), . . . , (bq,Bq);

⎤
⎥⎦ = p�q

[
(aj,Aj),p; (bj,Bj),q;w

]

:=
∞∑
n=

�(a + nA) · · ·�(ap + nAp)
�(b + nB) · · ·�(bq + nBq)

wn

n!

=
∞∑
n=

∏q
j= �(aj + nAj)∏p
j= �(bj + nBj)

wn

n!
,

where Aj >  for all j = , . . . ,p, Bj >  for all j = , . . . ,q, and  +
∑q

j= Bj –
∑p

j=Aj ≥  for
suitable values |w| <  and ai, bj are complex parameters.

Example . Consider the Cauchy problem in terms of the differential operator ()

Dα,μ
z u(z) = F

(
z,u(z)

)
, ()

where F(z,u(z)) is analytic in u and u(z) is analytic in the unit disk. Thus, F can be ex-
pressed by

F(z,u) = φu(z).

Let Z = zα(μ+). Then the solution can be formulated as follows:

u(Z) =
∞∑
m=

umZm, ()

where um are constants. Substituting () into Eq. () implies

∂

∂Z

∞∑
m=

�α,μ,mumZm – φ

∞∑
m=

umZm = . ()

Since

�α,μ,m =
(μ + )α�( mα

μ+ + )
m�( nα

μ+ +  – α)
,

then the calculation yields the relation

(μ + )α�( mα
μ+ + )

�( mα
μ+ +  – α)

um – φum– = ;

http://www.advancesindifferenceequations.com/content/2012/1/192
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consequently, we obtain

um =
[

φ

(μ + )α

]m �( (m–)α
μ+ +  – α)�( mα

μ+ +  – α)

�( (m–)α
μ+ + )�( mα

μ+ + )
.

Thus, we have the following solution:

u(Z) =
∞∑
m=

[
φ

(μ + )α

]m �( (m–)α
μ+ +  – α)�( mα

μ+ +  – α)

�( (m–)α
μ+ + )�( mα

μ+ + )
Zm

which is equivalent to

u(Z) =
∞∑
m=

[
φ

(μ + )α

]m �(m + )�( (m–)α
μ+ +  – α)�( mα

μ+ +  – α)

�( (m–)α
μ+ + )�( mα

μ+ + )
Zm

m!
.

Since φ is an arbitrary constant, we assume that

φ := (μ + )α .

Thus, for a suitable α, we present

u(Z) =
∞∑
m=

�(m + )�( (m–)α
μ+ +  – α)�( mα

μ+ +  – α)

�( (m–)α
μ+ + )�( mα

μ+ + )
Zm

m!

= �

⎡
⎢⎣
(, ), ( – α – α

μ+ ,
α

μ+ ), ( – α, α
μ+ );

Z
( – α

μ+ ,
α

μ+ ), (,
α

μ+ );

⎤
⎥⎦

or

u(z) = �

⎡
⎢⎣
(, ), ( – α – α

μ+ ,
α

μ+ ), ( – α, α
μ+ );

zα(μ+)

( – α
μ+ ,

α
μ+ ), (,

α
μ+ );

⎤
⎥⎦ ,

where |z| < .

4 Conclusion
A generalized fractional complex transform is suggested in this paper to find exact solu-
tions of fractional differential equations in the unit disk. We have converted some classes
of fractional differential equations in the sense of the Srivastava-Owa fractional opera-
tor and its generalization into ordinary differential equations. Hence, the exact solutions
are imposed. The solution procedure is simple and might find wide applications in im-
age processing and signal processing by using fractional filter mask. Examples . and .
showed the conversion of time-space fractional differential equations into a normal case.
The exact solutions are introduced in the expression of a Mittag-Leffler function. While
Example ., the Cauchy problem of fractional order in the unit disk, proposed the exact
solution in terms of the Fox-Wright function.
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