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Abstract
In this paper we obtain approximate analytical solutions of systems of nonlinear
fractional partial differential equations (FPDEs) by using the two-dimensional
differential transform method (DTM). DTM is a numerical solution technique that is
based on the Taylor series expansion which constructs an analytical solution in the
form of a polynomial. The traditional higher order Taylor series method requires
symbolic computation. However, DTM obtains a polynomial series solution by means
of an iterative procedure. The fractional derivatives are described in the Caputo
fractional derivative sense. The solutions are obtained in the form of rapidly
convergent infinite series with easily computable terms. DTM is compared with some
other numerical methods. Computational results reveal that DTM is a highly effective
scheme for obtaining approximate analytical solutions of systems of linear and
nonlinear FPDEs and offers significant advantages over other numerical methods in
terms of its straightforward applicability, computational efficiency, and accuracy.

Keywords: fractional differential equation; Caputo fractional derivative; differential
transform method

1 Introduction
Mathematical modeling of many physical systems leads to linear and nonlinear fractional
differential equations in various fields of physics and engineering. For the last several
decades, fractional calculus has found diverse applications in various scientific and tech-
nological fields such as control theory, computational fluid mechanics, signal and image
processing, and many other physical processes (see, for instance, [] for further applica-
tions).
The numerical and analytical approximations of FPDEs and systems of FPDEs have

been an active research area for computational scientists since the work of Padovan [].
Recently, several mathematical methods including the Adomian decomposition (ADM)
[], variational iteration (VIM) [], differential transform [], and homotopy perturbation
(HAM) [] have been developed to obtain exact and approximate analytic solutions of
FPDEs. Some of these methods use some sort of transformations in order to reduce equa-
tions into simpler equations or systems of equations, and some other methods express the
solution in a series form which converges to the exact solution. For instance, VIM and
ADM provide immediate and visible symbolic terms of analytic solutions as well as nu-
merical approximate solutions to both linear and nonlinear differential equations without
linearization or discretization.
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In this paper we use DTM to obtain approximate analytical solutions of systems of non-
linear FPDEs. DTMwas not often applied to the solution of systems of nonlinear fractional
partial differential equations in the literature. DTM is a numerical solution technique that
is based on the Taylor series expansion which constructs an analytical solution in the form
of a polynomial. The traditional high order Taylor series method requires symbolic com-
putation. However, DTM obtains a polynomial series solution by means of an iterative
procedure. DTM was first applied in the engineering domain in []. Recently, the appli-
cation of DTM was successfully extended to obtain analytical approximate solutions to
linear and nonlinear ordinary differential equations of fractional order [, ]. The fact that
DTM solves nonlinear equations without using Adomian polynomials can be considered
as an advantage of this method over the Adomian decomposition method. A comparison
between DTM and the Adomian decomposition method for solving fractional differential
equations is given in []. Further applications of DTMmight be seen at [, ].
Organization of this paper is as follows. Section  overviews fractional calculus briefly

and provides some basic definitions and properties of fractional calculus theory. Section 
describes the generalized two-dimensional DTM. In the same section, several numerical
experiments as the application of DTM to some linear and nonlinear systems of FPDEs
are presented. Comparison of DTMwith HAM and VIM is studied in the final part of the
paper.

2 Fractional calculus
There are several different definitions of the concept of a fractional derivative []. Some
of these are Riemann-Liouville, Grunwald-Letnikow, Caputo, and generalized functions
approach. The most commonly used definitions are the Riemann-Liouville and Caputo
derivatives.

Definition . A real function f (x), x > , is said to be in the space Cμ, μ ∈ R, if there
exists a real number p (> μ) such that f (x) = xpf(x), where f(x) ∈ C[,∞), and it is said to
be in the space Cm

μ iff f m ∈ Cμ,m ∈N .

Definition . The Riemann-Liouville fractional integral operator of order α ≥  of a
function f ∈ Cμ, μ ≥ –, is defined as

Jvf (x) =


�(v)

∫ x


(x – t)v–f (t)dt, v > ,

Jf (x) = f (x).

It has the following properties. For f ∈ Cμ, μ ≥ –, α,β ≥ , and γ > :

. JαJβ f (x) = Jα+β f (x),

. JαJβ f (x) = Jβ Jαf (x),

. Jαxγ =
�(γ + )

�(α + γ + )
xα+γ .

The Riemann-Liouville fractional derivative is mostly used by mathematicians, but this
approach is not suitable for physical problems of the real world since it requires the defi-
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nition of fractional order initial conditions which have no physically meaningful explana-
tion yet. Caputo introduced an alternative definition which has the advantage of defining
integer order initial conditions for fractional order differential equations.

Definition . The fractional derivative of f (x) in the Caputo sense is defined as

Dv
* f (x) = Jm–v

a Dmf (x) =


�(m – v)

∫ x


(x – t)m–v–f (m)(t)dt,

form –  < v <m,m ∈N , x > , f ∈ Cm
–.

Lemma . If m –  < α <m,m ∈N , and f ∈ Cm
μ , μ ≥ –, then

Dα
* J

αf (x) = f (x),

JαDv
* f (x) = f (x) –

m–∑
k=

f k
(
+

)xk
k!
, x > .

TheCaputo fractional derivative is considered here because it allows traditional initial and
boundary conditions to be included in the formulation of the problem. In this paper,we have
considered some systems of linear and nonlinear FPDEs, where fractional derivatives are
taken in Caputo sense as follows.

Definition . Form to be the smallest integer that exceeds α, the Caputo time-fractional
derivative operator of order α >  is defined as

Dα
*tu(x, t) =

∂αu(x, t)
∂tα

=

⎧⎨
⎩


�(m–α)

∫ t
 (t – ξ )m–α– ∂mu(x,ξ )

∂ξm dξ , form –  < α <m,
∂mu(x,t)

∂tm , for α =m ∈N .

3 Generalized two-dimensional DTM
In this section we shall derive the generalized two-dimensional DTM that we have de-
veloped for the numerical solution of linear partial differential equations with space and
time-fractional derivatives.
Consider a function of two variables u(x, y) and suppose that it can be represented as a

product of two single-variable functions, i.e., u(x, y) = f (x)g(y). Based on the properties of
the generalized two-dimensional differential transform, the function u(x, y) can be repre-
sented as

u(x, y) =
∞∑
k=

Fα(k)(x – x)kα
∞∑
h=

Gβ (h)(y – y)hβ

=
∞∑
k=

∞∑
h=

Uαβ (k,h)(x – x)kα(y – y)hβ ,

where  < α, β ≤ , Uαβ(k,h) = Fα(k)Gβ (h) is called the spectrum of u(x, y). The general-
ized two-dimensional differential transform of the function u(x, y) is given by

Uα,β (k,h) =


�(αk + )�(βh + )
[(
Dα

*x

)k(Dβ
*y

)hu(x, y)](x,y), ()
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where (Dα
x )

k = Dα
xD

α
x · · ·Dα

x , k-times. In case of α =  and β = , the generalized two-
dimensional differential transform () reduces to the classical two-dimensional differential
transform. Next we give some useful theorems about writing the generalized differential
transform in equivalent forms under certain conditions.

Theorem . [] Suppose that Uα,β (k,h), Vα,β (k,h), and Wα,β (k,h) are the differential
transformations of the functions u(x, y), v(x, y), and w(x, y), respectively, then
 if u(x, y) = v(x, y)±w(x, y), then Uα,β (k,h) = Vα,β (k,h)±Wα,β(k,h),
 if u(x, y) = av(x, y), a ∈ R, then Uα,β (k,h) = aVα,β (k,h),
 if u(x, y) = v(x, y)w(x, y), then Uα,β (k,h) =

∑k
r=

∑h
s=Vα,β (r,h – s)Wα,β(k – r, s),

 if u(x, y) = (x – x)nα(y – y)mβ , then Uα,β (k,h) = δ(k – n)δ(h –m).

Theorem . [] If u(x, y) = Dα
xv(x, y),  < α ≤ , then the generalized differential trans-

form () can be written as

Uα,β (k,h) =
�(α(k + ) + )

�(αk + )
Vα,β (k + ,h).

Theorem . [] Assume that u(x, y) = f (x)g(y) and the function f (x) = xλh(x), where λ >
– and h(x) has the generalized Taylor series expansion h(x) =

∑∞
n= an(x – x)αk . If

(a) β < λ +  and α is arbitrary or
(b) β ≥ λ +  and α is arbitrary and an =  for n = , , . . . ,m – , where m –  < β ≤ m.
Then the generalized differential transform () becomes

Uα,β (k,h) =


�(αk + )�(βh + )
[
Dαk

*x

(
Dβ

*y

)hu(x, y)](x,y).
Theorem . [] If u(x, y) = Dγ

xv(x, y), m –  < γ ≤ m and v(x, y) = f (x)g(y), then the
generalized differential transform () can be written as

Uα,β (k,h) =
�(αk + γ + )

�(αk + )
Vα,β (k + γ /α,h).

In the next section,we apply DTM to some systems of FPDEs whichmight have applications
in mathematical biology and computational chemistry.

4 Analytical solutions of systems of linear and nonlinear FPDEs
Example  Consider the following system of linear FPDEs. For ( < α, β < ),

Dα
*tu – vx + (u + v) = ,

Dβ
*tv – ux + (u + v) = ,

with initial conditions u(x, ) = sinhx and v(x, ) = coshx. Using DTM, we can write

�(α(h + ) + )
�(αh + )

U(k,h + ) = (k + )V (k + ,h) –U(k,h) –V (k,h),

�(β(h + ) + )
�(βh + )

V (k,h + ) = (h + )U(k,h + ) –U(k,h) –V (k,h).
()
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The transformed initial conditions are

U(k, ) =

⎧⎨
⎩, k = , , , . . . ,


k! , k = , , , . . . ,

V (k, ) =

⎧⎨
⎩, k = , , , . . . ,


k! , k = , , , . . . .

()

Substituting () in (), we get the following closed form solutions:

u(x, t) = sinh(x)
(
 +

tα

�(α + )
+ · · ·

)
– cosh(x)

(
tα

�(α + )
+

tα

�(α + )
+ · · ·

)
,

v(x, t) = cosh(x)
(
 +

tβ

�(β + )
+ · · ·

)
– sinh(x)

(
tβ

�(β + )
+

tβ

�(β + )
+ · · ·

)
.

If α = β = , we obtain

u(x, t) = sinh(x)
(
 +

t

!
+
t

!
+ · · ·

)
– cosh(x)

(
t +

t

!
+
t

!
+ · · ·

)
,

v(x, t) = cosh(x)
(
 +

t

!
+
t

!
+ · · ·

)
– sinh(x)

(
t +

t

!
+
t

!
+ · · ·

)
,

which are exactly the same as the solutions obtained by HAM converging to the closed-
form solutions:

u(x, t) = sinh(x – t),

v(x, t) = cosh(x – t).

For α = β = , Figure  illustrates exact and approximate solutions obtained by DTM of
u(x, t) and v(x, t), respectively.

Example  Consider the following nonlinear system. For ( < α, β < ),

Dα
*tu – uxx – uux + (uv)x = ,

Dβ
*tv – vxx – vvx + (uv)x = 

()

with the initial conditions u(x, ) = sinx and v(x, ) = sinx. The transformed version of ()
is

�(α(h + ) + )
�(αh + )

U(k,h + )

= (k + )(k + )U(k + ,h) + 
k∑

r=

h∑
s=

U(r,h – s)(k – r + )

×U(k – r + , s) –
k∑

r=

h∑
s=

(r + )U(r + ,h – s)V (k – r, s)

–
k∑

r=

h∑
s=

(r + )V (r + ,h – s)U(k – r, s), ()
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Figure 1 For α = β = 1: exact and approximate solutions (red and blue colored surfaces, respectively)
(u(x, t) and v(x, t) (left- and right-hand sides, respectively)).

�(β(h + ) + )
�(βh + )

V (k,h + ) = (k + )(k + )V (k + ,h) + 
k∑

r=

h∑
s=

V (r,h – s)(k – r + )

×V (k – r + , s) –
k∑

r=

h∑
s=

(r + )U(r + ,h – s)V (k – r, s)

–
k∑

r=

h∑
s=

(r + )V (r + ,h – s)U(k – r, s). ()

The transformed version of the initial conditions is

U(k, ) = V (k, ) =

⎧⎪⎪⎨
⎪⎪⎩
, k = , , , . . . ,

k! , k = , , . . . ,

– 
k! , k = , , . . . .

()

Substituting () in () and (), we obtained the following closed form solutions:

u(x, t) =
(
x
!
–
x

!
+ · · ·

)(
 +

∞∑
m=

(–tα)m

�(mα + )

)
,

v(x, t) =
(
x
!
–
x

!
+ · · ·

)(
 +

∞∑
m=

(–tα)m

�(mα + )

)
.

If α = β = , we get u(x, t) = sinxe–t , v(x, t) = sinxe–t , which are the exact solutions of the
system of equations ().
We can obtain similar figures for this example as well, but for the sake of brevity, we

omit those figures.
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5 Conclusion and discussion
In this work, the differential transform method is extended to solve linear and non-linear
systems of fractional partial differential equations. The present study has confirmed that
DTM offers significant advantages in terms of its straightforward applicability, computa-
tional efficiency, and accuracy.
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