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1 Introduction
The main purpose of this paper is to establish existence results for the second-order
Dirichlet system

(P)

⎧⎨⎩x��
i = fi(t,xσ (t)), t ∈ (Jκ )o,

xi(a) = Ai, xi(σ (b)) = Bi, i = , , . . . ,n

with f = (f, . . . , fn), i = , , . . . ,n, where fi : (Jκ )o × A → R, A ⊂ R
n and J is a time scale

interval. The nonlinearity fi(t,x) may be singular at xi, i = , . . . ,n and/or t.
Stefan Hilger [] introduced the notion of time scale in  in order to unify the theory

of continuous and discrete calculus. The time scales approach not only unifies differen-
tial and difference equations, but also solves some other problems such as a mix of stop-
start and continuous behaviors [, ] powerfully. Nowadays the theory on time scales has
been widely applied to several scientific fields such as biology, heat transfer, stock market,
wound healing and epidemic models.
Under the general form of problem (P), it included the Emden-Fowler equation which

arises, for example, in astrophysics in relation to the stellar structure (gaseous dynamics).
In this case, the fundamental problem is to investigate the equilibrium configuration of
the mass of spherical clouds of gas. It also arises in gas dynamics and fluid mechanics.
The solutions of physical interest in this context are bounded non-oscillatory and possess
a positive zero. It is also encountered in the relativistic mechanics and nuclear physics;
and in chemically reacting systems: in the theory of diffusion and reaction this equation
appears as governing the concentrationu of a substancewhich disappears by an isothermal
reaction at each point of a slab of catalyst. We refer to Wong [] for a general historical
overview of this equation.
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Manyworks on this systemhave beenwritten in the continuous case.We can cite, among
others, [, ] or [] for n =  or [] for n = . On the discrete case, we find the book []
which studies the oscillation properties of the solutions of different difference equations.
For the specific problem u��(t) + p(t)uγ (σ (t)) = , where p ≥  and γ is the quotient of
odd positive numbers, oscillation properties were also studied in [].
Regarding time scales, some results on the existence and uniqueness of classical solu-

tions or solutions in the sense of distribution for n =  can be found in the articles [–]
and []. Considering classical solutions, oscillation properties have also been studied in
works such as [] (with delay) or [].
In the present paper, we present some results on time scales considering classical solu-

tions which generalize the ones from the continuous case. The remainder of the paper is
organized as follows. In Section , we state some existence results supposing the existence
of a pair of lower and upper solutions and employing the Schauder fixed-point theorem.
In Section , we shall give a necessary and sufficient condition for the existence of positive
solutions of singular boundary value problem (P) by constructing a lower solution.

2 Lower and upper solutions method
Let T be an arbitrary time scale. We assume that T has the topology that it inherits from
the standard topology on R. See [] for general theory on time scales.
Let a,b ∈ T be such that a < ρ(b). If a is a right-dense point, we consider J = (a,σ (b)]T,

Jκ = (a,σ (b)]T and (Jκ )o = (a,σ (b))T. In the other case, J = [a,σ (b)]T, Jκ = [a,σ (b)]T and
(Jκ )o = [a,σ (b))T.
The problem we will consider in this section is

(P)

⎧⎨⎩x��
i = fi(t,xσ (t)), t ∈ (Jκ )o,

xi(a) = Ai, xi(σ (b)) = Bi, i = , , . . . ,n.

with f = (f, . . . , fn), i = , , . . . ,n, where fi : (Jκ )o ×A→R,A⊂R
n.

We say that f verifies the hypothesis (H) if for every i = , , . . . ,n, the following condi-
tions are satisfied:

(i) For every x ∈A, fi(·,x) ∈ Crd((Jκ )o),
(ii) fi(t, ·) is continuous on A uniformly in t ∈ (Jκ )o.
For convenience, we denote

E =
{
g ∈ Crd

((
Jκ

)o,R+) : ∫ σ (b)

a

(
σ (s) – a

)(
σ (b) – s

)
g(s)�s < +∞

}
.

We say that f satisfies the condition (H) on B ⊂ (Jκ )o ×A if for i = , , . . . ,n there exists
a function hi ∈ E such that

(H) |fi(t,x)| ≤ hi(t), ∀(t,x) ∈ B.

Definition . A solution of (P) is a function x = (x, . . . ,xn), with xi ∈ C
rd((a,b)T) for all

i = , . . . ,n such that x(t) ∈A for all t ∈ [a,σ (b)]T, which satisfies (P) for each t ∈ (Jκ )o and
i = , . . . ,n, where

C
rd

(
(a,b)T

)
=

{
y ∈ C

([
a,σ (b)

]
T

)
, y�� :

(
Jκ

)o →R, and y�� ∈ Crd
(
(a,b)T

)}
.
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Definition . We say that α = (α, . . . ,αn), with αi ∈ C
rd((a,b)T), is a lower solution of

(P) if α(t) ∈A for all t ∈ [a,σ (b)]T and

–α��(t)≤ f
(
t,ασ (t)

)
, t ∈ (

Jκ
)o,

α(a)≤ A, α
(
σ (b)

) ≤ B.

An upper solution β = (β, . . . ,βn) of (P) is defined similarly by reversing the previous in-
equalities.
We have the following result.

Theorem. Let α and β be, respectively, a lower and upper solution for problem (P) such
that α ≤ β on [a,σ (b)]T. If f satisfies (H) and the condition (H) on

Dβ
α =

{
(t,x) ∈ (

Jκ
)o ×R : ασ (t)≤ x ≤ βσ (t)

}
,

and

(H) For t ∈ [a,b]T and x ∈A : α(t)≤ x ≤ β(t)⇒

fi
(
t,α(t)

) ≤ fi(t,x)≤ fi
(
t,β(t)

)
,

for all i = , . . . ,n.

Then problem (P) has at least one solution x such that α ≤ x ≤ β on [a,σ (b)]T.

Proof We consider the following modified problem:

(Pm)

⎧⎨⎩x��
i (t) = –f *i (t,xσ (t)), t ∈ (Jκ )o,

xi(a) = Ai, xi(σ (b)) = Bi, i = , , . . . ,n

with

f *i (t,x) = fi
(
t,di(t,x)

)
+

di(t,x) – xi
 + |di(t,x) – xi| ,

where d = (d, . . . ,dn) and di : [a,σ (b)]T ×A→ R is defined

di(t,x) =

⎧⎪⎪⎨⎪⎪⎩
ασ
i (t), if xi < ασ

i (t),

xi, if ασ
i (t)≤ xi ≤ βσ

i (t),

βσ
i (t), if βσ

i (t) ≤ xi.

We can prove that di(t, ·) is continuous on A uniformly in t and di(·,x) ∈ Crd([a,σ (b)]T)
for every x ∈ A. Hence, the function p : Dβ

α → Dβ
α , p(t,x) = (t,d(t,x)) verified for each

x ∈A, p(·,x) ∈ Crd((Jκ )o).
Due to the hypothesis, it is easy to see that (H) is satisfied and that there exist h*i ∈ E

such that (H) holds for the function f *.
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Note that if u is a solution of (Pm) such that α ≤ u≤ β on [a,σ (b)]T, then u is a solution
of (P).
To show that any solution u of (Pm) is between α and β , suppose that there exists i =

, . . . ,n and t* ∈ [a,σ (b)]T such that vi(t*) = αi(t)–ui(t) > . As vi(a)≤  and vi(σ (b)) ≤ ,
then there exists t ∈ (a,σ (b))T with

vi(t) =max
{
vi(t), t ∈ [

a,σ (b)
]
T

}
> ,

and vi(t) < vi(t) for t ∈ (t,σ (b)]T. The point t is not simultaneously left-dense and
right-scattered (see Theorem . in []). This implies that (σ ◦ ρ)(t) = t, and we have
that v��

i (ρ(t)) ≤  (see []), so given that ασ (t) ≤ d(t,uσ (t)),

–v��
i

(
ρ(t)

)
= u��

i
(
ρ(t)

)
– α��

i
(
ρ(t)

)
≤ –fi

(
ρ(t),d

(
ρ(t),uσ

(
ρ(t)

)))
–

di(ρ(t),uσ (ρ(t))) – xσ
i (ρ(t))

 + |di(ρ(t),uσ (ρ(t))) – xσ
i (ρ(t))|

+ f
(
ρ(t),ασ

(
ρ(t)

))
= –

α(t) – u(t)
 + (α(t) – u(t))

< .

So, v��(ρ(t)) > , that is a contradiction. And so we have proved that v(t) ≤  for each
t ∈ [a,σ (b)]T.
Analogously, it can be proved that u(t)≤ β(t) for all t ∈ [a,σ (b)]T.
We only need to prove that problem (Pm) has at least one solution.
Consider now the operator N : C([a,σ (b)]T) → C([a,σ (b)]T) defined by

Nu(t) = φ(t) +
∫ σ (b)

a
G(t, s)f *

(
s,uσ (s)

)
�s (.)

for each t ∈ [a,σ (b)]T, where (see [])

G(t, s) =


σ (b) – a

⎧⎨⎩(t – a)(σ (b) – σ (s)), t ≤ s,

(σ (s) – a)(σ (b) – t), σ (s)≤ t,
(.)

is Green’s function of the problem⎧⎨⎩–x�� = ,

x(a) = x(σ (b)) = ,

and for t ∈ [a,σ (b)]T,

φ(t) = A +
B –A

σ (b) – a
(t – a)

is the solution of –x�� =  such that φ(a) = A and φ(σ (b)) = B.
Clearly, G(t, s) >  on (a,σ (b))T × (a,σ (b))T, G(t, ·) is rd-continuous on [a,σ (b)]T and

G(·, s) is continuous on [a,σ (b)]T.
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The function Nu defined by (.) belongs to C([a,σ (b)]T) because f * satisfies the con-
ditions (H) and (H) on (Jκ )o ×R and G(t, s) ≤ s( – s) for each t, s ∈ [a,σ (b)]T.
It is obvious that u ∈ C([a,σ (b)]T) is a solution of (Pm) if and only if u = Nu. So, the

problem now is to ensure the existence of fixed points of N .
First of all, N is well defined, continuous and N(C([a,σ (b)]T)) is a bounded set. The

existence of a fixed point of N follows from the Schauder fixed-point theorem once we
have checked that N(C([a,σ (b)]T)) is relatively compact, that using the Ascoli-Arzela
theorem is equivalent to proving that N(C([a,σ (b)]T)) is an equicontinuous family.
Let h* ∈ E be the function related to f * by the condition (H). We compute the first

derivative of Nu using Theorem . of []:

∣∣(Nu)�(t)∣∣ = 
σ (b) – a

∣∣∣∣(B –A) –
∫ t

a

(
σ (s) – a

)
f *

(
s,uσ (s)

)
�s

+
∫ σ (b)

t

(
σ (b) – σ (s)

)
f *

(
s,uσ (s)

)
�s

∣∣∣∣
≤ 

σ (b) – a

(
|B –A| +

∫ t

a

(
σ (s) – a

)
h*(s)�s

+
∫ σ (b)

t

(
σ (b) – σ (s)

)
h*(s)�s

)
:=


σ (b) – a

(|B –A| + λ(t)
)
.

Finally, it is enough to check that λ ∈ L((Jκ )o). Using integration by parts, we obtain

∫ σ (b)

a

∣∣λ(s)∣∣�s =
∫ σ (b)

a
λ(s)�s

= lim
r→σ (b)–

∫ r

a

(∫ t

a

(
σ (s) – a

)
h*(s)�s

)
�t

+ lim
r→a+

∫ σ (b)

r

(∫ σ (b)

t

(
σ (b) – σ (s)

)
h*(s)�s

)
�t

= 
∫ σ (b)

a

(
σ (s) – a

)(
σ (b) – σ (s)

)
h*(s)�s

– lim
r→σ (b)–

(
σ (b) – r

)∫ r

a

(
σ (s) – a

)
h*(s)�s

– lim
r→a+

(r – a)
∫ σ (b)

r

(
σ (b) – σ (s)

)
h*(s)�s < +∞

due to h* ∈ E and the fact

(
σ (b) – r

)∫ r

a

(
σ (s) – a

)
h*(s)�s≤

∫ σ (b)

a

(
σ (s) – a

)(
σ (b) – σ (s)

)
h*(s)�s,

(r – a)
∫ σ (b)

r

(
σ (b) – σ (s)

)
h*(s)�s≤

∫ σ (b)

a

(
σ (s) – a

)(
σ (b) – σ (s)

)
h*(s)�s.

And so the result is proved. �
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Remark . The above theorem is also true if we change (H) by

(H) For t ∈ [a,b]T and x, y ∈A, there existsM >  such that

fi(t,x) – fi(t, y) ≤ M(x – y).

Remark. The existence of a lower solution and an upper solutionwith  < α ≤ β can be
obtained through conditions of fi. For instance, if fi ∈ Crd(J) and fi is bounded, the existence
holds.

3 Existence of a positive solution
Consider the problem

(P)

⎧⎨⎩–x��
i (t) = fi(t,xσ (t)), t ∈ (Jκ )o,

xi(a) = xi(σ (b)) = , i = , . . . ,n.

Wewill deduce the existence of a solution to (P) by supposing that the following hypothe-
ses hold:

(H̃) For every i = , . . . ,n, fi : (Jκ )o × A → [, +∞), where A ⊂ (, +∞) × · · ·n × (, +∞),
verifies

(i) For every x ∈A, fi(·,x) ∈ Crd((Jκ )o),
(ii) fi(t, ·) is continuous on A uniformly in t ∈ (Jκ )o.

(H̃) For every i = , . . . ,n, and j = , . . . ,n, there exist constants λij,μij, with –∞ < λij < μij <
, λii <  < μii < , μij <  if i �= j, such that if  < c ≤ , then

cμij fi(t,x, . . . ,xn) ≤ fi(t,x, . . . , cxj, . . . ,xn) ≤ cλij fi(t,x, . . . ,xn)

for each t ∈ (Jκ )o and x ∈A.

Remark . If c≥  for every i = , . . . ,n,

cλij fi(t,x, . . . ,xn) ≤ fi(t,x, . . . , cxj, . . . ,xn) ≤ cμij fi(t,x, . . . ,xn)

for each t ∈ (Jκ )o and x ∈A.

We consider solutions to the problem.

Definition . A positive solution of type  of (P) is a function x = (x, . . . ,xn), with xi ∈
C
rd((a,b)T) for all i = , . . . ,n such that x(t) ∈ A and xi(t) >  for all t ∈ [a,σ (b)]T, which

satisfies the equalities on (P) for each t ∈ (Jκ )o and i = , . . . ,n, and the following limits
exist and are finite:

lim
t→a+

x�
i (t) and lim

t→σ (b)–
x�
i (t).

http://www.advancesindifferenceequations.com/content/2012/1/185
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Definition . We say that α ∈ C
rd is a lower solution of (P) if for each i = , , . . . ,n we

have⎧⎨⎩–α��
i (t) ≤ fi(t,xσ (t)), t ∈ (Jκ )o,

αi(a) = αi(σ (b)) = .

Similarly, β ∈ C
rd is called an upper solution of (P) if for each i = , , . . . ,n,

⎧⎨⎩–β��
i (t)≥ fi(t,xσ (t)), t ∈ (Jκ )o,

βi(a) = βi(σ (b)) = .

Lemma . Suppose that (H̃) and (H̃) hold. If x is a positive solution of type  of (P),
then for each i = , . . . ,n, there are constants Ii, Ii,  < Ii < Ii such that

Iie(t) ≤ xi(t)≤ e(t)Ii,

where e(t) = (t–a)(σ(b)–t)
σ(b)–a .

Proof Integrate the equations of (P) in (Jκ )o for i = , . . . ,n

–
∫ σ (b)

a
fi
(
s,xσ (s)

)
�s =

∫ σ (b)

a
x��
i (s)�s

= lim
t→σ (b)–

x�
i (t) – lim

t→a+
x�
i (t) < +∞.

From (.), we have

xi(t) =
∫ σ (b)

a
G(t, s)fi

(
s,xσ (s)

)
�s≤ (t – a)(σ (b) – t)

σ (b) – a

∫ σ (b)

a
fi
(
s,xσ (s)

)
�s.

Since∫ t

a

(s – a)(σ (b) – σ (s))(t – a)(σ (b) – t)
(σ (b) – a)

fi
(
s,xσ (s)

)
�s

≤
∫ t

a

(
σ (s) – a

)(
σ (b) – t

)
fi
(
s,xσ (s)

)
�s,

and ∫ σ (b)

t

(s – a)(σ (b) – σ (s))(t – a)(σ (b) – t)
(σ (b) – a)

fi
(
s,xσ (s)

)
�s

≤
∫ σ (b)

t
(t – a)

(
σ (b) – σ (s)

)
fi
(
s,xσ (s)

)
�s,

we have

(t – a)(σ (b) – t)
(σ (b) – a)

∫ σ (b)

a

(s – a)(σ (b) – σ (s))
(σ (b) – a)

fi
(
s,xσ (s)

)
�s≤ xi(t).

http://www.advancesindifferenceequations.com/content/2012/1/185
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Thus, if we consider

Ii =


(σ (b) – a)

∫ σ (b)

a

(s – a)(σ (b) – σ (s))
(σ (b) – a)

fi
(
s,xσ (s)

)
�s,

Ii =
∫ σ (b)

a
fi
(
s,xσ (s)

)
�s,

it verifies

Iie(t) ≤ xi(t)≤ e(t)Ii. �

Lemma . If α and β are lower and upper solutions of problem (P) such that  < α(t)≤
β(t) for t ∈ (Jκ )o, and (H̃) and (H) or (H) hold, then problem (P) has a solution x such
that

α ≤ x ≤ β .

If in addition there exists a function h(t) = (h(t), . . . ,hn(t)) with hi ∈ L((Jκ )o) such that

∣∣fi(t,x)∣∣ ≤ hi(t), ∀t ∈ (
Jκ

)o and αi(t) ≤ xi ≤ βi(t), i = , . . . ,n,

then the solution x is a positive solution of type .

Proof Let us consider {ak}k≥, {bk}k≥ ⊂ (Jκ )o to be two sequences such that {ak}k≥ ⊂
(a, (a + σ (b))/)T is strictly decreasing to a if a = σ (a), and ak = a for all k ≥  if a <
σ (a), and {bk}k≥ ⊂ ((a + σ (b))/,σ (b))T is strictly increasing to σ (b) if ρ(σ (b)) = σ (b),
bk = ρ(σ (b)) for all k ≥  if ρ(σ (b)) < σ (b).
We denote Dk := [ak ,bk]T ⊂ (Jκ )o, k ≥ , and let {rki}, {rki} be sequences so that

αi(ak) ≤ rki ≤ βi(ak),

αi(bk)≤ rki ≤ βi(kk).

For each x ∈A, define

f *ki(·,x) :Dk → [,∞)

for all k ∈N, k ≥  and i = , . . . ,n, as

f *ki(t,x) = fi
(
t,d(t,x)

)
+

di(t,x) – xi
 + |di(t,x) – xi| .

Consider the problems

(Pk)

⎧⎨⎩x��
i (t) = –f *ki(t,xσ (t)), t ∈Dk ,

xi(ak) = rki, xi(σ (bk)) = rki, i = , . . . ,n.

http://www.advancesindifferenceequations.com/content/2012/1/185
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Due to the hypothesis fi, i = , . . . ,n, by Theorem ., we can ensure that there exists a
solution (xk, . . . ,xkn) with xki ∈ Crd[ak ,σ (bk)] such that

αi(t)≤ xki(t) ≤ βi(t),

with t ∈ [ak ,bk]. Since [a,b]⊂ [ak ,bk] for k ∈N, there exists tk ∈ [a,b] such that

∣∣x�
ki(tk)

∣∣ ≤ |xki(b) – xki(a)|
|b – a| ≤ (βi(b) – βi(a))

|b – a| .

Thus, we can find a sequence {tk} which converges to t ∈ [ak ,bk] for k ∈N, satisfying

xki(tk) → xi ∈
[
αi(t),βi(t)

]
,

and

x�
ki(tk) → x�

i

for i = , . . . ,n when k → ∞.
We note that xki is the solution of

y��
i (t) = –fi

(
t, yσ (t)

)
,

with yi(tk) = xki(tk) and y�
i (tk) = x�

ki(tk).
Hence, due to an adaptation of Theorem . in [] and by existence theorems, we can

find a solution of the problem

x��
i (t) = –fi

(
t,xσ (t)

)
, xi(t) = xi, x�

i (t) = x�
i, i = , . . . ,n.

This solution is defined in a maximal intervalW , and we can find at least one sequence
{xk(t)} that converges uniformly to x(t) in the compact subintervals ofW .
On the other hand,

⋃∞
k=[ak ,bk] = (Jκ )o and αi(t)≤ xki(t) ≤ βi(t) for t ∈ [ak ,bk], then x is

defined in (Jκ )o and α(t) ≤ x(t) ≤ β(t) for all t ∈ (Jκ )o. From the conditions on α and β on
the boundary, it follows that

x(a) = x
(
σ (b)

)
= ,

so that x is a solution of problem (P).
Suppose there exists a function h(t) = (h(t), . . . ,hn(t)) with hi ∈ L((Jκ )o) such that

∣∣fi(t,x)∣∣ ≤ hi(t), ∀t ∈ (
Jκ

)o and αi(t) ≤ xi ≤ βi(t), i = , . . . ,n,

then we can assume that |x��
i (t)| ≤ hi(t), i = , . . . ,n, which implies that x��

i is abso-
lutely integrable on [a,σ (b)]T and x�

i ∈ C[a,σ (b)], i = , . . . ,n, so x is a positive solution
of type . �
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Lago et al. Advances in Difference Equations 2012, 2012:185 Page 10 of 17
http://www.advancesindifferenceequations.com/content/2012/1/185

Theorem . Suppose that (H̃), (H̃) and (H) or (H) hold. There exists a positive solu-
tion of type  if and only if the following conditions hold:

 <
∫ σ (b)

a
fi
(
s,Eσ (s)

)
�s <∞,

for all i = , . . . ,n, where E(t) = (e(t), . . . , e(t)).

Proof Necessity. Suppose that there exists x = (x, . . . ,xn) positive solutions of type 
of (P). By Lemma ., there are constants Ii, Ii,  < Ii < Ii for each i = , . . . ,n such
that

Iie(t) ≤ xi(t)≤ e(t)Ii.

Let K >  such that KIi ≤ , 
K ≥ , i = , . . . ,n. By (H̃) and the above inequality, it follows

that

fi
(
t,xσ (t)

) ≥
(

K

)λii

fi
(
t,xσ

 (t), . . . ,
Kxσ

i (t)
eσ (t)

eσ (t), . . . ,xσ
n (t)

)
≥ Kμii–λii

(
xσ
i (t)
eσ (t)

)μii

fi
(
t,xσ

 (t), . . . , e
σ (t), . . . ,xσ

n (t)
)

≥ Kμij–λii Iμii
i fi

(
t,xσ

 (t), . . . , e
σ (t), . . . ,xσ

n (t)
)

≥ K
∑n

j=(μij–λij)Iμii
i

n∏
j=,j �=i

Iμij
j fi

(
t,Eσ (t)

)
,

hence∫ σ (b)

a
fi
(
s,Eσ (s)

)
�s

≤ K
∑n

j=(λij–μij)I–μii
i

n∏
j=,j �=i

I–μij
j

∫ σ (b)

a
fi
(
s,xσ (s)

)
�s

= K
∑n

j=(λij–μij)I–μii
i

n∏
j=,j �=i

I–μij
j

(
–x�

i
(
σ (b)

)
+ x�

i (a)
)
< ∞.

Sufficiency. Suppose that there exists a constant C ≥  such that CIi ≥  and Ii ≤ C.
We consider

αi(t) = kiyi(t),

βi(t) = kiyi(t),

with

yi(t) =
∫ σ (b)

a
G(t, s)fi

(
s,Eσ (s)

)
�s,

where G(t, s) is Green’s function (.) and ki and ki are determined below.

http://www.advancesindifferenceequations.com/content/2012/1/185
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Note that yi satisfies
• yi, y�

i ∈ C([a,σ (b)]T),
• y��

i ∈ Crd((a,σ (b))T).
We have

e(t)Ii ≤ yi(t)≤ e(t)Ii,

where

Ii =


σ (b) – a

∫ σ (b)

a

(s – a)(σ (b) – σ (s))
σ (b) – a

fi
(
s, eσ (s)

)
�s,

and

Ii =
∫ σ (b)

a
fi
(
s, eσ (s)

)
�s,

Consider now

ki =min

{
,

(
C

∑n
j=(λij–μij)

n∏
j=

Iλijj

) 
–μii

}
,

ki =max

{
,

(
C

∑n
j=(μij–λij)

n∏
j=

Iλijj

) 
–μii

}
.

Given that eσ (t)Ii ≤ yσ
i (t) and CIi ≥ , then eσ (t) ≤ Cyσ

i (t). Since

fi
(
t,ασ

 (t), . . . ,α
σ
n (t)

)
= fi

(
t,
k
C

Cyσ
 (t)

eσ (t)
eσ (t), . . . ,

kn
C

Cyσ
n (t)

eσ (t)
eσ (t)

)
,

we have that

fi
(
t,ασ (t)

) ≥
n∏
j=

(
kj
C

)μij(Cyσ
j (t)

eσ (t)

)λij

fi
(
t,Eσ (t)

)

≥
n∏
j=

kμij
j Cλij–μijIλijj fi

(
t,Eσ (t)

)
,

and

n∏
j=

kμij
j Cλij–μijIλijj ≥ k–μii

i

n∏
j=

kμij
j ≥ ki

n∏
j=,i�=j

kμij
j ≥ ki,

which implies that

fi
(
t,ασ (t)

) ≥ kifi
(
t,Eσ (t)

)
= –α��

i (t).

http://www.advancesindifferenceequations.com/content/2012/1/185


Lago et al. Advances in Difference Equations 2012, 2012:185 Page 12 of 17
http://www.advancesindifferenceequations.com/content/2012/1/185

In a similar way,

fi
(
t,βσ (t)

) ≤
n∏
j=

(kjC)μij

( yσ
j (t)

Ceσ (t)

)λij

fi
(
t,Eσ (t)

)

≤
n∏
j=

kμij
j Cμij–λijIλijj fi

(
t,Eσ (t)

) ≤ kifi
(
t,Eσ (t)

)
= –β��

i (t).

Thus, there is a lower solution α and an upper solution β of problem (P) that satisfy
 < αi(t) ≤ βi(t) for t ∈ (Jκ )o, i = , . . . ,n, αi(a) = βi(a) = αi(σ (b)) = βi(σ (b)) = . Applying
Lemma ., problem (P) has a solution x such that α ≤ x ≤ β . Note that for t ∈ (Jκ )o and
α ≤ x ≤ β ,

 ≤ fi
(
t,xσ

i (t)
)
= fi

(
t,

(
k
C

)(
Cxσ

 (t)
keσ (t)

)
eσ (t), . . . ,

(
kn
C

)(
Cxσ

n (t)
kneσ (t)

)
eσ (t)

)

≤
(
k
C

)λi( Cxσ
 (t)

keσ (t)

)μi

· · ·
(
kn
C

)λin( Cxσ
n (t)

kneσ (t)

)μin

fi
(
t,Eσ (t)

) ≤ hi(t),

with hi(t) = Kifi(t,Eσ (t)) and

Ki =
n∏
j=

(
kj
C

)λij–μij n∏
j=

max
k=,...,n

{
(Ik)μij , (Ik)μij

}
.

Due to the hypothesis, we can then ensure that

∫ σ (b)

a
hi(s)�s < ∞,

for i = , . . . ,n, which implies the existence of a positive solution of type  of problem (P)
such that  < α ≤ x ≤ β . �

Theorem . If there exists a positive solution of the problem and σ (b) > , then the fol-
lowing conditions hold:

 <
∫ σ (b)

a

(
σ (s) – a

)(
σ (b) – σ (s)

)
fi
(
s,

[
σ (b)

])
�s < ∞

for all i = , . . . ,n, with [σ (b)] = (σ (b), . . . ,σ (b)).

Proof Fix i = , . . . ,n, let us consider C > , Ci
 to be two constants such that

Cxσ
j (t)

σ(b) ≤  if

j = , . . . ,n and j �= i, 
C

≥ , Ci
x

σ
i (t)

σ(b) ≥  and Ci
 ≥ .

We have

fi
(
t,xσ (t)

) ≥
( n∏
j=,j �=i

(

C

)λij(Cxσ
j (t)

σ (b)

)μij
)
fi
(
t,σ (b), . . . ,xσ

i (t), . . . ,σ
(b)

)

≥
( n∏
j=,j �=i

(

C

)λij(Cxσ
j (t)

σ (b)

)μij
)(


Ci


)μii(Ci
xσ

i (t)
σ (b)

)λii

fi
(
t,

[
σ (b)

])
.
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Lago et al. Advances in Difference Equations 2012, 2012:185 Page 13 of 17
http://www.advancesindifferenceequations.com/content/2012/1/185

Hence,

fi
(
t,

[
σ (b)

]) ≤ Mfi
(
t,xσ (t)

)
,

where

M = sup
t∈[a,σ (b)]T

( n∏
j=,j �=i

Cλij–μij


( xσ
j (t)

σ (b)

)–μij
)(

Ci

)μii

(
Ci
xσ

i (t)
σ (b)

)–λii

.

Let ti ∈ (a,σ (b))T,∫ ti

a

∫ ti

t
fi
(
s,

[
σ (b)

])
�s�t

≤ –M
∫ ti

a

∫ ti

t
x��
i (s)�s�t

= –M
∫ ti

a

(
x�
i (ti) – x�

i (t)
)
�t = –M

(
x�
i (ti)(ti – a) – xi(ti) + xi(a)

)
<∞.

Integrating by parts, we have

∫ ti

a

∫ ti

t
fi
(
s,

[
σ (b)

])
�s�t =

∫ ti

a

(
σ (t) – a

)
fi(t,xσ(b))�t < ∞.

In a similar way,

∫ σ (b)

ti

∫ t

ti
fi
(
s,

[
σ (b)

])
�s�t ≤ –M

∫ σ (b)

ti

∫ t

ti
x��
i (s)�s�t

= –M
∫ σ (b)

ti

(
x�
i (t) – x�

i (ti)
)
�t

= –M
(
xi

(
σ (b)

)
– xi(ti) – x�

i (ti)
(
σ (b) – ti

))
<∞,

and integrating by parts,

∫ σ (b)

ti

∫ t

ti
fi
(
s,

[
σ (b)

])
�s�t =

∫ σ (b)

ti

(
σ (b) – σ (t)

)
fi
(
t,

[
σ (b)

])
�t <∞.

Then we conclude that

 <
∫ σ (b)

a

(
σ (t) – a

)(
σ (b) – σ (t)

)
fi
(
t,

[
σ (b)

])
�t < ∞. �

Theorem . If the following conditions hold:

 <
∫ σ (b)

a

(
σ (s) – a

)(
σ (b) – σ (s)

)
fi
(
s,

[
σ (b)

])
�s < ∞

for all i = , . . . ,n and σ (b) > , then there exists a lower solution to problem (P).
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Proof Consider the function

gi(t) =
∫ σ (b)

a
G(t, s)

(σ (s) – a)(σ (b) – σ (s))
(σ (b) – a)

fi
(
s,

[
σ (b)

])
�s.

Let us see that

 ≤ gi(t) < ∞,∫ σ (b)

a
G(t, s)

(
(σ (s) – a)(σ (b) – σ (s))

(σ (b) – a)

)μii

fi
(
s,

[
σ (b)

])
�s

=
∫ t

a

(σ (s) – a)(σ (b) – t)
σ (b) – a

(
(σ (s) – a)(σ (b) – σ (s))

(σ (b) – a)

)μii

fi
(
s,

[
σ (b)

])
�s

+
∫ σ (b)

t

(t – a)(σ (b) – σ (s))
σ (b) – a

(
(σ (s) – a)(σ (b) – σ (s))

(σ (b) – a)

)μii

fi
(
s,

[
σ (b)

])
�s

≤
∫ σ (b)

a

(σ (s) – a)(σ (b) – σ (s))
σ (b) – a

(
(σ (s) – a)(σ (b) – σ (s))

(σ (b) – a)

)μii

fi
(
s,

[
σ (b)

])
�

≤ 
σ (b) – a

∫ σ (b)

a

(
σ (s) – a

)(
σ (b) – σ (s)

)
fi
(
s,

[
σ (b)

])
�s <∞.

Furthermore, gi(a) = gi(σ (b)) = .
If we consider

Li =


σ (b) – a

∫ σ (b)

a

(
(σ (s) – a)(σ (b) – σ (s))+μii

(σ (b) – a)μii

)
fi
(
s,

[
σ (b)

])
�s.

Then

gi(t) ≤ Li.

On the other hand,

(t – a)(σ (b) – t)
(σ (b) – a)

Li

≤
∫ t

a

(σ (s) – a)(σ (b) – t)
σ (b) – a

(
(σ (s) – a)(σ (b) – σ (s))

(σ (b) – a)

)μii

fi
(
s,

[
σ (b)

])
�s

+
∫ σ (b)

t

(t – a)(σ (b) – σ (s))
σ (b) – a

(
(σ (s) – a)(σ (b) – σ (s))

(σ (b) – a)

)μii

fi
(
s,

[
σ (b)

])
�s

= gi(t).

Let αi(t) = kigi(t), where

ki =min

{
,

n∏
j=

Lμij
j

(


σ (b)

)λij

Cμij–λij


} 
–μii

,

with C being a constant such that σ (b)CLi ≤  and 
Cσ(b) ≥ .
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Thus, if we note that  < μii <  and μij <  if i �= j, we obtain

kiLi
[
(t – a)(σ (b) – t)
(σ (b) – a)

]μii

≤ αi(t)μii ,

and

αj(t)μij ≥ Lμij
j .

Hence,

fi
(
t,ασ (t)

) ≥
n∏
j=

(


Cσ (b)

)λij(
Cα

σ
i (t)

)μij fi
(
t,

[
σ (b)

])

=
n∏
j=


σ (b)λij

Cμij–λij


(
ασ
j (t)

)μij fi
(
t,

[
σ (b)

])

≥
n∏

j=,j �=i


σ (b)λii+λij

Cμij–λij
 Cμii–λii

 Lμij
j

(
ασ
i (t)

)μii fi
(
t,

[
σ (b)

])
≥ ki

(
(σ (b) – σ (t))(σ (t) – a)

(σ (b) – a)

)μii

fi
(
t,

[
σ (b)

])
= –α��

i (t).

This implies that α is a lower solution of problem (P). �

Theorem . Suppose that the conditions of the above theorem are satisfied and consider
α the lower solution of problem (P) provided. If there exists β , an upper solution of (P),
with  < α ≤ β and (H̃) and (H) or (H) hold, then there exists x a positive solution of (P).

Proof The demonstration of this fact is immediate taking into account the construction of
the lower solution α obtained in the previous theorem, the existence of the upper solution
β with  < α ≤ β and the implementation of Lemma .. �

3.1 Particular cases
Let us briefly consider the following examples.
 If [a,σ (b)]T is bounded and consists of only isolated points such as in the case

T = hZ, then the conditions of Theorems . and . are fulfilled. This follows from
the fact

∫ σ(b)

a
f (t)�t =

∑
t∈[a,σ(b))

(
σ (t) – t

)
f (t).

 Let q >  be fixed, the quantum time scale qZ is defined as

qZ =
{
qk : k ∈ Z

} ∪ {},

which appears throughout the mathematical physics literature, where the dynamical
systems of interest are the q-difference equations.
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Since the only non-isolated point is , the interesting case is the one in which the
interval contains this point. We consider a =  and σ (b) = .
Taking into account the fact that

∫ 


f (t)�t =

∞∑
k=

q – 
qk

f
(
q–k

)
,

we have

∫ 


fi
(
s,Eσ (s)

)
�s =

∞∑
k=

q – 
qk

fi
(
q–k ,Eσ

(
q–k

))
,

with Eσ (q–k) = (q–k+( – q–k), . . . ,q–k+( – q–k)). Hence, the convergence of this
series is the necessary and sufficient condition in Theorem ..
Analogously, the condition in Theorem . can be rewritten as

 <
∫ 


q–k+(q – )

(
 – q–k+

)
fi
(
q–k , (q, . . . ,q)

)
�s < ∞.
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