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1 Introduction
In this paper, we discuss the existence of mild solutions for the following impulsive differ-
ential equation with nonlocal conditions:

u'(t) = Au(t) +f (6,u(t)), te]=[0,bl,t#t;,
u(0) = g(u), (L1)
Au(ti) :I,'(u(ti)), i= 1,...,s,

where A : D(A) C X — X is the infinitesimal generator of a strongly continuous semigroup
T(¢), t > 0 in a Banach space X, 0 =ty < t; <ty <--- < tg <ts1 = b, Ault;) = u(t}) — u(t;),
u(t;), u(t}) denote the left and right limit of u at t;, respectively. f, g, I; are appropriate
functions to be specified later.

Impulsive differential equations are recognized as excellent models to study the evolu-
tion processes that are subject to sudden changes in their states; see the monographs of
Lakshmikantham et al. [1], Benchohra et al. [2]. In recent years impulsive differential equa-
tions in Banach spaces have been investigated by many authors; see [3—8] and references
therein. Liu [9] discussed the existence and uniqueness of mild solutions for a semilinear
impulsive Cauchy problem with Lipschitz impulsive functions. Non-Lipschitzian impul-
sive equations are considered by Nieto et al. [10]. Cardinali and Rubbioni [11] proved the
existence of mild solutions for the impulsive Cauchy problem controlled by a semilinear
evolution differential inclusion. In [12], Abada et al. studied the existence of integral solu-

tions for some nondensely defined impulsive semilinear functional differential inclusions.
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On the other hand, the study of abstract nonlocal initial value problems was initiated
by Byszewski, and the importance of the problem consists in the fact that it is more gen-
eral and has better effect than the classical initial conditions #(0) = u, alone. Therefore,
it has been studied extensively under various conditions. Here we mention some results.
Byszewski and Lakshmikantham [13], Byszewski [14] obtained the existence and unique-
ness of mild solutions and classical solutions in the case that Lipschitz-type conditions
are satisfied. In [15], Fu and Ezzinbi studied neutral functional-differential equations with
nonlocal conditions. Aizicovici [16], Xue [17, 18] discussed the case when A generates a
nonlinear contraction semigroup on X and obtained the existence of integral solutions for
nonlinear differential equations. In particular, the measure of noncompactness has been
used as an important tool to deal with some similar functional differential and integral
equations; see [18—22].

From the viewpoint of theory and practice, it is natural for mathematics to combine im-
pulsive conditions and nonlocal conditions. Recently, the nonlocal impulsive differential
problem of type (1.1) has been discussed in the papers of Liang et al. [23] and Fan et al.
[24, 25], where a semigroup T'(¢) is supposed to be compact, and g is Lipschitz continu-
ous, compact, and strongly continuous, respectively. Very recently, Zhu et al. [26] obtain
the existence results when a nonlocal item g is Lipschitz continuous by using the Haus-
dorff measure of noncompactness and operator transformation. Compared with the re-
sults in [23-25], in this paper we do not require the compactness of the semigroup T'(¢)
and Lipschitz continuity of f. More important, by using the property of the measure of
noncompactness in PC([0, b]; X) given by us (see Lemma 2.7), the impulsive conditions
and nonlocal conditions can be considered in a unified way under various conditions, in-
cluding compactness conditions, Lipschitz conditions and mixed-type conditions. Hence,
our results generalize and partially improve the results in [23, 25, 26].

This paper is organized as follows. In Section 2, we present some concepts and facts
about the strongly continuous semigroup and the measure of noncompactness. In Sec-
tion 3, we give four existence theorems of the problem (1.1) by using a condensing op-
erator and the measure of noncompactness. At last, an example of an impulsive partial
differential system is given in Section 4.

2 Preliminaries

Let (X, | - ||) be a real Banach space. We denote by C([0, b]; X) the space of X-valued con-
tinuous functions on [0, ] with the norm ||x|| = sup{||x(¢)|l, ¢ € [0, 5]} and by L'([0, b]; X)
the space of X-valued Bochner integrable functions on [0,b] with the norm ||f|;1 =
S @l de.

The semigroup T'(¢) is said to be equicontinuous if {T'(¢)x : x € B} is equicontinuous at
¢t > 0 for any bounded subset B C X (cf. [27]). Obviously, if T'(¢) is a compact semigroup, it
must be equicontinuous. And the converse of the relation usually is not correct. Through-
out this paper, we suppose that

(HA) The semigroup {T'(¢) : t > 0} generated by A is equicontinuous. Moreover, there

exists a positive number M such that M = sup,_,;, | T(¢)||.

For the sake of simplicity, we put J = [0,b]; Jo = [0,t1]; J; = (ti, tis1], i =1,...,s. In order to
define a mild solution of the problem (1.1), we introduce the set PC([0, b]; X) = {u : [0,b] —
X : uis continuous at ¢ # t; and left continuous at ¢ = £;, and the right limit u(t;) exists,
i=1,...,s}. It is easy to verify that PC([0, b]; X) is a Banach space with the norm | | pc =
sup{llu(®)], £ € [0, b]}.
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Definition 2.1 A function u € PC([0, b]; X) is a mild solution of the problem (1.1) if

u(t) = T(t)g(u) + /0 T(t - s)f (s,u(s)) ds + Z T(t - t:)1;(u(t))

O<ti<t
for all £ € [0, b].

Now, we introduce the Hausdorff measure of noncompactness (in short MNC) f(-) de-
fined by

B(B) = inf{e > 0; B has a finite e-net in X},

for each bounded subset B in a Banach space X. We recall the following properties of the
Hausdorff measure of noncompactness 8.

Lemma 2.2 ([28]) Let X be a real Banach space and B, C C X be bounded. Then the fol-
lowing properties are satisfied:
(1) B is relatively compact if and only if B(B) = 0;
(2) B(B) = B(B) = B(conv B), where B and conv B mean the closure and convex hull of B,
respectively;
(3) B(B) < B(C) when BC C;
(4) BB+C)<BB)+B(C),where B+ C={x+y:x€B,yeC}
(5) B(BU C) <max{B(B), B(C)};
(6) B(AB) <|r|B(B) forany A € R;
(7) Ifthe map Q:D(Q) C X — Z is Lipschitz continuous with a constant k, then
Bz(QB) < kB(B) for any bounded subset B C D(Q), where Z is a Banach space.

The map Q: D C X — X is said to be B-condensing if Q is continuous and bounded,
and for any nonprecompact bounded subset B C D, we have 8(QB) < 8(B), where X is a
Banach space.

Lemma 2.3 (See [28], Darbo-Sadovskii) IfD C X is bounded, closed, and convex, the con-
tinuwous map Q : D — D is B-condensing, then Q has at least one fixed point in D.

In order to remove the strong restriction on the coefficient in Darbo-Sadovskii’s fixed
point theorem, Sun and Zhang [29] generalized the definition of a f-condensing operator.
At first, we give some notation. Let D C X be closed and convex, the map Q: D — D and
xo € D. For every B C D, set

Q™ ((B)=QB),  Q"*(B)=Q(conv{Q" B, x,}),
where conv means the closure of convex hull, n=2,3,....

Definition 2.4 Let D C X be closed and convex. The map Q : D — D is said to be
B-convex-power condensing if Q is continuous, bounded and there exist xy € D, ny € N
such that for every nonprecompact bounded subset B C D, we have

B(Q"*)(B)) < B(B).
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Obviously, if ng = 1, then a B-convex-power condensing operator is S-condensing. Thus,
the convex-power condensing operator is a generalization of the condensing operator.
Now, we give the fixed point theorem about the convex-power condensing operator.

Lemma 2.5 ([29]) IfD C X is bounded, closed, and convex, the continuous map Q : D — D

is B-convex-power condensing, then Q has at least one fixed point in D.

Now, we give an important property of the Hausdorft MNC in PC([0, b]; X), which is
an extension to the property of MNC in C([0, b]; X) and makes us deal with the impulsive

differential equations from a unified perspective.

Lemma 2.6 ([28]) If W C C([0, b]; X) is bounded, then B(W (t)) < B(W) for all t € [0, ],
where W (t) = {u(t);u € W} C X. Furthermore, if W is equicontinuous on [0,b), then
B(W(2)) is continuous on [0, b] and B(W) = sup{B(W (¢)),t € [0, b]}.

By applying Lemma 2.6, we shall extend the result to the space PC([0, b]; X).

Lemma 2.7 If W C PC([0, b]; X) is bounded, then B(W (¢)) < (W) for all t € [0, b], where
W (¢t) = {u(t);u € W} C X. Furthermore, suppose the following conditions are satisfied:

(1) W is equicontinuous on Jo = [0,4] and each J; = (t;, t;1],i=1,...,s;

(2) W is equicontinuousatt=t;,i=1,...,s.
Then sup,(g 5 B(W(2)) = B(W).

Proof For arbitrary ¢ > 0, there exists W; € PC([0,5];X),1 <i < n,suchthat W = J._; W;
and

diam(W;) <28(W) +2¢, i=12,...,n,

where diam(-) denotes the diameter of a bounded set. Now, we have W (¢) = |, W;(¢) for
each ¢t € [a, b], and

%) = 5(@&)| < llx— ¥l < diam (W)
for x,y € W;. From the above two inequalities, it follows that
28(W(¢)) < diam(W;(¢)) < diam(W;) < 28(W) + 2¢.

By the arbitrariness of ¢, we get that (W (¢)) < B(W) for every ¢ € [0, b]. Therefore, we
have sup, (o, BIW(2)) < B(W).

Next, if the conditions (1) and (2) are satisfied, it remains to prove that S(W) <
SUP,cjo,p) B(W(£)). We denote W]y by the restriction of W on Ji = [titin], i=0,1,...,s.
That is, for x € Wy, define that

x(t),  ti<t=<tu,
x(t) =
x(t+): t=1t,
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and obviously W|;- is equicontinuous on J; due to the conditions (1) and (2). Then from
Lemma 2.6, we have that

BOWIR) = sup B(WI5(2)).

te);

Moreover, we define the map

A :PC([0,b];X) — C([0,1,];X) x C([t1, 2];X) x -+ x C([t;, b]; X)

by x — (x0,%1,...,%;), where x € PC([0, b]; X), x; = %[5, | (¥0, %1, ..., %) | = maxo<i<s ||| As

A is an isometric mapping, noticing the equicontinuity of W|;- on Ji» we have that

BW) =B(Wlg x Wi x - x W) < ml‘leﬂ(Wlf,.) = max Sugﬁ(Wlfi(t)).
tej;

And from the fact that sup,.; B(W[7(£)) < sup,(o, B(W(?)), for each i =0,...,s, we get
that (W) < sup,(o,) B(W(£)). This completes the proof. |

Lemma 2.8 ([28]) If W C C([0,b];X) is bounded and equicontinuous, then B(W(¢)) is
continuous and

4ﬁww@sﬁmmm®

forall t € [0,b), where fot W(s)ds = {fotx(s)ds:x e W}
Lemma 2.9 If the hypothesis (HA) is satisfied, i.e., {T(t) : t > 0} is equicontinuous, and
n € LY([0, b]; R*), then the set {fot T(t—s)u(s)ds: |u(s)|| < n(s) for a.e. s € [0, b]} is equicon-

tinuous for t € [0, b].

Proof Welet 0 <t<t+h<band have that

t+h t
/ T(t+h—s)u(s)ds— f T(t - s)u(s)ds
0 0

=

/l T(t+h—s)u(s)ds— /l T(t—s)u(s)ds
0 0

t+h
+ / H T(t+h—s)u(s) H ds. (2.1)

If £ = 0, then the right-hand side of (2.1) can be made small when / is small independent
of u. If t > 0, then we can find a small ¢ > 0 with £ — ¢ > 0. Then it follows from (2.1) that

”/t T(t+h—s)u(s)ds— /t T(t - s)u(s)ds
0 0

< H T(h+e¢) /H T(t—¢e—s)u(s)ds - T(g) /H T(t—¢e—s)u(s)ds
0 0

+

/t T(t+h—s)u(s)ds

+ ) (2.2)

/t T(t —s)u(s)ds

Page 5 of 14
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Here, as T'(¢) is equicontinuous for ¢ > 0, thus
t—e
H[T(h +e)— T(e)]/ T(t—¢ —s)u(s)ds” -0, ash—0,
0

uniformly for u.
Then from (2.1), (2.2) and the absolute continuity of integrals, we get that { fot T(t -
s)u(s) ds, [|u(s)|| < n(s) for a.e. s € [0, b]} is equicontinuous for ¢ € [0, b]. O

3 Main results
In this section we give the existence results for the problem (1.1) under different condi-
tions on g and I; when the semigroup is not compact and f is not compact or Lipschitz
continuous, by using Lemma 2.7 and the generalized B-condensing operator. More pre-
cisely, Theorem 3.1 is concerned with the case that compactness conditions are satisfied.
Theorem 3.4 deals with the case that Lipschitz conditions are satisfied. And mixed-type
conditions are considered in Theorem 3.5 and Theorem 3.6.

Let r be a finite positive constant, and set B, = {x € X : ||x|| <r}, W, = {u € PC([0,D]; X) :
u(t) € B, t € [0,b]}. We define the solution map G : PC([0, b]; X) — PC([0, b]; X) by

(Gu)(t) = T(t)g(u) + /0 T(t—- s)f(s, u(s)) ds + Z T(t- t,-)I,-(u(ti)) (3.1)

O<t;<t

with

(Giu)(t) = T(t)g(u),

(Gou)(t) = / T(t- s)f(s, u(s)) ds,
0

(Gau)(t)= Y T(t—t)i(ult),

O<t;<t

for all t € [0, b]. It is easy to see that u is the mild solution of the problem (1.1) if and only
if u is a fixed point of the map G.
We list the following hypotheses:
(Hf) f:[0,b] x X — X satisfies the following conditions:
(i) f(t,-): X — X is continuous for a.e. ¢ € [0,b] and f(-,x) : [0,b] — X is
measurable for all x € X. Moreover, for any r > 0, there exists a function
o, € L1([0, b], R) such that

If &x)| < pr(2)

fora.e. t € [0,b] and x € B,.
(ii) there exists a constant L > 0 such that for any bounded set D C X,

B(f(t,D)) < LB(D) (3.2)

fora.e. t € [0,b].
(Hgl) g:PC([0,b];X) — X is continuous and compact.
(HI1) [;: X — X is continuous and compact for i =1,...,s.
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Theorem 3.1 Assume that the hypotheses (HA), (Hf), (Hgl), (HI1) are satisfied, then the
nonlocal impulsive problem (1.1) has at least one mild solution on [0, b] provided that there
exists a constant r > 0 such that

s
M [ sup [ g@)| + lorllpr + sup Y || L:(u(t) H] <r. (3.3)
ueW, ueW, i-1

Proof We will prove that the solution map G has a fixed point by using the fixed point
theorem about the S-convex-power condensing operator.

Firstly, we prove that the map G is continuous on PC([0,b]; X). For this purpose, let
{u, )2, beasequencein PC([0, b]; X) with lim,_, o 4, = uin PC([0, b]; X). By the continuity
of f with respect to the second argument, we deduce that for each s € [0, 5], f(s, u,(s))

converges to f(s, u(s)) in X. And we have
G, — Gullpc < M{Hg(un) =g + D | i (nt) - Ii(uu(t) ||}
i=1

b
+M/0 Hf(s, un(s)) —f(s, u(s)) || ds.

Then by the continuity of g, I; and using the dominated convergence theorem, we get
lim,,_, oo Gu, = Gu in PC([0, b]; X).

Secondly, we claim that GW, € W,. In fact, for any u € W, C PC([0, b]; X), from (3.1)
and (3.3), we have

[(Gu®| < | T@)gw)] +

/t T(t- s)f(s, u(s)) ds
0

+ 3| T - o)1 ()|

O<ti<t

; M[ng(u) [+ ot + 3 ute) n}

i=1

IA

r,

for each ¢ € [0, b]. It implies that GW, € W,.

Now, we show that GW, is equicontinuous on Jy = [0, ], J; = (¢;, t;+1] and is also equicon-
tinuousatt=t,i=1,...,s. Indeed, we only need to prove that GW, is equicontinuous on
[#1,£2], as the cases for other subintervals are the same. For u € W,, ; <s < t < t,, we have,
using the semigroup property,

|T(0g(w) - T()gw)| = |TO[T(t-s)-T(0)]gw)]
<M|[T(t-s)-T(0)]g(w)].
Thus, G; W, is equicontinuous on [#;, t2] due to the compactness of g and the strong con-

tinuity of T'(-). The same idea can be used to prove the equicontinuity of Gs W, on [t, t5].
Thatis, foru e W,, ; <s <t < ty, we have

’

|T(t - )L (u(tr)) - T(s — )L (w(tr)) | < M| [T(£-s) - T(0)]1 (u(t))
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which implies the equicontinuity of G3W, on [t,%] due to the compactness of [; and
the strong continuity of 7'(-). Moreover, from Lemma 2.9, we have that G, W, is equicon-
tinuous on [0, b]. Therefore, we have that the functions in GW, = (G; + G, + G3)W, are
equicontinuous on each [, 4,1],i=0,1,...,s

Set W = convG(W,), where conv means the closure of convex hull. It is easy to verify
that G maps W into itself and W is equicontiuous on each J; = [t;, 1], i = 0,1,...,s. Now,
we show that G: W — W is a convex-power condensing operator. Take xg € W, we shall
prove that there exists a positive integral 7y such that

B(G"*)(B)) < B(B),

for every nonprecompact bounded subset B C W.

From Lemma 2.2 and Lemma 2.8, noticing the compactness of g and I;, we have

B((GY™B) (1)) = B((GB)(1))
< B(T(t)g(B)) + ﬁ( fo T(t-s)f (s, B(s)) ds)

+ /3( > T~ L‘i)fi(B(ti))>

O<ti<t

< /0 B (T(t - s)f(s,B(s))) ds

< M/ ﬂ(f(s,B(s))) ds
<M / LB(B
< MLtS(B

for t € [0, b]. Further,

B((G*)B)(t)) = B((Geonv{G B, x,})(t))

< B(T(t)g(conv|{G"*B, x,}))

+B (fot T(¢ - s)f (s, conv{ GV B(s), xo(s) }) ds)

+ ﬂ ( Z T(t - ti)Ii (m{ G(L"O)B(t,-),xo(t,')})>

O<ti<t

<B ( /0 t T(t - s)f (s,conv{ G B(s), x0(s) }) ds)

< [ (1 (o0om( 6080, (9] b

<M / tLﬂ (conv|{ G0 B(s), xo(s)}) ds
0

<t [ pl(6"B)0) as
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t
SML/ MLsB(B)ds
0
2,28
<M°L iﬁ(B)

for ¢t € [0, b]. We can continue this iterative procedure and get that

MﬂLﬂbVl

n!

B((G"B)®) <

B(B)

for ¢ € [0, b]. As G"*0)(B) is equicontinuous on each [t;, ¢;,1], by Lemma 2.7, we have that

IB(G(n,xo)B) = sup ﬁ((G(”’xO)B)(t)) < M”L”b"ﬂ(B)'

£€[0,4] n!

By the fact that ]% — 0 as n — 00, we know that there exists a large enough positive
integral ny such that

MroLmpro

<1,
I’lo!

which implies that G: W — W is a convex-power condensing operator. From Lemma 2.5,
G has at least one fixed point in W, which is just a mild solution of the nonlocal impulsive
problem (1.1). This completes the proof of Theorem 3.1. d

Remark 3.2 By using the method of the measure of noncompactness, we require f to
satisfy some proper conditions of MNC, but do not require the compactness of a semi-
group T'(¢). Note that if f is compact or Lipschitz continuous, then the condition (Hf)(ii) is
satisfied. And our work improves many previous results, where they need the compactness
of T'(t) or f, or the Lipschitz continuity of f. In the proof, Lemma 2.7 plays an important
role for the impulsive differential equations, which provides us with the way to calcu-
late the measure of noncompactness in PC([0, b]; X). The use of noncompact measures in
functional differential and integral equations can also be seen in [18-20, 22].

Remark 3.3 When we apply Darbo-Sadovskii’s fixed point theorem to get the fixed point
of a map, a strong inequality is needed to guarantee its condensing property. By using the
B-convex-power condensing operator developed by Sun et al. [29], we do not impose any
restrictions on the coefficient L. This generalized condensing operator also can be seen in
Liu et al. [30], where nonlinear Volterra integral equations are discussed.

In the following, by using Lemma 2.7 and Darbo-Sadovskii’s fixed point theorem, we
give the existence results of the problem (1.1) under Lipschitz conditions and mixed-type
conditions, respectively.

We give the following hypotheses:

(Hg2) g:PC([0,b]; X) — X is Lipschitz continuous with the Lipschitz constant k.

(HI2) I;: X — X is Lipschitz continuous with the Lipschitz constant k;; that is,

|G - 1) < killx =1l

forx,ye X,i=1,...,s.
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Theorem 3.4 Assume that the hypotheses (HA), (Hf), (Hg2), (HI2) are satisfied, then the
nonlocal impulsive problem (1.1) has at least one mild solution on [0, b] provided that

M<k+Lb+ Zkl) <1 (3.4)

i=1
and (3.3) are satisfied.

Proof From the proof of Theorem 3.1, we have that the solution operator G is continuous
and maps W, into itself. It remains to show that G is 8-condensing in W,.

By the conditions (Hg2) and (HI2), we get that G; + G3 : W, — PC([0, b]; X) is Lipschitz
continuous with the Lipschitz constant M(k + Z?zl k;). In fact, for u,v € W,, we have

|Gy + Ga)u— (G + Go)v|

- s [|| T(O(g) -g0) | + 3|7 - ) (1 (ute) ~ 1 (v(29) ||}

O<t;<t

< M|:||g(u) -gW)| + ZS:HIL'(M(E‘)) - L;(v(%:)) ||:|

i=1

s
§M<k+ Zlq) [z —v|pc.

i=1

Thus, from Lemma 2.2(7), we obtain that
S
B((G1 + G3)W,) < M(k + Zh) BW,). (3.5)
i=1

For the operator (Gyu)(t) = fot T(t — s)f(s,u(s))ds, from Lemma 2.6, Lemma 2.8 and
Lemma 2.9, we have

B(G.W,) = sup B((GaW,)(t))
te[0,b]

< sup ‘/0 B(T (- s)f (s, Wi(s))) ds

te[0,b]

t
< sup M L/S(W,(s)) ds
t€[0,b] 0

< MLbB(W,). (3.6)
Combining (3.5) and (3.6), we have

IB(GWr) = ﬁ((Gl + GB)Wr) + IB(GZWr)

< M(k +Lb+ Zk,»)ﬂ(W,).

i=1

From the condition (3.4), M(k + Lb + Y_;_; k;) < 1, the solution map G is B-condensing
in W,. By Darbo-Sadovskii’s fixed point theorem, G has a fixed point in W,, which is just

Page 10 of 14
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a mild solution of the nonlocal impulsive problem (1.1). This completes the proof of The-
orem 3.4. g

Among the previous works on nonlocal impulsive differential equations, few are con-
cerned with the mixed-type conditions. Here, by using Lemma 2.7, we can also deal with
the mixed-type conditions in a similar way.

Theorem 3.5 Assume that the hypotheses (HA), (Hf), (Hgl), (HI2) are satisfied, then the
nonlocal impulsive problem (1.1) has at least one mild solution on [0, b] provided that

M(Lb + Zk,») <1 (3.7)
i=1

and (3.3) are satisfied.

Proof We will also use Darbo-Sadovskii’s fixed point theorem to obtain a fixed point of
the solution operator G. From the proof of Theorem 3.1, we have that G is continuous and
maps W, into itself.

Subsequently, we show that G is S-condensing in W,. From the compactness of g and
the strong continuity of 7'(-), we get that {T'(-)g(«) : u € W,} is equicontinuous on [0, b].
Then by Lemma 2.6, we have that

B(GIW,) = sup B((GiW,)(®)) = sup B(T(t)g(W;)) = 0. (3.8)
te[0,b) te[0,b]

On the other hand, for u,v € W,, we have

|G3u — Gzvlpc = sup
te[0,b]

37 T - ) (I (u(t)) - L(v(2))) H

O<tj<t

- Minzi(u(ti)) ~5(vw)|

S
<MY killu=vllpc.

i=1
Then by Lemma 2.2(7), we obtain that
B(GzW,) SMXS:kiﬂ(Wr)~ (3.9)
i=1
Combining (3.6), (3.8) and (3.9), we get that
B(GW)) = B(GiW)) + B(G2 W) + B(Gs W) =< M<Lb + i/Q)ﬂ(Wr)-
i=1

From the condition (3.7), the map G is B-condensing in W,. So, G has a fixed point in W,
due to Darbo-Sadovskii’s fixed point theorem, which is just a mild solution of the nonlocal
impulsive problem (1.1). This completes the proof of Theorem 3.5. O
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Theorem 3.6 Assume that the hypotheses (HA), (Hf), (Hg2), (HI1) are satisfied, then the

nonlocal impulsive problem (1.1) has at least one mild solution on [0, b] provided that
Mk + Lb) <1 (3.10)

and (3.3) are satisfied.

Proof From the proof of Theorem 3.1, we have that the solution operator G is continuous
and maps W, into itself. In the following, we shall show that G is 8-condensing in W,.

By the Lipschitz continuity of g, we have that for u,v € W,,
|Giu— Givlipc = sup || T(6)[g(w) - gW)]| < Mkllu —vllpc,
£e[0,b]

which implies that
B(G1W,) < MkB(W,). (3.11)

Similar to the discussion in Theorem 3.1, from the compactness of /; and the strong
continuity T(-), we get that G3W, is equicontinuous on each J; = [¢;,£;,1], i = 0,1,...,s.

Then by Lemma 2.7, we have that

S

B(GsW,) = sup B((GsW,)(1)) < Y B(T(t - t)li(W,(1))) = 0. (312)

te[0,6] =

Combining (3.6), (3.11) and (3.12), we have that
B(GW;) < B(GiW;) + B(G2 W) + B(G3 W) < M(k + Lb)B(W).

From condition (3.10), the map G is B-condensing in W,. So, G has a fixed point in W,
due to Darbo-Sadovskii’s fixed point theorem, which is just a mild solution of the nonlocal

impulsive problem (1.1). This completes the proof of Theorem 3.6. O

Remark 3.7 With the assumption of compactness on the associated semigroup, the
existence of mild solutions to functional differential equations has been discussed in
[6,23-25]. By using the method of the measure of noncompactness, we deal with the
four cases of impulsive differential equations in a unified way and get the existence results

when the semigroup in not compact.

4 An example

In the application to partial differential equations, such as a class of parabolic equations,
the semigroup corresponding to the differential equations is an analytic semigroup. We
know that an analytic semigroup or a compact semigroup must be equicontinuous; see
Pazy [31]. So, our results can be applied to these problems. If the operator A = 6, the cor-

responding semigroup 7'(¢) = I is equicontinuous on [0, b].
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We consider the following partial differential system (based on [23]) to illustrate our
abstract results:

%a)(t,x) = %a)(t,x) + F(t,w(t,x)), 0<t<b0<x<m,
o(t,0)=w(t,7)=0,

o(tf,x) —o(t7,x) = L(wt,x), i=1...,s,

(0,x) = g(w(t,x)).

Take X = L2[0, 7] and the operator A : D(A) € X — X defined by Az = z”, with
D(A) = {z € X : z,7 are absolutely continuous,z” € X,z(0) = z(r) = 0}.

From Pazy [31], we know that A is the infinitesimal generator of an analytic semigroup
T(t), t > 0. This implies that A satisfies the condition (HA).

Let 0<fi<ty<---<ty<b, O0<s<sy<---<s;<b,¢geR(j=0,1,...,9), h() €
LY[0,b];R), o; > 0 and p; € C([0,7] x [0,7],R) for i =1,...,s. Now, we define that

(1) f(&u(§)) =cosin(u(§)), t € [0,b], u € X.

(2) glo(t,§) = 1, gls;, €), w € PC([0,b]; X).

(3) g((t,€)) = [ his)1g(l + |w(s, £)]) ds, @ € PC([0,b]; X).

(4) Liu@) = s v € X, 1<is<s.

(5) L) = [ pilE,y) cos* () dy, ue X, 1<i <.

Then we obtain that

Case 1. Under the conditions (1) + (3) + (5), the assumptions in Theorem 3.1 are satisfied
for large r > 0. Therefore, the corresponding system (1.1) has at least a mild solution.

Case 2. Under the conditions (1) + (2) + (4), the assumptions in Theorem 3.4 are satisfied
for large r > 0. Therefore, the corresponding system (1.1) has at least a mild solution.

Case 3. Under the conditions (1) + (3) + (4), the assumptions in Theorem 3.5 are satisfied
for large r > 0. Therefore, the corresponding system (1.1) has at least a mild solution.

Case 4. Under the conditions (1) + (2) + (5), the assumptions in Theorem 3.6 are satisfied
for large r > 0. Therefore, the corresponding system (1.1) has at least a mild solution.
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