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Abstract
This paper is concerned with the problem of exponential stabilization for a class of
uncertain nonlinear systems with state delay by means of periodically intermittent
control. Based on the Lyapunov-Krasovskii functional approach, several sufficient
conditions of exponential stabilization for this class of uncertain nonlinear systems
with state delay are proposed, which have been expressed in terms of linear matrix
inequalities (LMIs) whose feasibility can be easily checked by using the numerically
efficient Matlab LMI Toolbox. Further, the control design method is extended to a
class of nonlinear systems with state delay. And the new stability criterion is also
presented, which guarantees the closed-loop systems are exponentially stable. Finally,
two numerical examples are given to show the effectiveness of the proposed
approach.
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1 Introduction
Timedelay naturally appears inmany control systems and is frequently a source of instabil-
ity [–]. In recent years, the problem of stability and stabilization of time-delay systems
is a topic of great practical importance, which has attracted a lot of interest [–, –].
In [], in the light of the Razumikhin stability theorem combinedwith theNewton-Leibniz
formula, a new delay-dependent exponential stability condition was derived for linear
non-autonomous time-delay systems. In [], the sufficient conditions for absolute sta-
bility of nonlinear control systems of neutral type were obtained, and the estimates of ex-
ponential damping of solutions were constructed. In [], the robust controller design for
uncertain input-delayed systems was considered, and the stability criterion of the closed-
loop system was derived. In [], stability results of quadratic discrete systems in the crit-
ical case were presented, and the stability domains were estimated. In [], an improved
delay-dependent stability condition for a system with multiple additive delay components
was derived by using the Lyapunov second method. In [], the sufficient conditions for
global asymptotic stabilization of nonlinear systems were given, and the corresponding
feedback control laws were designed. In [], the problem of quadratic stabilization of
multi-input multi-output switched nonlinear systems under an arbitrary switching law
was investigated. The state feedbacks were designed, and a common quadratic Lyapunov
function of all the closed-loop subsystems was constructed to realize quadratic stabiliza-
tion of the class of switched nonlinear systems under an arbitrary switching law.
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Recently, in-continuous control techniques such as impulsive control [] and piece-
wise feedback control [] have attracted much attention. In [], impulsive control for
master-slave synchronization schemes that consist of identical chaotic Lur’e systems was
considered. Impulsive control laws whichmade use of linear static measurement feedback
instead of full state feedback were investigated. The recent paper [] studied the output
regulation problem for a class of discrete-time nonlinear systems under periodic distur-
bances generated from the so-called exosystems. By exploiting the structural information
encoded in the fuzzy rules, a piecewise state-feedback and a piecewise error-feedback con-
trol laws were constructed to achieve asymptotic rejecting of the unwanted disturbances
and/or tracking of the desired trajectories.
In this paper, we investigate the problem of exponential stabilization for a class of un-

certain nonlinear systems by using another in-continuous feedback, i.e., periodically in-
termittent control. Intermittent control is a special form of switching control []. It has
been used for a variety of purposes in engineering fields such as manufacturing, trans-
portation, air-quality control, communication and so on. Recently, intermittent control
has been introduced to chaotic dynamical systems [–]. [] described the method of
synchronizing slave to the master trajectory using intermittent coupling. However, []
gave little theoretical analysis for intermittent control systems, but only many numerical
simulations. In [], the authors investigated the exponential stabilization problem for a
class of chaotic systems with delay by means of periodically intermittent control. In [],
the quasi-synchronization problem for chaotic neural networks with parametermismatch
was formulated via periodically intermittent control.
Motivated by the aforementioned discussion, in this paper, we study a class of inter-

mittent control with time duration for a class of uncertain nonlinear time-delay systems.
Namely, the control is activated in certain nonzero time intervals, and it is off in other
time intervals. Based on the Lyapunov-Krasovskii functional approach, exponential sta-
bility criteria for the class of uncertain nonlinear time-delay systems are given, which are
presented in terms of linearmatrix inequalities (LMIs).Moreover, this approach of control
design has been generalized to a class of nonlinear systemswith state delay. The new expo-
nentially stabilization criterion for this class of nonlinear time-delay systems is proposed.
Finally, two numerical examples are given to demonstrate the validity of the result.
The rest of this paper is organized as follows. In Section , the intermittent control prob-

lem is formulated and some notations and lemmas are introduced. In Section , the ex-
ponential stabilization problem for a class of uncertain nonlinear time-delay systems is
investigated by means of periodically intermittent control, and some exponential stability
criterions are established. Furthermore, the exponential stabilization method is expanded
to a class of nonlinear systems with state delay. Two numerical examples are presented in
Section . Finally, some conclusions and remarks are drawn in Section .

2 Problem formulation and preliminaries
Consider a class of nonlinear systems with delayed state described by

ẋ(t) =
(
A +�A(t)

)
x(t) +

(
Ad +�Ad(t)

)
x(t – d)

+
(
B +�B(t)

)
u(t) + f

(
x(t),x(t – d)

)
, (.)

x(t) = φ(t), t ∈ [–d, ],
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where x ∈ Rn is a state vector, and u ∈ Rm is the external input of the system (.).
f : Rn → Rn is a continuous nonlinear function with f (, ) = , and there exist positive
definite matrices Q, Q such that ‖f (x(t),x(t – d))‖ ≤ xT (t)Qx(t) + xT (t – d)Qx(t – d)
for x(t),x(t – d) ∈ Rn. The initial function φ(t) ∈ C([–d, ],Rn), d > , has its norm ‖φ‖ =
sups∈[–d,] ‖φ(s)‖. �A(t), �Ad(t) and �B(t) are time-varying uncertainties, which satisfy
the following conditions:

�A(t) =DF(t)E, �Ad(t) =DF(t)E, �B(t) =DF(t)E, (.)

where Di, Ei, i = , , , are real constant matrices of appropriate dimensions, and F(t) is
an unknown time-varying matrix with FT (t)F(t)≤ I .
The following lemmas are useful in the proof of our main results.

Lemma. ([]) Let D, E and F be realmatrices of appropriate dimensions with FTF ≤ I ,
then for any scalar ε > , we have the following inequality:

DFE + ETFTDT ≤ ε–DDT + εETE.

Lemma . ([]) Let M, N be real matrices of appropriate dimensions. Then for any
matrix Q >  of appropriate dimension and any scalar β > , the following inequality holds:

MN +NTMT ≤ β–MQ–MT + βNTQN .

Lemma . ([]) Given constant matrices S, S and S with appropriate dimensions,
where S = ST , and  < S = ST , then S + SS– ST <  if and only if

[
S S
ST –S

]
< .

In order to stabilize the system (.) bymeans of periodically intermittent feedback con-
trol, we assume that the control imposed on the system is of the form

u(t) =

⎧⎨
⎩Kx(t), nT ≤ t < nT + τ ,

, nT + τ ≤ t < (n + )T ,
(.)

where K ∈ Rm×n is the control gain matrix, T >  denotes the control period, and τ >  is
called the control width.
With the control law (.), the system (.) can be rewritten as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) = (A +�A(t))x(t) + (Ad +�Ad(t))x(t – d)

+ (B +�B(t))Kx(t) + f (x(t),x(t – d)), nT ≤ t < nT + τ ,

ẋ(t) = (A +�A(t))x(t) + (Ad +�Ad(t))x(t – d)

+ f (x(t),x(t – d)), nT + τ ≤ t < (n + )T .

(.)

This is a classical uncertain switched system with delayed state where the switching rule
only depends on the time. Although there are many successful applications of intermit-
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tent control, the theoretical analysis of an intermittent control system has received little
attention. In this brief, we will make a contribution to this issue.
Throughout this brief, we use PT , λmin(P) (λmax(P)) to denote the transpose and themin-

imum (maximum) eigenvalue of a square matrix P, respectively. The vector (or matrix)
norm is taken to be Euclidean, denoted by ‖ · ‖. We use P >  (<, ≤, ≥) to denote a
positive (negative, semi-negative, semi-positive) definite matrix P. The symmetric term in
a symmetric matrix is denoted as ∗.

3 Exponential stabilization of a class of nonlinear systems with time-delay
This section addresses the exponential stability problem of the switched system (.). The
main result is stated as follows.

Theorem . If there exist positive definite matrices P > , Q >  and scalar constants
εij >  (i = , , j = , , ), ε > , w > , such that the following matrix inequalities hold:

[
� PAd

AT
d P ε– Q + εET

 E – e–wdQ

]
< , (.)

[
� PAd

AT
d P ε–Q + εET

 E – e–wdQ

]
< , (.)

where

� = ATP + PA +KTBTP + PBK +wP +Q + εPP + ε– Q + ε–E
T
 E + εPDDT

 P

+ ε–K
TET

 EK + εPDDT
 P + ε–PDDT

 P,

and

� = ATP + PA +wP +Q + εPP + ε–Q + ε–E
T
 E + εPDDT

 P + ε–PDDT
 P,

then the system (.) is exponentially stable.Moreover, the solution x(t) satisfies the condi-
tion

∥∥x(t)∥∥ ≤ ‖φ‖
√

λmax(P) + dλmax(Q)
λmin(P)

e–
w(t–τ )

 , ∀t > .

Proof Consider the following candidate Lyapunov-Krasovskii functional:

V
(
x(t)

)
= xT (t)Px(t) + e–wt

∫ t

t–d
ewθxT (θ )Qx(θ )dθ . (.)

When nT ≤ t < nT + τ , the derivative of (.) with respect to time t along the trajectories
of the first subsystem of the system (.) is calculated and estimated as follows:

V̇
(
x(t)

)
= ẋT (t)Px(t) + xT (t)Pẋ(t) –we–wt

∫ t

t–d
ewθxT (θ )Qx(θ )dθ

+ e–wt
[
ewtxT (t)Qx(t) – ew(t–d)xT (t – d)Qx(t – d)

]
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= ẋT (t)Px(t) + xT (t)Pẋ(t) –we–wt
∫ t

t–d
ewθxT (θ )Qx(θ )dθ

+ xT (t)Qx(t) – e–wdxT (t – d)Qx(t – d)

=
[(
A +�A(t)

)
x(t) +

(
Ad +�Ad(t)

)
x(t – d)

+
(
B +�B(t)

)
Kx(t) + f

(
x(t),x(t – d)

)]TPx(t)
+ xT (t)P

[(
A +�A(t)

)
x(t) +

(
Ad +�Ad(t)

)
x(t – d)

+
(
B +�B(t)

)
Kx(t) + f

(
x(t),x(t – d)

)]
–we–wt

∫ t

t–d
ewθxT (θ )Qx(θ )dθ + xT (t)Qx(t) – e–wdxT (t – d)Qx(t – d)

= xT (t)
[
ATP + PA +KTBTP + PBK +Q

]
x(t)

+ xT (t – d)AT
d Px(t) + xT (t)PAdx(t – d)

+ xT (t)Pf
(
x(t),x(t – d)

)
+ xT (t)

[
�AT (t)P + P�A(t)

+KT�BT (t)P + P�B(t)K
]
x(t)

+ xT (t – d)�AT
d (t)Px(t) + xT (t)P�Ad(t)x(t – d)

–wV
(
x(t)

)
+wxT (t)Px(t) – e–wdxT (t – d)Qx(t – d)

≤ xT (t)
[
ATP + PA +KTBTP + PBK +wP +Q

]
x(t)

+ xT (t – d)AT
d Px(t) + xT (t)PAdx(t – d) + xT (t)Pf

(
x(t),x(t – d)

)
+ xT (t)

[
ET
 F

T (t)DT
 P + PDF(t)E +KTET

 F
T (t)DT

 P

+ PDF(t)EK
]
x(t) + xT (t – d)ET

 F
T (t)DT

 Px(t) + xT (t)PDF(t)Ex(t – d)

–wV
(
x(t)

)
– e–wdxT (t – d)Qx(t – d).

Using Lemma . and Lemma ., we get

V̇
(
x(t)

) ≤ xT (t)
[
ATP + PA +KTBTP + PBK +wP +Q

]
x(t)

+ xT (t – d)AT
d Px(t) + xT (t)PAdx(t – d)

+ εxT (t)PPx(t) + ε–
∥∥f (x(t),x(t – d)

)∥∥

+ xT (t)
[
ε–E

T
 E + εPDDT

 P + ε–K
TET

 EK

+ εPDDT
 P

]
x(t) + εxT (t – d)ET

 Ex(t – d)

+ ε– x
T (t)PDDT

 Px(t) –wV
(
x(t)

)
– e–wdxT (t – d)Qx(t – d)

≤ xT (t)
[
ATP + PA +KTBTP + PBK +wP +Q

]
x(t)

+ xT (t – d)AT
d Px(t) + xT (t)PAdx(t – d)

+ εxT (t)PPx(t) + ε–
[
xT (t)Qx(t) + xT (t – d)Qx(t – d)

]
+ xT (t)

[
ε–E

T
 E + εPDDT

 P + ε–K
TET

 EK + εPDDT
 P

]
x(t)

+ ε– x
T (t)PDDT

 Px(t) + εxT (t – d)ET
 Ex(t – d)
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–wV
(
x(t)

)
– e–wdxT (t – d)Qx(t – d)

= xT (t)
[
ATP + PA +KTBTP + PBK +wP +Q

+ εPP + ε– Q + ε–E
T
 E + εPDDT

 P

+ ε–K
TET

 EK + εPDDT
 P + ε–PDDT

 P
]
x(t)

+ xT (t – d)AT
d Px(t) + xT (t)PAdx(t – d)

+ xT (t – d)
[
ε– Q + εET

 E – e–wdQ
]
x(t – d) –wV

(
x(t)

)

=

[
x(t)

x(t – d)

]T [
� PAd

AT
d P ε– Q + εET

 E – e–wdQ

][
x(t)

x(t – d)

]
–wV

(
x(t)

)
,

where

� = ATP + PA +KTBTP + PBK +wP +Q + εPP + ε– Q + ε–E
T
 E + εPDDT

 P

+ ε–K
TET

 EK + εPDDT
 P + ε–PDDT

 P.

From (.), we have

V̇
(
x(t)

) ≤ –wV
(
x(t)

)
, nT ≤ t < nT + τ , (.)

which implies that when nT ≤ t < nT + τ ,

V
(
x(t)

) ≤ V
(
x(nT)

)
e–w(t–nT). (.)

Similarly, when nT + τ ≤ t < (n + )T , we have

V̇
(
x(t)

)
= ẋT (t)Px(t) + xT (t)Pẋ(t) –we–wt

∫ t

t–d
ewθxT (θ )Qx(θ )dθ

+ xT (t)Qx(t) – e–wdxT (t – d)Qx(t – d)

=
[(
A +�A(t)

)
x(t) +

(
Ad +�Ad(t)

)
x(t – d) + f

(
x(t),x(t – d)

)]TPx(t)
+ xT (t)P

[(
A +�A(t)

)
x(t) +

(
Ad +�Ad(t)

)
x(t – d) + f

(
x(t),x(t – d)

)]
–we–wt

∫ t

t–d
ewθxT (θ )Qx(θ )dθ + xT (t)Qx(t) – e–wdxT (t – d)Qx(t – d)

= xT (t)
[
ATP + PA +Q

]
x(t) + xT (t – d)AT

d Px(t) + xT (t)PAdx(t – d)

+ xT (t)Pf
(
x(t),x(t – d)

)
+ xT (t)

[
�AT (t)P + P�A(t)

]
x(t)

+ xT (t – d)�AT
d (t)Px(t) + xT (t)P�Ad(t)x(t – d)

–wV
(
x(t)

)
+wxT (t)Px(t) – e–wdxT (t – τ )Qx(t – τ )

≤ xT (t)
[
ATP + PA +wP +Q

]
x(t) + xT (t – d)AT

d Px(t) + xT (t)PAdx(t – d)

+ xT (t)Pf
(
x(t),x(t – d)

)
+ xT (t)

[
ET
 F

T (t)DT
 P + PDF(t)E

]
x(t)

+ xT (t – d)ET
 F

T (t)DT
 Px(t) + xT (t)PDF(t)Ex(t – d)

–wV
(
x(t)

)
– e–wdxT (t – d)Qx(t – d)
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≤ xT (t)
[
ATP + PA +wP +Q

]
x(t) + xT (t – d)AT

d Px(t) + xT (t)PAdx(t – d)

+ εxT (t)PPx(t) + ε–
∥∥f (x(t),x(t – d)

)∥∥

+ xT (t)
[
ε–E

T
 E + εPDDT

 P
]
x(t)

+ εxT (t – d)ET
 Ex(t – d) + ε–x

T (t)PDDT
 Px(t) –wV

(
x(t)

)
– e–wdxT (t – d)Qx(t – d)

≤ xT (t)
[
ATP + PA +wP +Q

]
x(t) + xT (t – d)AT

d Px(t) + xT (t)PAdx(t – d)

+ εxT (t)PPx(t) + ε–
[
xT (t)Qx(t) + xT (t – d)Qx(t – d)

]
+ ε–x

T (t)PDDT
 Px(t) + xT (t)

[
ε–E

T
 E + εPDDT

 P
]
x(t)

+ εxT (t – d)ET
 Ex(t – d) –wV

(
x(t)

)
– e–wdxT (t – d)Qx(t – d)

= xT (t)
[
ATP + PA +wP +Q + εPP + ε–Q

+ ε–E
T
 E + εPDDT

 P + ε–PDDT
 P

]
x(t)

+ xT (t – d)
[
ε–Q + εET

 E – e–wdQ
]
x(t – d) –wV

(
x(t)

)
+ xT (t – d)AT

d Px(t) + xT (t)PAdx(t – d)

=

[
x(t)

x(t – d)

]T [
� PAd

AT
d P ε–Q + εET

 E – e–wdQ

][
x(t)

x(t – d)

]
–wV

(
x(t)

)
,

where � = ATP + PA +wP +Q + εPP + ε–Q + ε–ET
 E + εPDDT

 P + ε–PDDT
 P.

From (.), we have

V̇
(
x(t)

) ≤ –wV
(
x(t)

)
, nT + τ ≤ t < (n + )T , (.)

which implies that when nT + τ ≤ t < (n + )T ,

V
(
x(t)

) ≤ V
(
x(nT + τ )

)
e–w(t–nT–τ ). (.)

From (.) and (.), it follows that:
When  ≤ t < τ , V (x(t))≤ V (x)e–wt , and

V
(
x(τ )

) ≤ V (x)e–wτ .

When τ ≤ t < T ,

V
(
x(t)

) ≤ V
(
x(τ )

)
e–w(t–τ )

≤ V (x)e–wτ e–w(t–τ )

= V (x)e–wt ,

V
(
x(T)

) ≤ V (x)e–wT .

http://www.advancesindifferenceequations.com/content/2012/1/180
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When T ≤ t < T + τ ,

V
(
x(t)

) ≤ V
(
x(T)

)
e–w(t–T)

≤ V (x)e–wTe–w(t–T)

= V (x)e–wt ,

V
(
x(T + τ )

) ≤ V (x)e–w(T+τ ).

When T + τ ≤ t < T ,

V
(
x(t)

) ≤ V
(
x(T + τ )

)
e–w(t–T–τ )

≤ V (x)e–w(τ+T)e–w(t–T–τ )

= V (x)e–wt ,

V
(
x(T)

) ≤ V (x)e–wT .

When T ≤ t < T + τ ,

V
(
x(t)

) ≤ V
(
x(T)

)
e–w(t–T)

≤ V (x)e–wTe–w(t–T)

= V (x)e–wt ,

V
(
x(T + τ )

) ≤ V (x)e–w(T+τ ).

When nT ≤ t < nT + τ ,

V
(
x(t)

) ≤ V
(
x(nT)

)
e–w(t–nT)

≤ V (x)e–nwTe–w(t–nT)

≤ V (x)e–wt (.)

≤ V (x)e–w(t–τ ),

V
(
x(nT + τ )

) ≤ V (x)e–w(nT).

When nT + τ ≤ t < (n + )T ,

V
(
x(t)

) ≤ V
(
x(nT + τ )

)
e–w(t–nT–τ )

≤ V (x)e–wnTe–w(t–nT–τ )

= V (x)e–w(t–τ ). (.)

From (.) and (.), it follows that for any t > , we can obtain

V
(
x(t)

) ≤ V (x)e–w(t–τ ), ∀t > . (.)

http://www.advancesindifferenceequations.com/content/2012/1/180


Dong and Liu Advances in Difference Equations 2012, 2012:180 Page 9 of 15
http://www.advancesindifferenceequations.com/content/2012/1/180

From (.) and (.), it follows that for any t > ,

xT (t)x(t) ≤ V (x(t))
λmin(P)

≤ 
λmin(P)

V (x)e–w(t–τ ).

Hence, we get

∥∥x(t)∥∥ ≤
√

V (x)
λmin(P)

e–
w(t–τ )

 , ∀t > ,

Noticing

V (x) = xT ()Px() +
∫ 

–d
ewθxT (θ )Qx(θ )dθ

≤ (
λmax(P) + dλmax(Q)

)‖φ‖,

we get

∥∥x(t)∥∥ ≤ ‖φ‖
√

λmax(P) + dλmax(Q)
λmin(P)

e–
w(t–τ )

 , ∀t > ,

which completes the proof. �

Corollary . If there exist positive definite matrices P > , Q > , and scalar constants
εj >  (j = , , , ), w > , such that the following LMIs hold:

⎡
⎢⎣


 PAd PD

AT
d P ε– Q + εET

 E – e–wdQ 
DT

 P  –ε– I

⎤
⎥⎦ < , (.)

⎡
⎢⎢⎢⎢⎢⎢⎣


 PAd P PD PD

PAd ε– Q + εET
 E – e–wdQ   

P  –ε– I  
DT

 P   –ε– I 
DT

 P    –ε– I

⎤
⎥⎥⎥⎥⎥⎥⎦
< , (.)

were


 = KTBTP + PBK + ε– KTET
 EK ,


 = ATP + PA +wP +Q + ε– Q + ε– ET
 E,

then the system (.) is exponentially stable.Moreover, the solution x(t) satisfies the condi-
tion

∥∥x(t)∥∥ ≤ ‖φ‖
√

λmax(P) + dλmax(Q)
λmin(P)

e–
w(t–τ )

 , ∀t > .
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Proof Set

� = KTBTP + PBK + ε– KTET
 EK + εPDDT

 P,

� = ATP + PA +wP +Q + εPP + ε– Q + ε– ET
 E + εPDDT

 P + ε– PDDT
 P.

According to Lemma . and (.) and (.), we have

[
� PAd

AT
d P ε– Q + εET

 E – e–wdQ

]
< , (.)

[
� PAd

AT
d P ε– Q + εET

 E – e–wdQ

]
< . (.)

Taking ε = ε = ε, ε = ε = ε, ε = ε = ε, ε = ε, we have

� = ATP + PA +wP +Q + εPP + ε–Q + ε–E
T
 E + εPDDT

 P + ε–PDDT
 P

= ATP + PA +wP +Q + εPP + ε– Q + ε– ET
 E + εPDDT

 P + ε– PDDT
 P

= �,

Hence, (.) implies that (.) holds and � < . From (.), we have

[
� PAd

AT
d P ε– Q + εET

 E – e–wdQ

]
+

[
� 
 

]
< . (.)

Since

� = ATP + PA +KTBTP + PBK +wP +Q + εPP + ε– Q + ε–E
T
 E + εPDDT

 P

+ ε–K
TET

 EK + εPDDT
 P + ε–PDDT

 P

= ATP + PA +KTBTP + PBK +wP +Q + εPP + ε– Q + ε– ET
 E + εPDDT

 P

+ ε– KTET
 EK + εPDDT

 P + ε– PDDT
 P

= � +KTBTP + PBK + ε– KTET
 EK + εPDDT

 P = � +�,

(.) implies that (.) holds. According to Theorem ., the system (.) is exponentially
stable, and

∥∥x(t)∥∥ ≤ ‖φ‖
√

λmax(P) + dλmax(Q)
λmin(P)

e–
w(t–τ )

 , ∀t > ,

which completes the proof. �

The following theorem can be directly deduced from Theorem . by applying Lem-
ma ..
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Theorem . If there exist positive definite matrices P > , Q >  and scalar constants
εij >  (i = , , j = , , ), ε > , w > , such that the following LMIs hold:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̄ PAd P PD PD PD

∗ εQ + εET
 E – e–wdQ    

∗ ∗ –εI   
∗ ∗ ∗ –εI  
∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ –εI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< ,

⎛
⎜⎜⎜⎜⎜⎜⎝

�̄ PAd P PD PD

∗ εQ + εET
 E – e–wdQ   

∗ ∗ –εI  
∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ –εI

⎞
⎟⎟⎟⎟⎟⎟⎠

< ,

where

�̄ = ATP + PA +KTBTP + PBK +wP +Q + εQ + εET
 E + εKTET

 EK ,

and

�̄ = ATP + PA +wP +Q + εQ + εET
 E,

then the system (.) is exponentially stable.Moreover, the solution x(t) satisfies the condi-
tion

∥∥x(t)∥∥ ≤ ‖φ‖
√

λmax(P) + dλmax(Q)
λmin(P)

e–
w(t–τ )

 , ∀t > .

Consider the following time-delay systems:

ẋ(t) = Ax(t) +Adx(t – d) + Bu(t) + f
(
x(t),x(t – d)

)
,

x(t) = φ(t), t ∈ [–d, ],
(.)

where x ∈ Rn is a state vector, and u ∈ Rm is the external input of the system (.). f :
Rn → Rn is a continuous nonlinear function satisfying f (, ) = , and there exist positive
definite matrices Q, Q such that ‖f (x(t),x(t – d))‖ ≤ xT (t)Qx(t) + xT (t – d)Qx(t – d)
for x(t),x(t – d) ∈ Rn.
With the control law (.), the system (.) can be rewritten as

⎧⎨
⎩ẋ(t) = Ax(t) +Adx(t – d) + BKx(t) + f (x(t),x(t – d)), nT ≤ t < nT + τ ,

ẋ(t) = Ax(t) +Adx(t – d) + f (x(t),x(t – d)), nT + τ ≤ t < (n + )T .
(.)

From Corollary ., the following corollary can be immediately obtained.

http://www.advancesindifferenceequations.com/content/2012/1/180
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Corollary . If there exist positive definite matrices P > , Q > , and scalar constants
ε > , w > , such that the following LMIs hold:

[
KTBTP + PBK PAd

AT
d P ε– Q – e–wdQ

]
< , (.)

⎡
⎢⎣
ATP + PA +wP +Q + ε– Q PAd P

AT
d P ε– Q – e–wdQ 
P  –ε– I

⎤
⎥⎦ < , (.)

then the system (.) is exponentially stable. Moreover, the solution x(t) satisfies the con-
dition

∥∥x(t)∥∥ ≤ ‖φ‖
√

λmax(P) + dλmax(Q)
λmin(P)

e–
w(t–τ )

 , ∀t > .

4 Numerical examples
The following numerical examples are presented to illustrate the usefulness of the pro-
posed theoretical results in Section .

Example  Consider the following uncertain system:

ẋ(t) =
(
A +�A(t)

)
x(t) +

(
Ad +�Ad(t)

)
x(t – d)

+
(
B +�B(t)

)
u(t) + f

(
x(t),x(t – d)

)
, (.)

x(t) = φ(t), t ∈ [–d, ],

where

A =

[
– –
. –

]
, Ad =

[
 

–. –.

]
, B =

[
 
 

]
,

f
(
x(t),x(t – d)

)
=

(
x(t) sinx(t)
. sinx(t – d)

)
, d = ,

and the uncertainties satisfy (.) with

D =
[
–. 

]T
, D =

[
 .

]T
, D =

[
. –.

]T
,

E =
[
. .

]
, E =

[
–. –.

]
, E =

[
–. .

]
.

It is easy to see that the nonlinearity of the system satisfies

∥∥f (x(t),x(t – d)
)∥∥ =

(
x(t) sinx(t)

) + . sin x(t – d)

≤ x (t) + .x(t – d).

Then there exist positive definite matrices

Q =

[
 
 .

]
, Q =

[
. 
 .

]
,

http://www.advancesindifferenceequations.com/content/2012/1/180
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such that

∥∥f (x(t),x(t – d)
)∥∥ ≤ xT (t)Qx(t) + xT (t – d)Qx(t – d), for x(t),x(t – d) ∈ Rn.

Let ε = ε = ε = ε = , w = . and K =
[ – 

 –

]
for convenience. Solving the inequal-

ities (.) and (.), we get

P =

[
. –.
–. .

]
, Q =

[
. .
. .

]
.

Thus, according to Corollary ., the system (.) is exponentially stabilizable with

u(t) =

⎧⎨
⎩

[ – 
 –

]
x(t), nT ≤ t < nT + τ ,

, nT + τ ≤ t < (n + )T .

Example  Consider the following time-delay system:

ẋ(t) = Ax(t) +Adx(t – d) + Bu(t) + f
(
x(t),x(t – d)

)
,

x(t) = φ(t), t ∈ [–d, ],
(.)

where

f
(
x(t),x(t – d)

)
=

[
– √

 (cos(x(t)))x(t) +
√
(sin(x(t)))x(t – d)

√
 (sin(x(t)))x(t) –

√
(cos(x(t)))x(t – d)

]
,

A =

[
– –
 –

]
, Ad =

[
 
. .

]
,

B =

[
 
 

]
, K =

[
– 
 –

]
, d = .

We can verify that

∥∥f (x(t),x(t – d)
)∥∥ ≤ xT (t)Qx(t) + xT (t – d)Qx(t – d),

where

Q =

[
 
 

]
, Q =

[
 
 

]
.

For ε = , w = ., it is easy verify that

P =

[
. 
 .

]
, Q =

[
e 
 e

]
,

satisfy (.) and (.).
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Hence, according to Corollary ., the system (.) is exponentially stabilizable with

u(t) =

⎧⎨
⎩

[ – 
 –

]
x(t), nT ≤ t < nT + τ ,

, nT + τ ≤ t < (n + )T .

5 Conclusions
In this brief, we deal with the exponential stabilization problem for a class of uncertain
nonlinear systems with state delay by means of periodically intermittent control. Based
on the Lyapunov-Krasovskii functional approach, several stability criteria have been pre-
sented in terms of a set of matrix inequalities. Moreover, the control method is extended
to a class of nonlinear systems with time delay. A new sufficient condition, which guar-
antees the closed-loop system is exponentially stable, is presented. Finally, two numerical
examples are provided to show the high performance of the proposed approach.
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