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Abstract

This paper is concerned with the existence and unigueness of solutions for impulsive
nonlinear differential equations of fractional order «¢ € (1, 2] with closed boundary
conditions. By applying some standard fixed point theorems, we obtain the sufficient
conditions for the existence and unigueness of solutions of the problem at hand. An
illustrative example is presented.
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1 Introduction

Dynamical systems with impulse effect are regarded as a class of general hybrid systems.
Impulsive hybrid systems are composed of some continuous variable dynamic systems
along with certain reset maps that define impulsive switching among them. It is the switch-
ing that resets the modes and changes the continuous state of the system. There are three
classes of impulsive hybrid systems, namely impulsive differential systems [1, 2], sampled
data or digital control system [3, 4], and impulsive switched system [5]. Using hybrid mod-
els, one may represent time and event-based behaviors more accurately so as to meet chal-
lenging design requirements in the design of control systems for problems such as cut-off
control and idle speed control of the engine. For more details, see [6] and the references
therein.

Fractional calculus (differentiation and integration of arbitrary order) has proved to be
an important tool in the modeling of dynamical systems associated with phenomena such
as fractals and chaos. In fact, this branch of calculus has found its applications in vari-
ous disciplines of science and engineering such as mechanics, electricity, chemistry, bi-
ology, economics, control theory, signal and image processing, polymer rheology, regular
variation in thermodynamics, biophysics, blood flow phenomena, aerodynamics, electro-
dynamics of complex medium, viscoelasticity and damping, control theory, wave propa-
gation, percolation, identification, fitting of experimental data, etc. Fractional derivatives
provide an excellent tool for the description of memory and hereditary properties of var-
ious materials and processes. With this advantage, the fractional-order models become
more realistic and practical than the classical integer-order models in which such effects
© 2012 Wang et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.advancesindifferenceequations.com/content/2012/1/169
mailto:zhanglih149@126.com
http://creativecommons.org/licenses/by/2.0

Wang et al. Advances in Difference Equations 2012, 2012:169 Page2of 13
http://www.advancesindifferenceequations.com/content/2012/1/169

are not taken into account. For some recent details and examples, see [7-22] and the ref-
erences therein.

Impulsive differential equations are found to be important mathematical tools for better
understanding of several real world problems in biology, physics, engineering, etc. In fact,
the theory of impulsive differential equations of integer order has found its extensive ap-
plications in realistic mathematical modeling of a wide variety of practical situations and
has emerged as an important area of investigation; for instance, see [23—25] and references
therein. The recent surge in developing the theory of differential equations of fractional
order has led several researchers to study the fractional differential equations with impulse
effects. For some recent work on impulsive differential equations of fractional order, see
[26-31] and the references therein.

In this paper, we investigate the existence of solutions for the following impulsive frac-

tional differential equations with closed boundary conditions:

CDIx(t) = f(t,x(t), 1<q<2,te],
Ax(ty) = I(x()), AX (&) = L (x(&)), k=1,2,...,p, (1.1)
x(T) = ax(0) + BTx'(0), Tx'(T) = yx(0) + 8Tx'(0), «,B,y,8 €,

where ¢D7 is the Caputo fractional derivative, f € C(J x R,R), Ik,I; e C(R,R),J=1[0,T]
(T>0),0=tg <ty < <tx< - <by<tpa=T,] =]\{ti,t2,..., b}, Dx(ty) = x(t}) — x(t;),
where x(¢{) and x(¢;) denote the right and the left limits of x(¢) at ¢ = f;(k = 1,2,...,p),
respectively. Ax'(¢;) have a similar meaning for x'(¢).

Here we remark that the boundary conditions in (1.1) include quasi-periodic boundary
conditions (8 = y = 0) and interpolate between periodic (&, — 1, 8,y — 0) and antiperi-
odic (¢ =8 = -1, B = ¥y = 0) boundary conditions. For more details and applications of

closed boundary conditions, see [14].

2 Preliminaries
Let Jo = [0, = (ti, t2)s .o Jpo1 = (Gp-1,8)5)p = (£, T], and we introduce the spaces:
PC(J,R) = {x: ] = Rlx € Ck),k = 0,1,...,p, and x(¢;) exist, k = 1,2,...,p} with the
norm ||x|| = sup,, |x(t)], and PC*(J,R) = {x : ] - Rlx € C'(Ji),k = 0,1,...,p, and x(¢}),
X (t) exist, k =1,2,...,p} with the norm ||| pc1 = max{||x[, [|«’||}. Obviously, PC(J,R) and
PC'(J,R) are Banach spaces.

In passing, we remark that “Dx(¢) indeed stands for “Dj x(t) for ¢ in the subinterval
(tks tre].

Definition 2.1 A function x € PC'(J, R) with its Caputo derivative of order g existing on
J is a solution of (1.1) if it satisfies (1.1).

Define

’

=(1—8)T+yt, Az(t)z(l_ﬂ)T_(l_a)t

r(e
1(8) A A

where A =(1-a)(1-8)+y(1-p8) #0.
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Lemma2.1 Foragiveny € C[0, T), a function x is a solution of the impulsive closed bound-
ary value problem

CDix(t) =y(t), l<a<2,te],
Ax(te) = I(x(5)), AX () = L (x(&), k=1,2,...,p, (2.1)
x(T) = ax(0) + BTx'(0), Tx'(T) = yx(0) + § Tx'(0),

if and only if x is a solution of the impulsive fractional integral equation

Jo

y(s)ds—h(t)ft T y(s) dis
+)\2(t)ftT (TS y(s)ds+,A, teo;

fti r(q) y(s)ds—)q(t ft r(q y(s)ds
+Aa(8) ff T 1) y(s) ds

x(t) = (2.2)
ISR = (s)ds+1(x(t))]
Rl t)[ff’l ;ql ¥(s)ds + I} (x(t:))]
- fg;)ql y(s)ds + I, (x(£:))]
+A, telik=12,...,p,
where

P t L -1
A == (t) Z[ | %y(s) ds +1,-(x(ti))]

t; L q_2
_Al(t)Z(tp—ti)[ | %y(s)dsuj(x(ti))]

p t; . _g)12
_ Z[(T_tp)xl(t) —/\z(t)][ - (?(q—s_)l)

i=1

y(s) ds + Il (x(ti)):|.
Proof Let x be a solution of (2.1). Then, for ¢ € ]y, there exist constants c;, ¢; € R such that
1 t
x(t) =ZU(t) —c1 —crt = —— f (t—s)T y(s)ds — ¢ — cot,
I'(q) Jo

(2.3)
®(t) =

I _1)/0 (t —s)12y(s) ds — c,.

For ¢t € J;, there exist constants d,d, € R, such that

t

x(t) = r,(l ) (t— )17 y(s)ds — dy — dy(t - t1),

1

T 1) ), (79

x(t) =

Then we have

x(tf F( ) / (1= s)Ty(s)ds — c1 — eat, x(tl*) =—d,
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X (6) =

T(q- 1)/ (t—s)"2y(s)ds—co, X (4) = ~db

In view of the impulse conditions Ax(f1) = x(¢]) — x(¢]) = L(x(41)) and Ax'(t) = x'(¢]) -
x/' (&) = I (x(t1)), we have that

~d; = % / 1 (t1—5)7y(s)ds — c1 — ety + L (%(t1)),

—dy = (g _1)/ (B —s)1” 2y(s) ds—cy+1 (x(tl))
Consequently,
_ b 1 1 om ol
x(t) = r@ . (t )T y(s)ds + F( ), (t — )7 Ly(s) ds
t—t

+ F(q ~ 1) /(; 1 (tl —S)q_zy(S) ds + 11 (x(tl)) + (t - tl)II(x(tl)) - —-ct, te ]1.

By a similar process, we can get

x(t):‘/tk U y(s d5+2[/

+ Z(tk —t) [/ (;l(qs_)ql) y(s)ds + I, (x(t,-)):|

ti-1

y(s) ds + I (x(tl))]

i q-2 .
+ Z(t tk)|:/ If( S_)l) y(s)ds +1; (x(ti))}

—ca—-ct, teluk=12,...,p. (2.4)

Using the conditions x(T) = ¢x(0) + 87x'(0) and Tx'(T) = yx(0) + 8 Tx'(0), we find that

il

4 ti (f. _ ¢)a-1
+(1-96) Z[ (tzr(;)) ¥(s) d5+1,-(x(t,-))]
=1 i~1

T T — q-2
Y)ds— (- )T / (F(q—s_)l)y(s)ds

p-1

ot —s)T?
_s —4
+(1 )i:1(17 t)|: . F(q—l)

y(s) ds + I; (x(ti))]

; 1-86)(T 1 T i (L‘L'—s)q’2 dsil
+;[( =T -1t,)-(1-p) ]|: . T@-1) y(s)ds + i(x(ti))] ,

5

14 t; _
+y2|: (t S)ql )ds+1(x(t))]

=

T )
y(s)ds+(1 oz)T/ (T —s)" y(s) ds

t I'(g-1)
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p-1
t; (tz —S)q -2
+Y ;(tp - L‘i)|: » my(s) ds+1; ( (¢ ))i|

3 i (i)t
+Z[V(T—tp)+(1—a)T][ my(s)d3+1( x(t, )):| .

i=1 i~1

Substituting the value of ¢;, ¢; in (2.3) and (2.4), we obtain (2.2). Conversely, assume
that u is a solution of the impulsive fractional integral equation (2.2), then by a direct
computation, it follows that the solution given by (2.2) satisfies (2.1). d

3 Main results
Define an operator & : PC(J,R) — PC(J,R) as

_ g1
®x(t) = / (tr()) I (s,2(5)) ds — 2 (2) / = ))q (5,%(5)) ds

T -1
+A2(t)/ (T £(5,%(6)) ds+z[ (t_sq (s,x(s))ds+1i(x(ti)):|

i1

k-1 o

+ ;(tk —t) [/m %f(s,x(s)) ds+1I; (x(ti)):|
. t (4 _ o\d—

+ ;(t —t) |:/tl1 %f(s,x(s)) ds+1I; (x(ti))]

t; (t q 1
— () Z[ f(s,%(5)) ds + I; (x(ti)):|

-1

p-1 t; L -2
SO IR [ / %f(s,x(s)) ds+ I (x(ti))]

14 t; L \g2 .
ST = i) - Az(t)][ %f(s,x(s)) ds+ I (x(ti))}. (3.1)
i=1 ti1 -

Observe that the problem (1.1) has a solution if and only if the operator T has a fixed

point.

Lemma 3.1 The operator & : PC(J,R) — PC(J,R) defined by (3.1) is completely continu-
ous.

Proof 1t is obvious that & is continuous in view of continuity of f, Iy and I;.
Let Q C PC(J,R) be bounded. Then, there exist positive constants L; > 0 (i = 1,2, 3) such
that |[f(¢,x)| < Ly, |Ix(x)| < L, and |IZ(x)| < L3, Vx € Q. Thus, Vx € Q, we have

tor a1
|Q§x(t)| _/ (tF(S;;I [f(s,x(s))|ds+|k1(t)|/ (T [f(s,x(s))|ds

‘)\’2 f (T—S)q 2 (S))’ ds
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- it —s)1
' Z[ L T VlerO)ldsy \ff(xm))l]

k-1 -2
+Z(tk—t)|:/ Uit S) If (s, %(5)) | ds + | I; (» t))|]
i-1

k
+Z(t_tk)|: b S) s,x(s))|ds+{1:(x(t,-))|]
i-1
ser 3| [ EI e o)

)] pi(t - t,-)[ P )| ds yf?‘(x(ti))q
i v ti1 Ig-1) !

- it - 5T .
+ Z[(T — )| (0)] + |A2(t)}]|: If (s, %(5)) | ds + | I; (%(t:)) |]
i-1

b, Llg=1)
E(t—s)at (T —s)11 T(T —s)12
< L1 ‘/t‘k F(q) ds + |)»1(t)|L1 /t 7F(q) ds + |)\,2(t)|L1 \/tp 71_‘(‘] — 1) ds

- )7 S CED
+Z[ /M ) ds+L21| ZT[L1 sy ds+L3]

i=1

it ) (t;—s)T
+ T[L ds+L :| Ai(2) [L ds+L i|
z / 3|+ P |z 1/ 5 )

p-1 g2
+ ()] T[ /t lt"(qs—)l) ds+L3]

i=1

p i 2
+ ) [TIa@]+ |)\z(t)|][L1/ (?( )q) ds+L3}

i=1

_ L+p+qCp-DIA+ MODTIL . 1+ p) A2 ()| T Ly
- I(g+1) I'(q)
+[@p = DT (1+|M(0)]) + p[r2(0)]]L3
+p+qg2p-DIA+ M (O))TIL,
[(g+1)
1+ p) A2 ()| T Ly
I'(q)

+p(1+ \Al(t)i)Lz

< max
te]

+p(1 + |)\1(t)|)L2
+[@p-DT(1+ | M) +p|,\2(t)|]L3} =1, (3.2)

which implies that || &x|| < L.
On the other hand, for any ¢ € Ji, 0 < k < p, we have

(@0] = [ 2 ) s+ / 9" 11 x(9) | ds

w T(g-1) TIA| I'(q)

L-a| [T (-9
), T /el

ip

Page 6 of 13
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p t; _ )1~ *
Z[/ (i —s) V(S,x(s))‘dﬁ|I;(u(ti))’]

)4 i (., _ g)d-1
vl [ i) Lf(s,x(s))ydﬁyli(u(ti))q

TIAI v, @)

Ayl p . (& =s)72 —s)
T|A| U (5)

o lyl+—al[ (4 (ti-5)T2
+Z Al |:/ti_1 rg-1 lf( )|ds+’1( )|]

i=1

£ uw) |

- / (k=5 vl (T(T=9" ol (T (T -5
=), T@-) " " TIAl), T A T(g-1)

ip

4 -1
L (ti-9)1 i|
Gz gevr
/ Mg “rh

k
)4

—s)12 Iyl
+Z[L1/ @-n LS} TIA| Z[L
ly| & (- )12
+ m;[h . —F(q—l) ds+L31|

+iwnu—m L[l
Al '), T@-1 ’

i=1 i-1

_@+pyITL (Cp=Dlyl+ @+ D1 -e]TT L (p+ )T

AT(g+1) IAIT(g) T
plyILs [ +[(2p—1)|y|+p|1—oe|]]L 7
T|A| Al T

Hence, for £1,£ € Jx, t < £, 0 < k < p, we have
[5)) _
()(82) - (B)(81)] < / (T ()] ds < Lt — 1),
51

This implies that & is equicontinuous on all Jy, k = 0,1,2,..., p. Thus, by the Arzela-Ascoli
theorem, the operator & : PC(J,R) — PC(J,R) is completely continuous. O

For the sake of convenience, we set the following notations:

T=1+p)(1+|M0))Za(T) + [2p - DT (1 + [M(D)]) + X+ p)|2(0) |27 a(T)
p(L+ Mm@ L2+ [2p - DT (1 + | 2(0)]) + p|A2(8)| L3, (3.3)
v=0+p)(1+|Mm@)ZD(T) + [2p - DT 1+ |M@)]) + A+ p)[120)|[]ZB(T). (3.4)

Theorem 3.1 Assume that
(H1) there exist nonnegative functions a(t), b(t) € L(0, T) and positive constants L; (i =
2,3) such that

ftx)| <a@®) +b@)x’,  0<6<1,  |kx)|<Ly,  |[L@&)|<Ls

forte],xeRandk=12,...,p.
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Then the problem (1.1) has at least one solution.

Proof Define a ball B = {x € PC(J,R) : ||x|| < R}, we just need to show that the operator
®: B — B, as it has already been proved that the operator & : PC(J,R) — PC(J,R) is
completely continuous in the previous lemma. Let us choose R > max{27, (21))ﬁ }. For
any x € B, by the assumption (H;), we have

o) < | (tr(“‘) la(s) + b(s)|x(s)|° | ds
‘)»1 / (T |a(s +bs)’x s)| |ds
|Az t)|/ (T - |a(s)+bs)|x s)| |ds
[/ (& - |a(s) + b(s) |x( s)f | ds + | I (x(t; ))[|
k-1
D m[ |a(s)+b<s)| )]’ ;i‘(x(m)q
i=1

+Z(t—tk)[

|a(s b)) ds + 1 (x(t )q

-1

+ |10 Z[ |a(s) + b(s)|x(s)|” | ds + | L (x(t: )|}

p-1 t;
@] Y - t,«)[ / (;(7|a(s) « b(s)|x(s)|"| ds+ | (x(t ))q
i=1 ti-1

p

Y [(T =) )] +|12(8)]]

i=1
G (4 _ o)a-2
U=
<{@+p) A+ |Mm0])T%(T)
+ [(2p - 1)T(1 + |A1(t)|) +(1 +p)|kz(t)|]Iq’1a(T)
+p(L+ [ Mm(@®)]) L2+ [2p - DT (L + | 2(0)]) + p|22(0)]]L3}
+{@+p)(1+ |Mm(8)])ZB(T)

rste) |

+[@p=DT(1+|M(0)]) + @ +p)|22@) ]2 6(T)} R, (3.5)
which implies that
G| <7 +vR < R.R =R,
22

where t and v are given by (3.3) and (3.4). So, & : B8 — B. Thus & : B — B is completely
continuous. Therefore, by the Schauder fixed point theorem, the operator & has at least
one fixed point. Consequently, the problem (1.1) has at least one solution in B. g
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Theorem 3.2 Assume that

(H7) there exist nonnegative functions a(t),b(t) € L(0, T) and positive constants L; (i =
2,3) such that

f6x)| <a@) + b,  «>1,  |Lk@)| <L,  |[L@]<Ls,

forte],xeRandk=1,2,...,p.

Then the problem (1.1) has at least one solution.
Proof The proof is similar to that of Theorem 3.1, so we omit it. d

Theorem 3.3 ([32]) Let E be a Banach space. Assume that & : E — E is a completely

continuous operator and the set V = {x € E|x = nTx,0 < u < 1} is bounded. Then & has a
fixed point in E.

Theorem 3.4 If sup, ;v < 1. In addition, assume that

(HY') there exist nonnegative functions a(t),b(t) € L(0, T) and positive constants L; (i =
2,3) such that

ft.0)| <a@®)+b@)xl,  |[k@&|<Ly  |L&)]<Ls,

forte],xeRandk=12,...,p.

Then the problem (1.1) has at least one solution.

Proof Let us consider the set
V= {x e PC(J,R)|x = u®x,0 < u < 1},

where the operator & : PC(J,R) — PC(J,R) is defined by (3.1). We just need to show that
the set V' is bounded as it has already been proved that the operator & is completely con-
tinuous in the previous lemma. Let x € V, then x = u®x, 0 < < 1. For any ¢ € J, we have

[x(8)] = 1t|Bx(2))|

e g1 -1
%[f(s,x(s))|ds+ kl(t)|/ (T-97 S) ———f(s,%())| ds
tk

T (7 oa-
+ ‘)»z(t)|ft % If (s, %(s)) | ds
L g (t —s)7!

+ Z[ ————|f (5,%()) | ds + |L;(x()) |]

i=1
kl

N [[’ (o9 s+ 1 o)

i=1 i-1

e [ eI s )]

i=1 i-1
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»
+ | M ()] Z[/ L _S) 5,%(s)) | ds + |I,'(x(tl-))|]

+ ‘kl(t)‘ Z(tp - ti)|: . (?(:IS) 1_) [f(s,x(s))|ds + |1:(x(t,<))|]

a4 ot s)17?
L=t ]+ a0 [ G0 s s

i=1

<t +v|x,

which implies that ||x|| is bounded for any ¢ € J. So, the set V is bounded. Thus, by the
conclusion of Theorem 3.3, the operator & has at least one fixed point, which implies that
(1.1) has at least one solution. O

Corollary 3.1 Assume that functionsf, I, I, (k =1,2,...) are bounded. Then the nonlinear
problem (1.1) has at least one solution.

Theorem 3.5 Assume that
(Hy) there exist a nonnegative function Ki(t) € L(0, T) and positive constants K; (i = 2,3)
such that

[f&x) = fE9)| <Ki@)lx =yl L) = LO)] < Kalx -,
() - LG)| < Kslx -y,

forte],x,yeRandk=1,2,...,p.
Then the problem (1.1) has a unique solution if

H= rrtlealx{(l +p)(1+ [M(®)])TIK(T)

+[@p-DT(1+ |M(0)]) + (L+p)|A2(0)| ]2 Ko (T)

+p(L+ | MmO)K +[2p - DT (1 +|M(0)]) + p[r2(0)] K3} < L. (3.6)
Proof For x,y € PC(J,R), we can get

|(&x)(2) - (&)

Lt-s)t
- /rk g [ 6x0) =S (s5)]ds

T (T _ s)q—l
+ |A1(t)| ./t,, Tq) V(s,x(s)) —f(s,y(s)) | ds

T (T— )q—2
+ |A2(t)|/ o S_l) If (s,x(5)) = f (5,9(5)) | dis

: Z[ 5560~ (509) i 1(s0) - 60

k-1 .
“(ti-s)T?
(b= ti)[ ny L(g=1)

+

1 (509) =59 | s 1 (o100) -1, 10) |

i=1
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k

& | — -2 * *
+ Z(t - tk)[ (lt:(q—s_)ql) If (s,%(8)) = f (5, 9(5)) | ds + |I; (x(£:)) = I; (¥(8:)) |:|
i=1 ti-1
p t; L -1
+ |)»1(t)’ Z |:f % [f(s,x(s)) —f(s,y(s)) | ds + |I,» (x(8)) - Li(y(:) ’]
— )12
+ M) Z(t [ T Y ———|f(s,2(5)) —f (5, %(5)) | ds

p
11 () - ] # LT - )] + [2:00)]]
i=1

b ;= -2 .
<[ (ﬁ(q—)l) 1 (5:09) 656 s + 1) ~ I (0) |

q-1
/ (- S) ———Ky(s) ds||x - y||+|kl |/ 7[(1(s)d3||x Yl
r ti (£ _ -1
+ o) / a K1<s> dsllx—yll + Zl[ / ) %m) ds+1<2]||x—y||
p-1 t -2
+ 2 T|:/ I S_)ql) Kl(s)ds+1(3:|||x—y||

» G g
+ ; T|: (t; o S_)ql) Ki(s)ds +K3] llx — yll

+ | ha( f)|ZU (tl 1<l )ds+1(2]||x—y||
q
+ )] Z [ f —)qu( )ds+1<3]||x—yn
[Tl Y ST s K
t t —_— -
+§[ MGIER 2()‘]|: . TG-1) 1(s)ds + 3]|lx Yl
<{A+p) 1+ [MO)TEK(T) + [2p - DT (1 + [M@)]) + A+ p)|A2(O)] |27 K(T)
+p(L+ MO Kz + [2p = DT (L +|2(0)]) + p|22(0)| K3 }HIx = y1l.
Consequently, we have ||&x — By|| < H|x — y||, where H is given by (3.6). As H <1, the

conclusion of the theorem follows by the contraction mapping principle. This completes
the proof. d

4 Examples

Example 4.1 Consider the following impulsive fractional boundary value problem with
closed boundary conditions

2
Cryg _ et () [2+sin 2¢+[x(£)]P In(1+2 cos® 8)]
D x(t) - 2+cosx(t) ’

O0<t,h<T,t#4,
Ax(t) =1-e*®,  Ax(f4) =3+ 2sinx(t), (4.1)
x(T) = 2x(0) + 3Tx'(0), Tx'(T) = 4x(0) + 71x'(0),

wherel<g<2,0<p<landp=1.
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In this case, a(t) = 2 + sin2t, b(¢) = In(1 + 2cos?¢t), L, =1, L3 = 5, and the conditions of
Theorem 3.1 can readily be verified. Thus, by the conclusion of Theorem 3.1, the problem
(4.1) has at least one solution.
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