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Abstract
In this paper, by using compact semigroups and the Schauder fixed-point theorem,
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integro-differential systems in a Banach space. An example is provided to illustrate the
obtained results.
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1 Introduction
A Sobolev-type equation appears in a variety of physical problems such as flow of fluids
through fissured rocks, thermodynamics and propagation of long waves of small ampli-
tude (see [–]). Recently, there has been an increasing interest in studying the problem of
controllability of Sobolev type integro-differential systems. Balachandran and Dauer []
studied the controllability of Sobolev type integro-differential systems in Banach spaces.
Balachandran and Sakthivel [] studied the controllability of Sobolev type semilinear
integro-differential systems in Banach spaces. Balachandran, Anandhi andDauer [] stud-
ied the boundary controllability of Sobolev type abstract nonlinear integro-differential
systems.
In this paper, we study the controllability of Sobolev type fractional integro-differential

systems in Banach spaces in the following form:

cDα
(
Ex(t)

)
+Ax(t) = Bu(t) + f

(
t,x(t)

)
+

∫ t


g
(
t, s,x(s),

∫ s


H

(
s, τ ,x(τ )

)
dτ

)
ds,

t ∈ J = [,a],a > ,x() = x, (.)

where E andA are linear operators with domain contained in a Banach spaceX and ranges
contained in a Banach space Y . The control function u(·) is in L(J ,U), a Banach space of
admissible control functions, with U as a Banach space. B is a bounded linear operator
fromU into Y . The nonlinear operators f ∈ C(J ×X,Y ),H ∈ C(J × J ×X,X) and g ∈ C(J ×
J × X × X,Y ) are all uniformly bounded continuous operators. The fractional derivative
cDα ,  < α <  is understood in the Caputo sense.

2 Preliminaries
In this section, we introduce preliminary facts which are used throughout this paper.
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Definition . (see [–]) The fractional integral of order α >  with the lower limit zero
for a function f can be defined as

Iαf (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds, t > 

provided the right-hand side is pointwise defined on [,∞), where � is the gamma func-
tion.

Definition . (see [–]) The Caputo derivative of order α with the lower limit zero for
a function f can be written as

cDαf (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α+–n

ds = In–αf (n)(t), t > , ≤ n –  < α < n.

If f is an abstract function with values in X, then the integrals appearing in the above
definitions are taken in Bochner’s sense.

The operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y satisfy the following hypothe-
ses:
(H) A and E are closed linear operators,
(H) D(E)⊂D(A) and E is bijective,
(H) E– : Y →D(E) is continuous.
The hypotheses H, H and the closed graph theorem imply the boundedness of the

linear operator AE– : Y → Y .
(H) For each t ∈ [,a] and for some λ ∈ ρ(–AE–), the resolvent set of –AE–, the re-

solvent R(λ, –AE–) is a compact operator.

Lemma . [] Let S(t) be a uniformly continuous semigroup. If the resolvent set R(λ;A)
of A is compact for every λ ∈ ρ(A), then S(t) is a compact semigroup.
From the above fact, –AE– generates a compact semigroup {T(t), t ≥ } in Y , which

means that there exists M >  such that

max
t∈J

∥∥T(t)∥∥ ≤ M. (.)

Definition . The system (.) is said to be controllable on the interval J if for every
x,x ∈ X, there exists a control u ∈ L(J ,U) such that the solution x(·) of (.) satisfies
x(a) = x.
(H) The linear operatorW from U into X defined by

Wu =
∫ a


E–(a – s)α–Tα(a – s)Bu(s)ds

has an inverse bounded operator W– which takes values in L(J ,U)/kerW , where the
kernel space of W is defined by kerW = {x ∈ L(J ,U) : Wx = }, B is a bounded linear
operator and Tα(t) is defined later.

(H) The function f satisfies the following two conditions:
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(i) For each t ∈ J , the function f (t, ·) : X → Y is continuous, and for each x ∈ X , the
function f (·,x) : J → Y is strongly measurable.

(ii) For each positive number k ∈N , there is a positive function gk(·) : [,a]→ R+ such
that

sup
|x|≤k

∣∣f (t,x)∣∣ ≤ gk(t),

the function s→ (t – s)–αgk(s) ∈ L([, t],R+), and there exists a β >  such that

lim
k→∞

inf

∫ t
 (t – s)–αgk(s)ds

k
= β <∞, t ∈ [,a].

(H) For each (t, s) ∈ J × J , the function H(t, s, ·) : X → X is continuous, and for each
x ∈ X, the function H(·, ·,x) : J × J → X is strongly measurable.
(H) The function g satisfies the following two conditions:
(i) For each (t, s,x) ∈ J × J ×X , the function g(t, s, ·, ·) : X ×X → Y is continuous, and

for each x ∈ X , H ∈ X , the function g(·,x, y) : J × J → Y is strongly measurable.
(ii) For each positive number k ∈N , there is a positive function hk(·) : [,a]→ R+ such

that

sup
|x|≤k

∣∣∣∣
∫ t


g
(
t, s,x,

∫ s


H(s, τ ,x)dτ

)
ds

∣∣∣∣ ≤ hk(t),

the function s→ (t – s)–αhk(s) ∈ L([, t],R+), and there exists a γ >  such that

lim
k→∞

inf

∫ t
 (t – s)–αhk(s)ds

k
= γ <∞, t ∈ [,a].

According to [, ], a solution of equation (.) can be represented by

x(t) = E–Sα(t)Ex +
∫ t


(t – s)α–Tα(t – s)E–f

(
s,x(s)

)
ds

+
∫ t


(t – s)α–E–Tα(t – s)Bu(s)ds

+
∫ t


(t – s)α–E–Tα(t – s)

{∫ s


g
(
s, τ ,x(τ ),R(τ )

)
dτ

}
ds, t ∈ J , (.)

where

R(τ ) =
∫ τ


H

(
τ ,η,x(η)

)
dη, Sα(t)x =

∫ ∞


ξα(θ )T

(
tαθ

)
xdθ ,

Tα(t)x = α

∫ ∞


θξα(θ )T

(
tαθ

)
xdθ

with ξα being a probability density function defined on (,∞), that is, ξα(θ )≥ , θ ∈ (,∞)
and

∫ ∞
 ξα(θ )dθ = .

Remark
∫ ∞
 θξα(θ )dθ = 

�(+α) .
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Definition . By a mild solution of the problem (.), we mean that the function x ∈
C(J ,X) satisfies the integral equation (.).

Lemma . (see []) The operators Sα(t) and Tα(t) have the following properties:
(I) For any fixed x ∈ X , ‖Sα(t)x‖ ≤ M‖x‖, ‖Tα(t)x‖ ≤ αM

�(α+)‖x‖;
(II) {Sα(t), t ≥ } and {Tα(t), t ≥ } are strongly continuous;
(III) For every t > , Sα(t) and Tα(t) are also compact operators if T(t), t >  is compact.

3 Controllability result
In this section, we present and prove our main result.

Theorem. If the assumptions (H)-(H) are satisfied, then the system (.) is controllable
on J provided that αM‖E–‖

�(α+) (β + γ )[ + aαM‖E–‖
�(α+) ‖B‖‖W–‖] < .

Proof Using the assumption (H), for an arbitrary function x(·), define the control

u(t) =W–
[
x – E–Sα(t)Ex –

∫ a


(a – s)α–E–Tα(a – s)f

(
s,x(s)

)
ds

–
∫ a


(a – s)α–E–Tα(a – s)

{∫ s


g
(
s, τ ,x(τ ),R(τ )

)
dτ

}
ds

]
(t).

It shall now be shown that when using this control, the operator Q defined by

(Qx)(t) = E–Sα(t)Ex +
∫ t


(t – s)α–E–Tα(t – s)f

(
s,x(s)

)
ds

+
∫ t


(t – s)α–E–Tα(t – s)Bu(s)ds

+
∫ t


(t – s)α–E–Tα(t – s)

{∫ s


g
(
s, τ ,x(τ ),R(τ )

)
dτ

}
ds

from C(J ,X) into itself for each x ∈ C = C(J ,X) has a fixed point. This fixed point is then a
solution of equation (.).

(Qx)(a) = E–Sα(a)Ex +
∫ a


(a – s)α–E–Tα(a – s)f

(
s,x(s)

)
ds

+
∫ a


(a – s)α–E–Tα(a – s)BW–

×
[
x – E–Sα(a)Ex –

∫ a


(a – τ )α–E–Tα(a – τ )f

(
τ ,x(τ )

)
dτ

–
∫ a


(a – τ )α–E–Tα(a – τ )

{∫ τ


g
(
τ ,η,x(η),R(η)

)
dη

}
dτ

]
(s)ds

+ α

∫ a


(a – s)α– E–Tα(a – s)

{∫ s


g
(
s, τ ,x(τ ),R(τ )

)
dτ

}
ds = x.

It can be easily verified that Qmaps C into itself continuously.
For each positive number k > , let Bk = {x ∈ C : x() = x,‖x(t)‖ ≤ k, t ∈ J}. Obviously,

Bk is clearly a bounded, closed, convex subset in C. We claim that there exists a positive

http://www.advancesindifferenceequations.com/content/2012/1/167
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number k such that QBk ⊂ Bk . If this is not true, then for each positive number k, there
exists a function xk ∈ Bk with Qxk 	∈ Bk , that is, ‖Qxk‖ ≥ k, then  ≤ 

k ‖Qxk‖, and so

 ≤ lim
k→∞

k–‖Qxk‖.

However,

lim
k→∞

k–‖Qxk‖

≤ lim
k→∞

k–
{
M

∥∥E–∥∥‖E‖‖x‖ + αM‖E–‖
�(α + )

∫ a


(a – s)α–gk(s)ds

+
αM‖E–‖‖B‖‖W–‖

�(α + )

∫ a


(a – s)α–

[
‖x‖ +M

∥∥E–∥∥‖E‖‖x‖

+
αM‖E–‖
�(α + )

∫ a


(a – τ )α–gk(τ )dτ

+
αM‖E–‖
�(α + )

∫ a


(a – τ )α–hk(τ )dτ

]
ds +

αM‖E–‖
�(α + )

∫ a


(a – s)α–hk(s)ds

}

≤ αM‖E–‖
�(α + )

β +
αaαM(‖E–‖)
(�(α + ))

‖B‖∥∥W–∥∥(β + γ ) +
αM‖E–‖
�(α + )

γ

=
αM‖E–‖
�(α + )

(β + γ )
[
 +

aαM‖E–‖
�(α + )

‖B‖∥∥W–∥∥]
< ,

a contradiction.Hence,QBk ⊂ Bk for some positive number k. In fact, the operatorQmaps
Bk into a compact subset of Bk . To prove this, we first show that the set Vk(t) = {(Qx)(t) :
x ∈ Bk} is a precompact in X; for every t ∈ J : This is trivial for t = , since Vk() = {x}. Let
t,  < t ≤ a; be fixed. For  < ε < t and arbitrary δ > ; take

(
Qε,δx

)
(t) =

∫ ∞

δ

ξα(θ )E–T
(
tαθ

)
Ex dθ

+ α

∫ t–ε



∫ ∞

δ

θ (t – s)α–ξα(θ )E–T
(
(t – s)αθ

)
f
(
s,x(s)

)
dθ ds

+ α

∫ t–ε



∫ ∞

δ

θ (t – s)α–ξα(θ )E–T
(
(t – s)αθ

)

× BW–
[
x –

∫ ∞


ξα(θ )E–T

(
aαθ

)
Ex dθ

– α

∫ a



∫ ∞


θ (a – τ )α–ξα(θ )E–T

(
(a – τ )αθ

)
f
(
τ ,x(τ )

)
dθ dτ

– α

∫ a



∫ ∞


θ (a – τ )α–ξα(θ )E–T

(
(a – τ )αθ

)

×
{∫ τ


g
(
τ ,η,x(η),R(η)

)
dη

}
dθ dτ

]
(s)dθ ds

+ α

∫ t–ε



∫ ∞

δ

θ (t – s)α–ξα(θ )E–T
(
(t – s)αθ

)

×
{∫ s


g
(
s, τ ,x(τ ),R(τ )

)
dτ

}
dθ ds
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= T
(
εαδ

)∫ ∞

δ

ξα(θ )E–T
(
tαθ – εαδ

)
Ex dθ

+ T
(
εαδ

)
α

∫ t–ε



∫ ∞

δ

θ (t – s)α–ξα(θ )E–T
(
(t – s)αθ – εαδ

)
f
(
s,x(s)

)
dθ ds

+ T
(
εαδ

)
α

∫ t–ε



∫ ∞

δ

θ (t – s)α–ξα(θ )E–T
(
(t – s)αθ – εαδ

)

× BW–
[
x –

∫ ∞


ξα(θ )E–T

(
aαθ

)
Ex dθ

– α

∫ a



∫ ∞


θ (a – τ )α–ξα(θ )E–T

(
(a – τ )αθ

)
f
(
τ ,x(τ )

)
dθ dτ

–
∫ a



∫ ∞


θ (a – τ )α–ξα(θ )E–T

(
(a – τ )αθ

)

×
{∫ τ


g
(
τ ,η,x(η),R(η)

)
dη

}
dθ dτ

]
(s)dθ ds

+ T
(
εαδ

)
α

∫ t–ε



∫ ∞

δ

θ (t – s)α–ξα(θ )E–T
(
(t – s)αθ – εαδ

)

×
{∫ s


g
(
s, τ ,x(τ ),R(τ )

)
dτ

}
dθ ds.

Since u(s) is bounded and T(εαδ), εαδ >  is a compact operator, then the set V ε,δ
k (t) =

{(Qε,δx)(t) : x ∈ Bk} is a precompact set in X for every ε,  < ε < t, and for all δ > . Also,
for x ∈ Bk , using the defined control u(t) yields

∥∥(Qx)(t) –
(
Qε,δx

)
(t)

∥∥
≤

∥∥∥∥
∫ δ


ξα(θ )E–T

(
tαθ

)
Ex dθ

∥∥∥∥
+ α

∥∥∥∥
∫ t

t–ε

∫ ∞

δ

θ (t – s)α–ξα(θ )E–T
(
(t – s)αθ

)
f
(
s,x(s)

)
dθ ds

∥∥∥∥
+ α

∥∥∥∥
∫ t

t–ε

∫ ∞

δ

θ (t – s)α–ξα(θ )E–T
(
(t – s)αθ

)

× BW–
[
x –

∫ ∞


ξα(θ )E–T

(
aαθ

)
Ex dθ

– α

∫ a



∫ ∞


θ (a – τ )α–ξα(θ )E–T

(
(a – τ )αθ

)
f
(
τ ,x(τ )

)
dθ dτ

– α

∫ a



∫ ∞


θ (a – τ )α–ξα(θ )E–T

(
(a – τ )αθ

)

×
{∫ τ


g
(
τ ,η,x(η),R(η)

)
dη

}
dθ dτ

]
(s)dθ ds

∥∥∥∥
+ α

∥∥∥∥
∫ t

t–ε

∫ ∞

δ

θ (t – s)α–ξα(θ )E–T
(
(t – s)αθ

){∫ s


g
(
s, τ ,x(τ ),R(τ )

)
dτ

}
dθ ds

∥∥∥∥
+ α

∥∥∥∥
∫ t



∫ δ


θ (t – s)α–ξα(θ )E–T

(
(t – s)αθ

)
f
(
s,x(s)

)
dθ ds

∥∥∥∥
+ α

∥∥∥∥
∫ t



∫ δ


θ (t – s)α–ξα(θ )E–T

(
(t – s)αθ

)

http://www.advancesindifferenceequations.com/content/2012/1/167


Ahmed Advances in Difference Equations 2012, 2012:167 Page 7 of 10
http://www.advancesindifferenceequations.com/content/2012/1/167

× BW–
[
x –

∫ ∞


ξα(θ )E–T

(
aαθ

)
Ex dθ

– α

∫ a



∫ ∞


θ (a – τ )α–ξα(θ )E–T

(
(a – τ )αθ

)
f
(
τ ,x(τ )

)
dθ dτ

– α

∫ a



∫ ∞


θ (a – τ )α–ξα(θ )E–T

(
(a – τ )αθ

)

×
{∫ τ


g
(
τ ,η,x(η),R(η)

)
dη

}
dθ dτ

]
(s)dθ ds

∥∥∥∥
+ α

∥∥∥∥
∫ t



∫ δ


θ (t – s)α–ξα(θ )E–T

(
(t – s)αθ

){∫ s


g
(
s, τ ,x(τ ),R(τ )

)
dτ

}
dθ ds

∥∥∥∥
≤ M

∥∥E–∥∥‖E‖‖x‖
∫ δ


ξα(θ )dθ

+ αM
∥∥E–∥∥(∫ t

t–ε

(t – s)α–gk(s)ds
)(∫ ∞

δ

θξα(θ )dθ

)

+ αM
∥∥E–∥∥‖B‖∥∥W–∥∥∫ t

t–ε

(t – s)α–
[
‖x‖ +M

∥∥E–∥∥‖x‖

+
α

�(α + )
M

∥∥E–∥∥∫ a


(a – τ )α–gk(τ )dτ

+
α

�(α + )
M

∥∥E–∥∥∫ a


(a – τ )α–hk(τ )dτ

]
(s)ds

(∫ ∞

δ

θξα(θ )dθ

)

+ αM
∥∥E–∥∥(∫ t

t–ε

(t – s)α–hk(s)ds
)(∫ ∞

δ

θξα(θ )dθ

)

+ αM
∥∥E–∥∥(∫ t


(t – s)α–gk(s)ds

)(∫ δ


θξα(θ )dθ

)

+ αM
∥∥E–∥∥‖B‖∥∥W–∥∥∫ t


(t – s)α–

[
‖x‖ +M

∥∥E–∥∥‖x‖

+
α

�(α + )
M

∥∥E–∥∥∫ a


(a – τ )α–gk(τ )dτ

+
α

�(α + )
M

∥∥E–∥∥∫ a


(a – τ )α–hk(τ )dτ

]
(s)ds

(∫ δ


θξα(θ )dθ

)

+ αM
∥∥E–∥∥(∫ t


(t – s)α–hk(s)ds

)(∫ δ


θξα(θ )dθ

)
.

Therefore, as ε → + and δ → +, there are precompact sets arbitrary close to the setVk(t)
and so Vk(t) is precompact in X.
Next, we show that QBk = {Qx : x ∈ Bk} is an equicontinuous family of functions.
Let x ∈ Bk and t, τ ∈ J such that  < t < τ , then

∥∥(Qx)(t) – (Qx)(τ )
∥∥

≤ ∥∥T(
tαθ

)
– T

(
ταθ

)∥∥∥∥E–∥∥‖E‖‖x‖

+
α‖E–‖
�(α + )

∫ t



∥∥(t – s)–αT
(
(t – s)αθ

)
– (τ – s)–αT

(
(τ – s)αθ

)∥∥gk(s)ds

+
αM‖E–‖
�(α + )

∫ τ

t
(τ – s)–αgk(s)ds

http://www.advancesindifferenceequations.com/content/2012/1/167
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+
α

�(α + )

∫ t



∥∥(t – s)–αT
(
(t – s)αθ

)
– (τ – s)–αT

(
(τ – s)αθ

)∥∥∥∥E–∥∥‖B‖∥∥W–∥∥

×
[
‖x‖ +

∥∥E–∥∥M‖‖E‖‖x‖ + αM‖E–‖
�(α + )

∫ a


(a – τ )–αgk(τ )dτ

+
αM‖E–‖
�(α + )

∫ a


(a – τ )–αhk(τ )dτ

]
(s)ds

+
αM

�(α + )

∫ τ

t
(τ – s)–α

∥∥E–∥∥‖B‖∥∥W–∥∥[
‖x‖ +

∥∥E–∥∥M‖E‖‖x‖

+
αM‖E–‖
�(α + )

∫ a


(a – τ )–αgk(τ )dτ

+
αM‖E–‖
�(α + )

∫ a


(a – τ )–αhk(τ )dτ

]
(s)ds

+
α‖E–‖
�(α + )

∫ t



∥∥(t – s)–αT
(
(t – s)αθ

)
– (τ – s)–αT

(
(τ – s)αθ

)∥∥hk(s)ds

+
αM‖E–‖
�(α + )

∫ τ

t
(τ – s)–αhk(s)ds.

Now, T(t) is continuous in the uniform operator topology for t >  since T(t) is com-
pact, and the right-hand side of the above inequality tends to zero as t → τ . Thus, QBk is
both equicontinuous and bounded. By the Arzela-Ascoli theorem, QBk is precompact in
C(J ,X). Hence, Q is a completely continuous operator on C(J ,X).
From the Schauder fixed-point theorem, Q has a fixed point in Bk . Any fixed point of

Q is a mild solution of (.) on J satisfying (Qx)(t) = x(t) ∈ X. Thus, the system (.) is
controllable on J . �

4 Example
In this section, we present an example to our abstract results.
We consider the fractional integro-partial differential equation in the form

c∂α
t
(
z(t,x) – zxx(t,x)

)
– zxx(t,x)

= Bu +μ
(
t, zxx(t,x)

)

+
∫ t


μ

(
t, s, zxx(s,x),

∫ s


μ

(
s, τ , zxx(τ ,x)

)
dτ

)
ds,  ≤ x ≤ π , t ∈ J , (.)

z(t, ) = z(t,π ) = , t ∈ J ,

z(,x) = z(x), x ∈ [,π ],

where c∂α
t is the Caputo fractional partial derivative of order  < α < .

Take X = Y = L[,π ] and define the operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X →
Y by Az = –zxx and Ez = z – zxx, where each domain D(A) and D(E) is given by {z ∈ X :
z, zx are absolutely continuous, zxx ∈ X, z() = z(π ) = }.
Then A and E can be written respectively as []

Az =
∞∑
n=

n(z, zn)zn, z ∈D(A),
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Ez =
∞∑
n=

(
 + n

)
(z, zn)zn, z ∈D(E),

where zn(x) =
√
/π sinnx, n = , , . . . , is the orthonormal set of eigenvectors of A and

(z, zn) is the L inner product. Moreover, for z ∈ X, we get

E–z =
∞∑
n=


 + n

(z, zn)zn,

–AE–z =
∞∑
n=

–n

 + n
(z, zn)zn,

T(t)z =
∞∑
n=

e
–n

(+n)
t(z, zn)zn.

We assume that
(A): The operator B :U → Y , with U ⊂ J , is a bounded linear operator.
(A): The linear operatorW :U → X defined by

Wu =
∫ a


E–(a – s)α–Tα(a – s)Bu(s)ds

has an inverse bounded operator W– which takes values in L(J ,U)/kerW , where the
kernel space of W is defined by kerW = {x ∈ L(J ,U) : Wx = }, B is a bounded linear
operator.
(A): The nonlinear operator μ : J ×X → Y satisfies the following three conditions:
(i) For each t ∈ J , μ(t, z) is continuous.
(ii) For each z ∈ X , μ(t, z) is measurable.
(iii) There is a constant ν ( < ν < ) and a function h(·) : [,a] → R+ such that for all

(t, z) ∈ J ×X ,

∥∥μ(t, z)
∥∥ ≤ h(t)|z|ν .

(A): The nonlinear operator μ : J × J ×X → X satisfies the following two conditions:
(i) For each (t, s) ∈ J × J , μ(t, s, z) is continuous.
(ii) For each z ∈ X , μ(t, s, z) is measurable.
(A): The nonlinear operator μ : J × J × X × X → Y satisfies the following three con-

ditions:
(i) For each (t, s, z) ∈ J × J ×X , μ(t, s, z) is continuous.
(ii) For each z ∈ X , μ(t, s, z) is measurable.
(iii) There is a constant ν ( < ν < ) and a function g(·) : [,a]→ R+ such that for all

(t, s, z, y) ∈ J × J ×X ×X ,

∥∥∥∥
∫ t


μ

(
t, s, z,

∫ s


μ(s, τ , z)dτ

)
ds

∥∥∥∥ ≤ g(t)|z|ν .

Define an operator f : J ×X → Y by

f (t, z)(x) = μ
(
t, zxx(x)

)
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and let

H(t, s, z)(x) = μ
(
t, s, zxx(x)

)
, (t, s, z) ∈ J × J ×X,

g
(
t, s, z,

∫ s


H(s, τ , z)dτ

)
(x) = μ

(
t, s, zxx,

∫ s


μ

(
s, τ , zxx(x)

)
dτ

)
, x ∈ [,π ].

Then the problem (.) can be formulated abstractly as:

cDα
(
Ez(t)

)
+Az(t)

= Bu(t) + f
(
t, z(t)

)
+

∫ t


g
(
t, s, z,

∫ s


H

(
s, τ , z(τ )

)
dτ

)
ds, t ∈ J , z() = z.

It is easy to see that –AE– generates a uniformly continuous semigroup {S(t)}t≥ on Y
which is compact, and (.) is satisfied. Also, the operator f satisfies condition (H) and
the operator H and g satisfy (H) and (H). Also all the conditions of Theorem . are
satisfied. Hence, the equation (.) is controllable on J .
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