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Abstract

In this paper, by using compact semigroups and the Schauder fixed-point theorem,
we study the sufficient conditions for controllability of Sobolev type fractional
integro-differential systems in a Banach space. An example is provided to illustrate the
obtained results.
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1 Introduction
A Sobolev-type equation appears in a variety of physical problems such as flow of fluids
through fissured rocks, thermodynamics and propagation of long waves of small ampli-
tude (see [1-3]). Recently, there has been an increasing interest in studying the problem of
controllability of Sobolev type integro-differential systems. Balachandran and Dauer [4]
studied the controllability of Sobolev type integro-differential systems in Banach spaces.
Balachandran and Sakthivel [5] studied the controllability of Sobolev type semilinear
integro-differential systems in Banach spaces. Balachandran, Anandhi and Dauer [6] stud-
ied the boundary controllability of Sobolev type abstract nonlinear integro-differential
systems.

In this paper, we study the controllability of Sobolev type fractional integro-differential
systems in Banach spaces in the following form:

D* (Ex(t)) + Ax(t) = Bu(z) + f (£,x(t)) + /(fg(t, s, x(s), /OSH(S, 7,%(7)) d‘L’> ds,

te]=1[0,al,a>0,x0) = xo, 1.1)

where E and A are linear operators with domain contained in a Banach space X and ranges
contained in a Banach space Y. The control function u(-) is in L2(J, U), a Banach space of
admissible control functions, with U as a Banach space. B is a bounded linear operator
from U into Y. The nonlinear operators f € C(J x X,Y),H e C(J xJ x X, X) and g € C(J x
J x X x X,Y) are all uniformly bounded continuous operators. The fractional derivative
‘D*, 0 <« <1 is understood in the Caputo sense.

2 Preliminaries
In this section, we introduce preliminary facts which are used throughout this paper.
© 2012 Ahmed; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
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Definition 2.1 (see [7-9]) The fractional integral of order « > 0 with the lower limit zero
for a function f can be defined as

]af(t)zL t&

ds, t>0
F@) Jo t-sp=™ 7

provided the right-hand side is pointwise defined on [0, 00), where I" is the gamma func-
tion.

Definition 2.2 (see [7-9]) The Caputo derivative of order o with the lower limit zero for
a function f can be written as

S AALC

Frn-a)Jy (&—s)xln

Df(t) = ds=1I"°f"(t), t>0,0<nm-l<a<n.
If f is an abstract function with values in X, then the integrals appearing in the above
definitions are taken in Bochner’s sense.

The operators A : D(A) C X — Y and E: D(E) C X — Y satisfy the following hypothe-
ses:

(H1) A and E are closed linear operators,

(H2) D(E) C D(A) and E is bijective,

(H3) E™': Y — D(E) is continuous.

The hypotheses H;, H, and the closed graph theorem imply the boundedness of the
linear operator AE™!: Y — Y.

(Hy) For each t € [0,4] and for some A € p(~AE™!), the resolvent set of —AE~!, the re-
solvent R(A,—AE™') is a compact operator.

Lemma 2.1 [10] Let S(t) be a uniformly continuous semigroup. If the resolvent set R(1;A)
of A is compact for every A € p(A), then S(t) is a compact semigroup.

From the above fact, —AE™! generates a compact semigroup {T(t),t > 0} in Y, which
means that there exists M > 1 such that

Htla]X” T(t) H <M. (2.1)

Definition 2.3 The system (1.1) is said to be controllable on the interval J if for every
x0,%1 € X, there exists a control u € L?(J, U) such that the solution x(-) of (1.1) satisfies
x(a) = x;.

(Hs) The linear operator W from U into X defined by

Wu = /a EYa - )T, (a - s)Bu(s)ds
0

has an inverse bounded operator W~ which takes values in L?(J, 1)/ ker W, where the
kernel space of W is defined by ker W = {x € L2(J,U) : Wx = 0}, B is a bounded linear
operator and Ty (¢) is defined later.

(He) The function f satisfies the following two conditions:
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(i) For each t €], the function f(t,-) : X — Y is continuous, and for each x € X, the
function f(-,x) : ] — Y is strongly measurable.

(i) For each positive number k € N, there is a positive function g (-) : [0,a] — R* such
that

sup |f (¢,%)| < g(2),

x| <k

the function s — (£ — s)1~%gi(s) € L}([0,¢], R*), and there exists a 8 > 0 such that

lim ing 00 =@ ds

k— 00 k

=B<oo, tel[0,al.

(H7) For each (t,s) € J x J, the function H(t,s,-) : X — X is continuous, and for each
x € X, the function H(-,-,x) : ] x ] = X is strongly measurable.
(Hg) The function g satisfies the following two conditions:
(i) For each (t,s,x) € ] x J x X, the function g(¢,s,-,-) : X x X — Y is continuous, and
for each x € X, H € X, the function g(-,x,) : J X ] = Y is strongly measurable.
(ii) For each positive number k € N, there is a positive function /(-) : [0,a] — R* such

that
t s
/g(t,s,x,/ H(s,r,x)dt)ds
0 0

the function s — (¢ — s)1"*M(s) € L}([0,¢], R*), and there exists a y > 0 such that

sup < (),

x| <k

lim ing 00 =) he(s) ds

k— 00 k

=y<oo, tel0,al.

According to [11, 12], a solution of equation (1.1) can be represented by

x(t) = E71S,(8)Exo + /t(t —8)* LT, (¢t - s)Eflf(s,x(s)) ds
0
+ /t(t — ) LEIT, (¢ — s)Bu(s) ds
0
N /t(t — ) E T, (¢ - s){/sg(s, 7,%(1),R(1)) dr} ds, te], (2.2)
0 0
where
R@) = [ Hensw)dn  S.0x= [ &@T(0)xdo,
0 0
T,()x=a f ” 0, (0)T (£6)x do
0

with &, being a probability density function defined on (0, 00), that is, £,(9) > 0, 6 € (0, c0)
and [, &(0)do =1.

Remark [;°0£,(0)d0 = ——

rl+a)*
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Definition 2.4 By a mild solution of the problem (1.1), we mean that the function x €
C(J, X) satisfies the integral equation (2.2).

Lemma 2.2 (see [11]) The operators S, (t) and T,(t) have the following properties:
(1) For any fixed x € X, [|Sa(t)xl] < Mllx], | Tu(®)x]] < (25 1]l
(IT) {S4(2),t >0} and {T,(2),t = 0} are strongly continuous;

(III) Foreveryt >0, S,(t) and T,(t) are also compact operators if T(¢), t > 0 is compact.

3 Controllability result
In this section, we present and prove our main result.

Theorem 3.1 Ifthe assumptions (H,)-(Hg) are satisfied, then the system (1.1) is controllable

, —1 o —1 _
on ] provided that “FL=L1 (B + y)[1+ “FLLIBIIW ] < 1.

Proof Using the assumption (Hs), for an arbitrary function x(-), define the control
a
u(t) = wt |:x1 — E71S,(8)Exo — / (a-s)E1 T (a - s)f(s,x(s)) ds
0
_ / (a—s)"E1T,(a - 5){/ g(s, ‘L',x(‘[),R(‘L')) dr} ds] (¢).
0 0
It shall now be shown that when using this control, the operator Q defined by
t
(Qx)(t) = ET1S,(£)Exo + / (¢ —s)* YE1 T, (¢ - S)f(s,x(s)) ds
0
t
+ / (¢ —)*LEYT, (¢ — s)Bu(s) ds
0
t s
+ / (t—8)* TE T, (¢ - s){/ g(s, t,x(r),R(r)) dr} ds
0 0

from C(J, X) into itself for each x € C = C(J, X) has a fixed point. This fixed point is then a

solution of equation (2.2).
Q@) = E'S.@Ex0 + [ (a=5F B Tala (5,409
+ /0 a(a -8)*E7 T, (a - s)BW™!
X |:x1 —E'S,(a)Exg - /Oa(a -0)* " E T, (a - 1)f (v, 4(0)) dr
- -0 E T (a - r){ [ o(em (), Rn) dn} dr}@) ds
+ao /Oa(a —8)* P E Ty(a—s) { /Osg(s, 7,%(1),R(1)) dl'} ds = x1.
It can be easily verified that Q maps C into itself continuously.

For each positive number k > 0, let By = {x € C: %(0) = xo, ||x(t)|| < k,¢ € J}. Obviously,
By is clearly a bounded, closed, convex subset in C. We claim that there exists a positive

Page 4 of 10
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number k such that QB C B. If this is not true, then for each positive number k, there
exists a function xj € By with Qx; & By, that is, || Qxk|| > k, then1 < %llekll, and so

1 < lim &7 Q.
k—o00
However,
lim &7 Qu |l
k—o0
o aMuE 1
< lim k {MHEIHIIEIIII oll + / (a-

aMIEIBIIW-

1
" / (a- “1[||x1||+MHE1||||E||||xo||

o +1)
OlMIIE_III o
F(oz+1) / (a—1) 1gk(r)dr
+ i a0 () de | d “M”E 1" ( a9 (s) ds
ey |
aM|E7| aa®M>*(|[E7H))? 1 aM|IE7|
ST+ ' T Ta+D)y 181w (e T(o+1)
M| E™L a®M)| | E!
- %(ﬂ +y)|:1+ %nsn”w 1”} <1,

a contradiction. Hence, QBj C By for some positive number k. In fact, the operator Q maps
By into a compact subset of B. To prove this, we first show that the set Vi (£) = {(Qx)(¢) :
x € By} is a precompact in X; for every ¢ € J: This is trivial for ¢ = 0, since V(0) = {xo}. Let
t,0 <t < a; be fixed. For 0 < € < ¢ and arbitrary § > 0; take

(Q“°x)(t) = /B ” £,(0)E™' T (t*0)Exo do
+o /o - /6 N 0t — )&, (O)E T((t - 9)°0)f (5,%(5)) 46 ds
ra /0 . /6 " 0t - e OET((t - 5)70)
x BW! [x1 - /0 ” £,(0)E™' T (a“0)Exo do
—a/Oa/Oooe(a— T)* G (O)E T ((a - 1)*0)f (1, %(1)) db dv
_a/Oa/Ome(a_f)“*lga(e)EflT((a—r)“e)
x {fotg(r,n,x(n),R(n)) dn}de dr](s) do ds
+o /0 - /E ooe(t—s)‘*-l.s;,(e)E-lT((t—s)“e)

X {/Sg(s,t,x(t),R(t)) d‘t}d@ ds
0
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= T(e*5) / N E,(0)E' T (£"0 — €*8)Exo do
§
+T(*8)ex / o / Oo6‘(t—s)“’léa(O)E’lT((t—s)“G —€“8)f (s,x(s)) d6 ds
0 8
T (%8 B ooe — ) e (O)ET((t—5)%0 — €%8
+(e )oz/o /5 (t—s)“&,(0) ((ts) e)
x BW™! [x1 - / N £,(0)ET' T (a“0)Exo do
0
_a/ﬂ /Ooe(a—r)“‘léa(O)E_lT((a—r)"‘@)f(t,x(r)) do dt
0 0
—/a/we(a— 1) & O)E T ((a-1)*0)
0 0
X {/Tg(t,n,x(n),R(n)) dn}d@ dr](s)d@ ds
0
+T(*8)ax fo H /6 OOG(t—s)“’léa(O)E’lT((t—s)“G - €3)

X {/Sg(s, r,x(t),R(r)) dt } dé ds.
0

Since u(s) is bounded and T'(¢*$), €*§ > 0 is a compact operator, then the set V,f";(t) =
{(Q°%x)(¢t) : x € By} is a precompact set in X for every €, 0 < € < ¢, and for all § > 0. Also,
for x € By, using the defined control u(¢) yields

| (Qu)(®) - (Q“*x) (0|

=

)
/ £,(0)ET' T (£*0)Exo do “
0

+ o

/t /OO 0t —)* & (O)E T ((t - 9)°0)f (s,%(s)) 40 ds
t—€ J§

+ o

/ t / oo9(t—s)“‘léa(O)E‘lT((t—s)“G)
t—e J§
x BW™ |:x1 - / N £,(0)E™' T (a®0)Exo db
0
-« /ﬂ /00 0(a —1)% g, (G)E_IT((a — r)“@)f(r,x(t)) dodr
0 0

_ ¢ * _ el -1 _ )\
afofo 0(a—1)" "€ (0)E" T ((a - 1)"0)

X {/Tg(r,n,x(n),R(n)) dn} do dri|(s) do ds
0

ta /t:/800g(t—s)a_lga(e)g-lT((t—s)ag){/OSg(s,r,x(t),R(r))dr}deds

t s
+o / / 0(t —s)* e, (9)E? T((t - s)“@)f(s,x(s)) do ds
0o Jo

/t /8 9 _ a-1 —1 _
+ o (t—s5)* &, (0)E T((t s) 9)
o Jo
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S O O U
0
_a/“/009(61—r)a—lga(G)E‘lT((a—z)d@)f(r,x(z))dgdt
0 Jo
_ a 009 _ ye-l » 0 E_lT — )%
a/ofo (a—1)""&,(9) ((a-1)"0)

X {/Tg(r,n,x(n),R(n)) dn} do dri|(s) do ds
0

t pé s
o(t —s)° 1€, (Q)EflT((t - s)“@) {/ g(s, r,x(r),R(r)) dt } do ds
0 0

b
< M|EIEl %o f £,(60)do
0

+ aMHE‘l H (/;E (t—s)""gi(s) ds) (/800 0&,(0) d@)

+05M||E'1|||IBIIHW‘1||/ (t—S)“'l[lelll+M||E'1H||xo||

o ay [ a-1
+F(oz+1)MHE ||/0 (a-1) " g(r)dr

el [ “a- r)a-lhk(r)dr}(s) ds( / Ooesa(e)de)
+aM|E™ (/ (¢ = 8)* Ty (s) ds) (/:o 0&,(6) de)
5
+aM|E™ (/ (t-5)""gi(s)d )(/0 esa(e)de)
+aM|E7IBI | W / t(t—s)“*[nxln + M||E™ | [l
M [ a-oa
T+ D) M|ET / - 1) t)dr}(s)ds( fo aega(e)de)
5
+aMHE1H</O (£ —s)* lhk()d)(fo ega(e)de).

Therefore, ase — 0* and § — 07, there are precompact sets arbitrary close to the set V()

and so Vi(t) is precompact in X.
Next, we show that QB = {Qx : x € B} is an equicontinuous family of functions.

Letx € By and £, 7 € J such that 0 < ¢ < 7, then
[(Qx) () — (Qu)(@) |
< | 7(0) - T(0) | |E [ 1EN ol

aIIE I / (£ = )T ((t - 9)%0) = (r =)' T ((x - 9)°0) | g(s) ds

Mo +1)

aMI|IE™|
'« +1)

/ (t - s)l“”gk(s) ds
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s [Nt 51) - - 9T - s0) |12 11w

IMNa +1)

1
[llx1II+HE1HM||||E|||| ol + "E ” / (a-1)" g (r) dr

aM|E™|
Mo +1)
aM
+ S
o +1)
aM|E™|
Mo +1)
aMIE
F(a +1)
OtIIE il
o +1)

OtMIIE‘lllf( S Tue(s) ds

a(a )" n(1) dr:| (s)ds

0

/ (x =)' E|UBI| W [IIMII + |ETM | MIE o]l
(a - )" g (r)dr

/( — )" "hk(r)dr:|(s)ds

/ ||(t— s "‘T((t 5)%0 )—(r—s)l_“T((r—s)"‘@)”hk(s)ds

MNa+1

Now, T(t) is continuous in the uniform operator topology for ¢ > 0 since T'(¢) is com-
pact, and the right-hand side of the above inequality tends to zero as t — t. Thus, QBy is
both equicontinuous and bounded. By the Arzela-Ascoli theorem, QB is precompact in
C(J,X). Hence, Q is a completely continuous operator on C(J, X).

From the Schauder fixed-point theorem, Q has a fixed point in B;. Any fixed point of
Q is a mild solution of (1.1) on J satisfying (Qx)(£) = x(t) € X. Thus, the system (1.1) is
controllable on J. O

4 Example
In this section, we present an example to our abstract results.

We consider the fractional integro-partial differential equation in the form

O (2(t, %) = 2aa(£, %)) — 2 (8, %)

=Bu + 125} (t; Zxx(t: x))

t N
+ / w3 <t, s, zxx(s,x),/ p2(8 75 Zxx (7, %)) dr) ds, 0<x<m,te], (4.1)
0 0
2(t,0)=2(t, 1) =0, te],

2(0,x) = zo(x), «x€]0,m],

where %97 is the Caputo fractional partial derivative of order 0 <« < 1.

Take X = Y = L2[0, ] and define the operators A : D(A) C X — Y and E: D(E) C X —
Y by Az = —z,, and Ez = z — z,,, where each domain D(A) and D(E) is given by {z € X :
z,zy are absolutely continuous, z,, € X,z(0) = z(r) = 0}.

Then A and E can be written respectively as [13]

o0
Az = Z n*(z,2.)z0, z € D(A),
n=1

Page 8 of 10
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o0
Ez= Z(I +1°)(2,24)z0, 2 € D(E),
n=1
where z,(x) = ~/2/wsinnx, n =1,2,..., is the orthonormal set of eigenvectors of A and

(z,2,) is the L? inner product. Moreover, for z € X, we get

=1
—1 _
Ez= Z m(zf Zn)Zn,
n=1
o0 —1’12
—AE2=Y —(z,2,)z,,
Zl @

o0 2
T(t)z = Z ed ' (2,2,)z,.

n=1

We assume that
(A1): The operator B: U — Y, with U C J, is a bounded linear operator.
(A2): The linear operator W : U — X defined by

Wu = /aE’l(a —8)* T, (a - s)Bul(s) ds
0

has an inverse bounded operator W~ which takes values in L2(J, 1/)/ ker W, where the
kernel space of W is defined by ker W = {x € L*(J,U) : Wx = 0}, B is a bounded linear
operator.

(A3): The nonlinear operator u; : / x X — Y satisfies the following three conditions:

(i) Foreach ¢ €], u;(t, z) is continuous.
(if) For each z € X, (¢, z) is measurable.
(iii) There is a constant v (0 < v < 1) and a function /() : [0,4] — R* such that for all
(t,2) e] x X,

|8, 2)| < h(@)lz1".

(A4): The nonlinear operator i, : J x J x X — X satisfies the following two conditions:
(i) Foreach (t,5) €] x J, ua(t,s,z) is continuous.

(if) For each z € X, u,(t,s,z) is measurable.

(As): The nonlinear operator us :J x J X X x X — Y satisfies the following three con-

ditions:

(i) Foreach (¢,5,2z) €] xJ x X, us(t,s,z) is continuous.

(if) For each z € X, us(t,s,z) is measurable.

(iii) There is a constant v (0 < v < 1) and a function g(-) : [0,a] — R* such that for all

ts,zy)e] x ] x X x X,

t S
/ U3 (t,s,z,/ Ua(s, 7,2) dr) ds
0 0

Define an operator f : ] x X — Y by

=g@®)lz".

Ft2)(x) = pa (6 zex ()
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and let

H(t,5,2)(x) = u2(t,8,2(x)),  (t,5,2) €] x ] x X,

g(t,s,z,/ H(S,‘L',Z)(Jll’)(x)ZMg(t,S,Zxx,/ /.Lz(S,T,Zxx(x))dT), xe€[0,m].
0 0

Then the problem (4.1) can be formulated abstractly as:
D (Ez(t)) + Az(?)

= Bu(t) +f(t,z(t)) + /Otg(t,s,z, /OSH(S, ‘C,Z(‘E)) dr) ds, te],z(0)=z.

It is easy to see that —AE™! generates a uniformly continuous semigroup {S(t)};>0 on Y
which is compact, and (2.1) is satisfied. Also, the operator f satisfies condition (Hs) and
the operator H and g satisfy (H7) and (Hg). Also all the conditions of Theorem 3.1 are
satisfied. Hence, the equation (4.1) is controllable on /.
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