Controllability for Sobolev type fractional integro-differential systems in a Banach space

Hamdy M Ahmed*

Correspondence:
Hamdy_17eg@yahoo.com Higher Institute of Engineering El-Shorouk Academy, P.O. Box 3
El-Shorouk City, Cairo, Egypt

Abstract

In this paper, by using compact semigroups and the Schauder fixed-point theorem, we study the sufficient conditions for controllability of Sobolev type fractional integro-differential systems in a Banach space. An example is provided to illustrate the obtained results. MSC: 26A33; 34G20; 93B05 Keywords: fractional calculus; Sobolev type fractional integro-differential systems; controllability; compact semigroup; mild solution; Schauder fixed-point theorem

1 Introduction

A Sobolev-type equation appears in a variety of physical problems such as flow of fluids through fissured rocks, thermodynamics and propagation of long waves of small amplitude (see [1-3]). Recently, there has been an increasing interest in studying the problem of controllability of Sobolev type integro-differential systems. Balachandran and Dauer [4] studied the controllability of Sobolev type integro-differential systems in Banach spaces. Balachandran and Sakthivel [5] studied the controllability of Sobolev type semilinear integro-differential systems in Banach spaces. Balachandran, Anandhi and Dauer [6] studied the boundary controllability of Sobolev type abstract nonlinear integro-differential systems.
In this paper, we study the controllability of Sobolev type fractional integro-differential systems in Banach spaces in the following form:

$$
\begin{align*}
& { }^{c} D^{\alpha}(E x(t))+A x(t)=B u(t)+f(t, x(t))+\int_{0}^{t} g\left(t, s, x(s), \int_{0}^{s} H(s, \tau, x(\tau)) d \tau\right) d s \\
& t \in J=[0, a], a>0, x(0)=x_{0} \tag{1.1}
\end{align*}
$$

where E and A are linear operators with domain contained in a Banach space X and ranges contained in a Banach space Y. The control function $u(\cdot)$ is in $L^{2}(J, U)$, a Banach space of admissible control functions, with U as a Banach space. B is a bounded linear operator from U into Y. The nonlinear operators $f \in C(J \times X, Y), H \in C(J \times J \times X, X)$ and $g \in C(J \times$ $J \times X \times X, Y)$ are all uniformly bounded continuous operators. The fractional derivative ${ }^{c} D^{\alpha}, 0<\alpha<1$ is understood in the Caputo sense.

2 Preliminaries

In this section, we introduce preliminary facts which are used throughout this paper.

[^0]Definition 2.1 (see [7-9]) The fractional integral of order $\alpha>0$ with the lower limit zero for a function f can be defined as

$$
I^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{f(s)}{(t-s)^{1-\alpha}} d s, \quad t>0
$$

provided the right-hand side is pointwise defined on $[0, \infty)$, where Γ is the gamma function.

Definition 2.2 (see [7-9]) The Caputo derivative of order α with the lower limit zero for a function f can be written as

$$
{ }^{c} D^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} \frac{f^{(n)}(s)}{(t-s)^{\alpha+1-n}} d s=I^{n-\alpha} f^{(n)}(t), \quad t>0,0 \leq n-1<\alpha<n .
$$

If f is an abstract function with values in X, then the integrals appearing in the above definitions are taken in Bochner's sense.

The operators $A: D(A) \subset X \rightarrow Y$ and $E: D(E) \subset X \rightarrow Y$ satisfy the following hypotheses:
$\left(H_{1}\right) A$ and E are closed linear operators,
$\left(H_{2}\right) D(E) \subset D(A)$ and E is bijective,
$\left(H_{3}\right) E^{-1}: Y \rightarrow D(E)$ is continuous.
The hypotheses H_{1}, H_{2} and the closed graph theorem imply the boundedness of the linear operator $A E^{-1}: Y \rightarrow Y$.
$\left(H_{4}\right)$ For each $t \in[0, a]$ and for some $\lambda \in \rho\left(-A E^{-1}\right)$, the resolvent set of $-A E^{-1}$, the resolvent $R\left(\lambda,-A E^{-1}\right)$ is a compact operator.

Lemma 2.1 [10] Let $S(t)$ be a uniformly continuous semigroup. If the resolvent set $R(\lambda ; A)$ of A is compact for every $\lambda \in \rho(A)$, then $S(t)$ is a compact semigroup.
From the above fact, $-A E^{-1}$ generates a compact semigroup $\{T(t), t \geq 0\}$ in Y, which means that there exists $M>1$ such that

$$
\begin{equation*}
\max _{t \in J}\|T(t)\| \leq M \tag{2.1}
\end{equation*}
$$

Definition 2.3 The system (1.1) is said to be controllable on the interval J if for every $x_{0}, x_{1} \in X$, there exists a control $u \in L^{2}(J, U)$ such that the solution $x(\cdot)$ of (1.1) satisfies $x(a)=x_{1}$.
$\left(H_{5}\right)$ The linear operator W from U into X defined by

$$
W u=\int_{0}^{a} E^{-1}(a-s)^{\alpha-1} T_{\alpha}(a-s) B u(s) d s
$$

has an inverse bounded operator W^{-1} which takes values in $L^{2}(J, U) / \operatorname{ker} W$, where the kernel space of W is defined by $\operatorname{ker} W=\left\{x \in L^{2}(J, U): W x=0\right\}, B$ is a bounded linear operator and $T_{\alpha}(t)$ is defined later.
$\left(H_{6}\right)$ The function f satisfies the following two conditions:
(i) For each $t \in J$, the function $f(t, \cdot): X \rightarrow Y$ is continuous, and for each $x \in X$, the function $f(\cdot, x): J \rightarrow Y$ is strongly measurable.
(ii) For each positive number $k \in N$, there is a positive function $g_{k}(\cdot):[0, a] \rightarrow R^{+}$such that

$$
\sup _{|x| \leq k}|f(t, x)| \leq g_{k}(t),
$$

the function $s \rightarrow(t-s)^{1-\alpha} g_{k}(s) \in L^{1}\left([0, t], R^{+}\right)$, and there exists a $\beta>0$ such that

$$
\lim _{k \rightarrow \infty} \inf \frac{\int_{0}^{t}(t-s)^{1-\alpha} g_{k}(s) d s}{k}=\beta<\infty, \quad t \in[0, a] .
$$

$\left(H_{7}\right)$ For each $(t, s) \in J \times J$, the function $H(t, s, \cdot): X \rightarrow X$ is continuous, and for each $x \in X$, the function $H(\cdot, \cdot, x): J \times J \rightarrow X$ is strongly measurable.
$\left(H_{8}\right)$ The function g satisfies the following two conditions:
(i) For each $(t, s, x) \in J \times J \times X$, the function $g(t, s, \cdot, \cdot): X \times X \rightarrow Y$ is continuous, and for each $x \in X, H \in X$, the function $g(\cdot, x, y): J \times J \rightarrow Y$ is strongly measurable.
(ii) For each positive number $k \in N$, there is a positive function $h_{k}(\cdot):[0, a] \rightarrow R^{+}$such that

$$
\sup _{|x| \leq k k}\left|\int_{0}^{t} g\left(t, s, x, \int_{0}^{s} H(s, \tau, x) d \tau\right) d s\right| \leq h_{k}(t),
$$

the function $s \rightarrow(t-s)^{1-\alpha} h_{k}(s) \in L^{1}\left([0, t], R^{+}\right)$, and there exists a $\gamma>0$ such that

$$
\lim _{k \rightarrow \infty} \inf \frac{\int_{0}^{t}(t-s)^{1-\alpha} h_{k}(s) d s}{k}=\gamma<\infty, \quad t \in[0, a] .
$$

According to [11, 12], a solution of equation (1.1) can be represented by

$$
\begin{align*}
x(t)= & E^{-1} S_{\alpha}(t) E x_{0}+\int_{0}^{t}(t-s)^{\alpha-1} T_{\alpha}(t-s) E^{-1} f(s, x(s)) d s \\
& +\int_{0}^{t}(t-s)^{\alpha-1} E^{-1} T_{\alpha}(t-s) B u(s) d s \\
& +\int_{0}^{t}(t-s)^{\alpha-1} E^{-1} T_{\alpha}(t-s)\left\{\int_{0}^{s} g(s, \tau, x(\tau), R(\tau)) d \tau\right\} d s, \quad t \in J, \tag{2.2}
\end{align*}
$$

where

$$
\begin{aligned}
& R(\tau)=\int_{0}^{\tau} H(\tau, \eta, x(\eta)) d \eta, \quad S_{\alpha}(t) x=\int_{0}^{\infty} \xi_{\alpha}(\theta) T\left(t^{\alpha} \theta\right) x d \theta, \\
& T_{\alpha}(t) x=\alpha \int_{0}^{\infty} \theta \xi_{\alpha}(\theta) T\left(t^{\alpha} \theta\right) x d \theta
\end{aligned}
$$

with ξ_{α} being a probability density function defined on $(0, \infty)$, that is, $\xi_{\alpha}(\theta) \geq 0, \theta \in(0, \infty)$ and $\int_{0}^{\infty} \xi_{\alpha}(\theta) d \theta=1$.

Remark $\int_{0}^{\infty} \theta \xi_{\alpha}(\theta) d \theta=\frac{1}{\Gamma(1+\alpha)}$.

Definition 2.4 By a mild solution of the problem (1.1), we mean that the function $x \in$ $C(J, X)$ satisfies the integral equation (2.2).

Lemma 2.2 (see [11]) The operators $S_{\alpha}(t)$ and $T_{\alpha}(t)$ have the following properties:
(I) For any fixed $x \in X,\left\|S_{\alpha}(t) x\right\| \leq M\|x\|,\left\|T_{\alpha}(t) x\right\| \leq \frac{\alpha M}{\Gamma(\alpha+1)}\|x\|$;
(II) $\left\{S_{\alpha}(t), t \geq 0\right\}$ and $\left\{T_{\alpha}(t), t \geq 0\right\}$ are strongly continuous;
(III) For every $t>0, S_{\alpha}(t)$ and $T_{\alpha}(t)$ are also compact operators if $T(t), t>0$ is compact.

3 Controllability result

In this section, we present and prove our main result.

Theorem 3.1 If the assumptions $\left(H_{1}\right)-\left(H_{8}\right)$ are satisfied, then the system (1.1) is controllable on J provided that $\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)}(\beta+\gamma)\left[1+\frac{a^{\alpha} M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)}\|B\|\left\|W^{-1}\right\|\right]<1$.

Proof Using the assumption $\left(H_{5}\right)$, for an arbitrary function $x(\cdot)$, define the control

$$
\begin{aligned}
u(t)= & W^{-1}\left[x_{1}-E^{-1} S_{\alpha}(t) E x_{0}-\int_{0}^{a}(a-s)^{\alpha-1} E^{-1} T_{\alpha}(a-s) f(s, x(s)) d s\right. \\
& \left.-\int_{0}^{a}(a-s)^{\alpha-1} E^{-1} T_{\alpha}(a-s)\left\{\int_{0}^{s} g(s, \tau, x(\tau), R(\tau)) d \tau\right\} d s\right](t)
\end{aligned}
$$

It shall now be shown that when using this control, the operator Q defined by

$$
\begin{aligned}
(Q x)(t)= & E^{-1} S_{\alpha}(t) E x_{0}+\int_{0}^{t}(t-s)^{\alpha-1} E^{-1} T_{\alpha}(t-s) f(s, x(s)) d s \\
& +\int_{0}^{t}(t-s)^{\alpha-1} E^{-1} T_{\alpha}(t-s) B u(s) d s \\
& +\int_{0}^{t}(t-s)^{\alpha-1} E^{-1} T_{\alpha}(t-s)\left\{\int_{0}^{s} g(s, \tau, x(\tau), R(\tau)) d \tau\right\} d s
\end{aligned}
$$

from $C(J, X)$ into itself for each $x \in C=C(J, X)$ has a fixed point. This fixed point is then a solution of equation (2.2).

$$
\begin{aligned}
(Q x)(a)= & E^{-1} S_{\alpha}(a) E x_{0}+\int_{0}^{a}(a-s)^{\alpha-1} E^{-1} T_{\alpha}(a-s) f(s, x(s)) d s \\
& +\int_{0}^{a}(a-s)^{\alpha-1} E^{-1} T_{\alpha}(a-s) B W^{-1} \\
& \times\left[x_{1}-E^{-1} S_{\alpha}(a) E x_{0}-\int_{0}^{a}(a-\tau)^{\alpha-1} E^{-1} T_{\alpha}(a-\tau) f(\tau, x(\tau)) d \tau\right. \\
& \left.-\int_{0}^{a}(a-\tau)^{\alpha-1} E^{-1} T_{\alpha}(a-\tau)\left\{\int_{0}^{\tau} g(\tau, \eta, x(\eta), R(\eta)) d \eta\right\} d \tau\right](s) d s \\
& +\alpha \int_{0}^{a}(a-s)^{\alpha-1} E^{-1} T_{\alpha}(a-s)\left\{\int_{0}^{s} g(s, \tau, x(\tau), R(\tau)) d \tau\right\} d s=x_{1} .
\end{aligned}
$$

It can be easily verified that Q maps C into itself continuously.
For each positive number $k>0$, let $B_{k}=\left\{x \in C: x(0)=x_{0},\|x(t)\| \leq k, t \in J\right\}$. Obviously, B_{k} is clearly a bounded, closed, convex subset in C. We claim that there exists a positive
number k such that $Q B_{k} \subset B_{k}$. If this is not true, then for each positive number k, there exists a function $x_{k} \in B_{k}$ with $Q x_{k} \notin B_{k}$, that is, $\left\|Q x_{k}\right\| \geq k$, then $1 \leq \frac{1}{k}\left\|Q x_{k}\right\|$, and so

$$
1 \leq \lim _{k \rightarrow \infty} k^{-1}\left\|Q x_{k}\right\|
$$

However,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} & k^{-1}\left\|Q x_{k}\right\| \\
\leq & \lim _{k \rightarrow \infty} k^{-1}\left\{M\left\|E^{-1}\right\|\|E\|\left\|x_{0}\right\|+\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{a}(a-s)^{\alpha-1} g_{k}(s) d s\right. \\
& +\frac{\alpha M\left\|E^{-1}\right\|\|B\|\left\|W^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{a}(a-s)^{\alpha-1}\left[\left\|x_{1}\right\|+M\left\|E^{-1}\right\|\|E\|\left\|x_{0}\right\|\right. \\
& +\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{a}(a-\tau)^{\alpha-1} g_{k}(\tau) d \tau \\
& \left.\left.+\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{a}(a-\tau)^{\alpha-1} h_{k}(\tau) d \tau\right] d s+\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{a}(a-s)^{\alpha-1} h_{k}(s) d s\right\} \\
\leq & \frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \beta+\frac{\alpha a^{\alpha} M^{2}\left(\left\|E^{-1}\right\|\right)^{2}}{(\Gamma(\alpha+1))^{2}}\|B\|\left\|W^{-1}\right\|(\beta+\gamma)+\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \gamma \\
= & \frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)}(\beta+\gamma)\left[1+\frac{a^{\alpha} M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)}\|B\|\left\|W^{-1}\right\|\right]<1,
\end{aligned}
$$

a contradiction. Hence, $Q B_{k} \subset B_{k}$ for some positive number k. In fact, the operator Q maps B_{k} into a compact subset of B_{k}. To prove this, we first show that the set $V_{k}(t)=\{(Q x)(t)$: $\left.x \in B_{k}\right\}$ is a precompact in X; for every $t \in J$: This is trivial for $t=0$, since $V_{k}(0)=\left\{x_{0}\right\}$. Let $t, 0<t \leq a$; be fixed. For $0<\epsilon<t$ and arbitrary $\delta>0$; take

$$
\begin{aligned}
\left(Q^{\epsilon, \delta} x\right)(t)= & \int_{\delta}^{\infty} \xi_{\alpha}(\theta) E^{-1} T\left(t^{\alpha} \theta\right) E x_{0} d \theta \\
& +\alpha \int_{0}^{t-\epsilon} \int_{\delta}^{\infty} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta\right) f(s, x(s)) d \theta d s \\
& +\alpha \int_{0}^{t-\epsilon} \int_{\delta}^{\infty} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta\right) \\
& \times B W^{-1}\left[x_{1}-\int_{0}^{\infty} \xi_{\alpha}(\theta) E^{-1} T\left(a^{\alpha} \theta\right) E x_{0} d \theta\right. \\
& -\alpha \int_{0}^{a} \int_{0}^{\infty} \theta(a-\tau)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((a-\tau)^{\alpha} \theta\right) f(\tau, x(\tau)) d \theta d \tau \\
& -\alpha \int_{0}^{a} \int_{0}^{\infty} \theta(a-\tau)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((a-\tau)^{\alpha} \theta\right) \\
& \left.\times\left\{\int_{0}^{\tau} g(\tau, \eta, x(\eta), R(\eta)) d \eta\right\} d \theta d \tau\right](s) d \theta d s \\
& +\alpha \int_{0}^{t-\epsilon} \int_{\delta}^{\infty} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta\right) \\
& \times\left\{\int_{0}^{s} g(s, \tau, x(\tau), R(\tau)) d \tau\right\} d \theta d s
\end{aligned}
$$

$$
\begin{aligned}
= & T\left(\epsilon^{\alpha} \delta\right) \int_{\delta}^{\infty} \xi_{\alpha}(\theta) E^{-1} T\left(t^{\alpha} \theta-\epsilon^{\alpha} \delta\right) E x_{0} d \theta \\
& +T\left(\epsilon^{\alpha} \delta\right) \alpha \int_{0}^{t-\epsilon} \int_{\delta}^{\infty} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta-\epsilon^{\alpha} \delta\right) f(s, x(s)) d \theta d s \\
& +T\left(\epsilon^{\alpha} \delta\right) \alpha \int_{0}^{t-\epsilon} \int_{\delta}^{\infty} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta-\epsilon^{\alpha} \delta\right) \\
& \times B W^{-1}\left[x_{1}-\int_{0}^{\infty} \xi_{\alpha}(\theta) E^{-1} T\left(a^{\alpha} \theta\right) E x_{0} d \theta\right. \\
& -\alpha \int_{0}^{a} \int_{0}^{\infty} \theta(a-\tau)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((a-\tau)^{\alpha} \theta\right) f(\tau, x(\tau)) d \theta d \tau \\
& -\int_{0}^{a} \int_{0}^{\infty} \theta(a-\tau)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((a-\tau)^{\alpha} \theta\right) \\
& \left.\times\left\{\int_{0}^{\tau} g(\tau, \eta, x(\eta), R(\eta)) d \eta\right\} d \theta d \tau\right](s) d \theta d s \\
& +T\left(\epsilon^{\alpha} \delta\right) \alpha \int_{0}^{t-\epsilon} \int_{\delta}^{\infty} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta-\epsilon^{\alpha} \delta\right) \\
& \times\left\{\int_{0}^{s} g(s, \tau, x(\tau), R(\tau)) d \tau\right\} d \theta d s .
\end{aligned}
$$

Since $u(s)$ is bounded and $T\left(\epsilon^{\alpha} \delta\right), \epsilon^{\alpha} \delta>0$ is a compact operator, then the set $V_{k}^{\epsilon, \delta}(t)=$ $\left\{\left(Q^{\epsilon, \delta} x\right)(t): x \in B_{k}\right\}$ is a precompact set in X for every $\epsilon, 0<\epsilon<t$, and for all $\delta>0$. Also, for $x \in B_{k}$, using the defined control $u(t)$ yields

$$
\begin{aligned}
& \left\|(Q x)(t)-\left(Q^{\epsilon, \delta} x\right)(t)\right\| \\
& \leq\left\|\int_{0}^{\delta} \xi_{\alpha}(\theta) E^{-1} T\left(t^{\alpha} \theta\right) E x_{0} d \theta\right\| \\
& \quad+\alpha\left\|\int_{t-\epsilon}^{t} \int_{\delta}^{\infty} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta\right) f(s, x(s)) d \theta d s\right\| \\
& \quad+\alpha \| \int_{t-\epsilon}^{t} \int_{\delta}^{\infty} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta\right) \\
& \quad \times B W^{-1}\left[x_{1}-\int_{0}^{\infty} \xi_{\alpha}(\theta) E^{-1} T\left(a^{\alpha} \theta\right) E x_{0} d \theta\right. \\
& \quad-\alpha \int_{0}^{a} \int_{0}^{\infty} \theta(a-\tau)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((a-\tau)^{\alpha} \theta\right) f(\tau, x(\tau)) d \theta d \tau \\
& \quad-\alpha \int_{0}^{a} \int_{0}^{\infty} \theta(a-\tau)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((a-\tau)^{\alpha} \theta\right) \\
& \left.\quad \times\left\{\int_{0}^{\tau} g(\tau, \eta, x(\eta), R(\eta)) d \eta\right\} d \theta d \tau\right](s) d \theta d s \| \\
& \quad+\alpha\left\|\int_{t-\epsilon}^{t} \int_{\delta}^{\infty} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta\right)\left\{\int_{0}^{s} g(s, \tau, x(\tau), R(\tau)) d \tau\right\} d \theta d s\right\| \\
& \quad+\alpha\left\|\int_{0}^{t} \int_{0}^{\delta} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta\right) f(s, x(s)) d \theta d s\right\| \\
& \quad+\alpha \| \int_{0}^{t} \int_{0}^{\delta} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times B W^{-1}\left[x_{1}-\int_{0}^{\infty} \xi_{\alpha}(\theta) E^{-1} T\left(a^{\alpha} \theta\right) E x_{0} d \theta\right. \\
& -\alpha \int_{0}^{a} \int_{0}^{\infty} \theta(a-\tau)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((a-\tau)^{\alpha} \theta\right) f(\tau, x(\tau)) d \theta d \tau \\
& -\alpha \int_{0}^{a} \int_{0}^{\infty} \theta(a-\tau)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((a-\tau)^{\alpha} \theta\right) \\
& \left.\times\left\{\int_{0}^{\tau} g(\tau, \eta, x(\eta), R(\eta)) d \eta\right\} d \theta d \tau\right](s) d \theta d s \| \\
& +\alpha\left\|\int_{0}^{t} \int_{0}^{\delta} \theta(t-s)^{\alpha-1} \xi_{\alpha}(\theta) E^{-1} T\left((t-s)^{\alpha} \theta\right)\left\{\int_{0}^{s} g(s, \tau, x(\tau), R(\tau)) d \tau\right\} d \theta d s\right\| \\
& \leq M\left\|E^{-1}\right\|\|E\|\left\|x_{0}\right\| \int_{0}^{\delta} \xi_{\alpha}(\theta) d \theta \\
& +\alpha M\left\|E^{-1}\right\|\left(\int_{t-\epsilon}^{t}(t-s)^{\alpha-1} g_{k}(s) d s\right)\left(\int_{\delta}^{\infty} \theta \xi_{\alpha}(\theta) d \theta\right) \\
& +\alpha M\left\|E^{-1}\right\|\|B\|\left\|W^{-1}\right\| \int_{t-\epsilon}^{t}(t-s)^{\alpha-1}\left[\left\|x_{1}\right\|+M\left\|E^{-1}\right\|\left\|x_{0}\right\|\right. \\
& +\frac{\alpha}{\Gamma(\alpha+1)} M\left\|E^{-1}\right\| \int_{0}^{a}(a-\tau)^{\alpha-1} g_{k}(\tau) d \tau \\
& \left.+\frac{\alpha}{\Gamma(\alpha+1)} M\left\|E^{-1}\right\| \int_{0}^{a}(a-\tau)^{\alpha-1} h_{k}(\tau) d \tau\right](s) d s\left(\int_{\delta}^{\infty} \theta \xi_{\alpha}(\theta) d \theta\right) \\
& +\alpha M\left\|E^{-1}\right\|\left(\int_{t-\epsilon}^{t}(t-s)^{\alpha-1} h_{k}(s) d s\right)\left(\int_{\delta}^{\infty} \theta \xi_{\alpha}(\theta) d \theta\right) \\
& +\alpha M\left\|E^{-1}\right\|\left(\int_{0}^{t}(t-s)^{\alpha-1} g_{k}(s) d s\right)\left(\int_{0}^{\delta} \theta \xi_{\alpha}(\theta) d \theta\right) \\
& +\alpha M\left\|E^{-1}\right\|\|B\|\left\|W^{-1}\right\| \int_{0}^{t}(t-s)^{\alpha-1}\left[\left\|x_{1}\right\|+M\left\|E^{-1}\right\|\left\|x_{0}\right\|\right. \\
& +\frac{\alpha}{\Gamma(\alpha+1)} M\left\|E^{-1}\right\| \int_{0}^{a}(a-\tau)^{\alpha-1} g_{k}(\tau) d \tau \\
& \left.+\frac{\alpha}{\Gamma(\alpha+1)} M\left\|E^{-1}\right\| \int_{0}^{a}(a-\tau)^{\alpha-1} h_{k}(\tau) d \tau\right](s) d s\left(\int_{0}^{\delta} \theta \xi_{\alpha}(\theta) d \theta\right) \\
& +\alpha M\left\|E^{-1}\right\|\left(\int_{0}^{t}(t-s)^{\alpha-1} h_{k}(s) d s\right)\left(\int_{0}^{\delta} \theta \xi_{\alpha}(\theta) d \theta\right) \text {. }
\end{aligned}
$$

Therefore, as $\epsilon \rightarrow 0^{+}$and $\delta \rightarrow 0^{+}$, there are precompact sets arbitrary close to the set $V_{k}(t)$ and so $V_{k}(t)$ is precompact in X.
Next, we show that $Q B_{k}=\left\{Q x: x \in B_{k}\right\}$ is an equicontinuous family of functions.
Let $x \in B_{k}$ and $t, \tau \in J$ such that $0<t<\tau$, then

$$
\begin{aligned}
& \|(Q x)(t)-(Q x)(\tau)\| \\
& \qquad \begin{aligned}
\leq & T\left(t^{\alpha} \theta\right)-T\left(\tau^{\alpha} \theta\right)\| \| E^{-1}\| \| E\| \| x_{0} \| \\
& +\frac{\alpha\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{t}\left\|(t-s)^{1-\alpha} T\left((t-s)^{\alpha} \theta\right)-(\tau-s)^{1-\alpha} T\left((\tau-s)^{\alpha} \theta\right)\right\| g_{k}(s) d s \\
\quad & +\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{t}^{\tau}(\tau-s)^{1-\alpha} g_{k}(s) d s
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\alpha}{\Gamma(\alpha+1)} \int_{0}^{t}\left\|(t-s)^{1-\alpha} T\left((t-s)^{\alpha} \theta\right)-(\tau-s)^{1-\alpha} T\left((\tau-s)^{\alpha} \theta\right)\right\|\left\|E^{-1}\right\|\|B\|\left\|W^{-1}\right\| \\
& \times\left[\left\|x_{1}\right\|+\left\|E^{-1}\right\| M\| \| E\| \| x_{0} \|+\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{a}(a-\tau)^{1-\alpha} g_{k}(\tau) d \tau\right. \\
& \left.+\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{a}(a-\tau)^{1-\alpha} h_{k}(\tau) d \tau\right](s) d s \\
& +\frac{\alpha M}{\Gamma(\alpha+1)} \int_{t}^{\tau}(\tau-s)^{1-\alpha}\left\|E^{-1}\right\|\|B\|\left\|W^{-1}\right\|\left[\left\|x_{1}\right\|+\left\|E^{-1}\right\| M\|E\|\left\|x_{0}\right\|\right. \\
& +\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{a}(a-\tau)^{1-\alpha} g_{k}(\tau) d \tau \\
& \left.+\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{a}(a-\tau)^{1-\alpha} h_{k}(\tau) d \tau\right](s) d s \\
& +\frac{\alpha\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{0}^{t}\left\|(t-s)^{1-\alpha} T\left((t-s)^{\alpha} \theta\right)-(\tau-s)^{1-\alpha} T\left((\tau-s)^{\alpha} \theta\right)\right\| h_{k}(s) d s \\
& +\frac{\alpha M\left\|E^{-1}\right\|}{\Gamma(\alpha+1)} \int_{t}^{\tau}(\tau-s)^{1-\alpha} h_{k}(s) d s .
\end{aligned}
$$

Now, $T(t)$ is continuous in the uniform operator topology for $t>0$ since $T(t)$ is compact, and the right-hand side of the above inequality tends to zero as $t \rightarrow \tau$. Thus, $Q B_{k}$ is both equicontinuous and bounded. By the Arzela-Ascoli theorem, $Q B_{k}$ is precompact in $C(J, X)$. Hence, Q is a completely continuous operator on $C(J, X)$.
From the Schauder fixed-point theorem, Q has a fixed point in B_{k}. Any fixed point of Q is a mild solution of (1.1) on J satisfying $(Q x)(t)=x(t) \in X$. Thus, the system (1.1) is controllable on J.

4 Example

In this section, we present an example to our abstract results.
We consider the fractional integro-partial differential equation in the form

$$
\begin{align*}
& { }_{c}^{c} \partial_{t}^{\alpha}\left(z(t, x)-z_{x x}(t, x)\right)-z_{x x}(t, x) \\
& \quad=B u+\mu_{1}\left(t, z_{x x}(t, x)\right) \\
& \quad \quad+\int_{0}^{t} \mu_{3}\left(t, s, z_{x x}(s, x), \int_{0}^{s} \mu_{2}\left(s, \tau, z_{x x}(\tau, x)\right) d \tau\right) d s, \quad 0 \leq x \leq \pi, t \in J \tag{4.1}\\
& z(t, 0)=z(t, \pi)=0, \quad t \in J \\
& z(0, x)= \\
& \quad z_{0}(x), \quad x \in[0, \pi]
\end{align*}
$$

where ${ }^{c} \partial_{t}^{\alpha}$ is the Caputo fractional partial derivative of order $0<\alpha<1$.
Take $X=Y=L^{2}[0, \pi]$ and define the operators $A: D(A) \subset X \rightarrow Y$ and $E: D(E) \subset X \rightarrow$ Y by $A z=-z_{x x}$ and $E z=z-z_{x x}$, where each domain $D(A)$ and $D(E)$ is given by $\{z \in X$: z, z_{x} are absolutely continuous, $\left.z_{x x} \in X, z(0)=z(\pi)=0\right\}$.

Then A and E can be written respectively as [13]

$$
A z=\sum_{n=1}^{\infty} n^{2}\left(z, z_{n}\right) z_{n}, \quad z \in D(A)
$$

$$
E z=\sum_{n=1}^{\infty}\left(1+n^{2}\right)\left(z, z_{n}\right) z_{n}, \quad z \in D(E)
$$

where $z_{n}(x)=\sqrt{2 / \pi} \sin n x, n=1,2, \ldots$, is the orthonormal set of eigenvectors of A and $\left(z, z_{n}\right)$ is the L^{2} inner product. Moreover, for $z \in X$, we get

$$
\begin{aligned}
& E^{-1} z=\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}\left(z, z_{n}\right) z_{n} \\
& -A E^{-1} z=\sum_{n=1}^{\infty} \frac{-n^{2}}{1+n^{2}}\left(z, z_{n}\right) z_{n} \\
& T(t) z=\sum_{n=1}^{\infty} e^{\frac{-n^{2}}{\left(1+n^{2}\right)}}\left(z, z_{n}\right) z_{n}
\end{aligned}
$$

We assume that
$\left(A_{1}\right)$: The operator $B: U \rightarrow Y$, with $U \subset J$, is a bounded linear operator.
$\left(A_{2}\right)$: The linear operator $W: U \rightarrow X$ defined by

$$
W u=\int_{0}^{a} E^{-1}(a-s)^{\alpha-1} T_{\alpha}(a-s) B u(s) d s
$$

has an inverse bounded operator W^{-1} which takes values in $L^{2}(J, U) / \operatorname{ker} W$, where the kernel space of W is defined by $\operatorname{ker} W=\left\{x \in L^{2}(J, U): W x=0\right\}, B$ is a bounded linear operator.
$\left(A_{3}\right)$: The nonlinear operator $\mu_{1}: J \times X \rightarrow Y$ satisfies the following three conditions:
(i) For each $t \in J, \mu_{1}(t, z)$ is continuous.
(ii) For each $z \in X, \mu_{1}(t, z)$ is measurable.
(iii) There is a constant $v(0<v<1)$ and a function $h(\cdot):[0, a] \rightarrow R^{+}$such that for all $(t, z) \in J \times X$,

$$
\left\|\mu_{1}(t, z)\right\| \leq h(t)|z|^{\nu}
$$

$\left(A_{4}\right)$: The nonlinear operator $\mu_{2}: J \times J \times X \rightarrow X$ satisfies the following two conditions:
(i) For each $(t, s) \in J \times J, \mu_{2}(t, s, z)$ is continuous.
(ii) For each $z \in X, \mu_{2}(t, s, z)$ is measurable.
$\left(A_{5}\right)$: The nonlinear operator $\mu_{3}: J \times J \times X \times X \rightarrow Y$ satisfies the following three conditions:
(i) For each $(t, s, z) \in J \times J \times X, \mu_{3}(t, s, z)$ is continuous.
(ii) For each $z \in X, \mu_{3}(t, s, z)$ is measurable.
(iii) There is a constant $v(0<v<1)$ and a function $g(\cdot):[0, a] \rightarrow R^{+}$such that for all $(t, s, z, y) \in J \times J \times X \times X$,

$$
\left\|\int_{0}^{t} \mu_{3}\left(t, s, z, \int_{0}^{s} \mu_{2}(s, \tau, z) d \tau\right) d s\right\| \leq g(t)|z|^{\nu}
$$

Define an operator $f: J \times X \rightarrow Y$ by

$$
f(t, z)(x)=\mu_{1}\left(t, z_{x x}(x)\right)
$$

and let

$$
\begin{aligned}
& H(t, s, z)(x)=\mu_{2}\left(t, s, z_{x x}(x)\right), \quad(t, s, z) \in J \times J \times X, \\
& g\left(t, s, z, \int_{0}^{s} H(s, \tau, z) d \tau\right)(x)=\mu_{3}\left(t, s, z_{x x}, \int_{0}^{s} \mu_{2}\left(s, \tau, z_{x x}(x)\right) d \tau\right), \quad x \in[0, \pi] .
\end{aligned}
$$

Then the problem (4.1) can be formulated abstractly as:

$$
\begin{aligned}
{ }^{c} D^{\alpha} & (E z(t))+A z(t) \\
\quad= & B u(t)+f(t, z(t))+\int_{0}^{t} g\left(t, s, z, \int_{0}^{s} H(s, \tau, z(\tau)) d \tau\right) d s, \quad t \in J, z(0)=z_{0} .
\end{aligned}
$$

It is easy to see that $-A E^{-1}$ generates a uniformly continuous semigroup $\{S(t)\}_{t \geq 0}$ on Y which is compact, and (2.1) is satisfied. Also, the operator f satisfies condition $\left(H_{6}\right)$ and the operator H and g satisfy $\left(H_{7}\right)$ and $\left(H_{8}\right)$. Also all the conditions of Theorem 3.1 are satisfied. Hence, the equation (4.1) is controllable on J.

Competing interests

The author declare that he has no competing interests.

Acknowledgements

I would like to thank the referees and professor Ravi Agarwal for their valuable comments and suggestions.
Received: 19 March 2012 Accepted: 10 September 2012 Published: 25 September 2012

References

1. Barenblatt, G, Zheltov, I, Kochina, I: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286-1303 (1960)
2. Chen, PJ, Curtin, ME: On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19, 614-627 (1968)
3. Huilgol, R: A second order fluid of the differential type. Int. J. Non-Linear Mech. 3, 471-482 (1968)
4. Balachandran, K, Dauer, JP: Controllability of Sobolev type integrodifferential systems in Banach spaces. J. Math. Anal. Appl. 217, 335-348 (1998)
5. Balachandran, K, Sakthivel, R: Controllability of Sobolev type semilinear integro-differential systems in Banach spaces. Appl. Math. Lett. 12, 63-71 (1999)
6. Balachandran, K, Anandhi, ER, Dauer, JP: Boundary controllability of Sobolev type abstract nonlinear integro-differential systems. J. Math. Anal. Appl. 277, 446-464 (2003)
7. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
8. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley, New York (1993)
9. Samko, S, Kilbas, A, Marichev, OL: Fractional Integrals and Derivatives. Gordon \& Breach, New York (1993)
10. Pazy, A: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
11. Zhou, Y, Jiao, F: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063-1077 (2010)
12. El-Borai, MM: Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 14(3), 433-440 (2002)
13. Lightboure, JH III, Rankin, SM III: A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 93, 328-337 (1983)
[^1]
[^0]: © 2012 Ahmed; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1687-1847-2012-167
 Cite this article as: Ahmed: Controllability for Sobolev type fractional integro-differential systems in a Banach space. Advances in Difference Equations 2012 2012:167.

