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Abstract
In this paper, the Genesio system with distributed time delay feedback is investigated.
Firstly, the stability of the equilibria of the system is investigated by analyzing the
characteristic equation, and then the existence of Hopf bifurcations is verified by
choosing the mean time delay as a bifurcation parameter. Subsequent to that, the
direction and stability of the bifurcating periodic solutions are determined by using
the normal form theory and the center manifold theorem. Finally, some numerical
simulations are presented to verify the effectiveness of the theoretical results.
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1 Introduction
Chaos control has attracted considerable attention since the pioneering work of Ott and
Grebogi []. It is well known that in many practical applications, chaos is undesirable and
needs to be controlled. Therefore, the investigation of controlling chaos is of great sig-
nificance. Many schemes have been presented to implement chaos control, among which
using time-delayed controlling forces proves to be a simple and viable method for a con-
tinuous dynamical system []. It is noteworthy that time-delayed feedback controller can
also be used to realize the control of a bifurcation, see [–] and references therein. It is
known that if the steady state is stable or the bifurcating periodic solutions are orbitally
asymptotically stable, then the chaotic system will not exhibit chaotic dynamical behav-
iors. As a consequence, bifurcation control in this sense may also help to control chaos.
In order to better model some complicated practical phenomena, recently, distributed

timedelay has been introduced intomanymodeling systems. There are extensive literature
works dealing with such systems [–]. As the distributed time delay is incorporated in a
system, some interesting dynamical behaviors occur near the equilibrium point. Inspired
by these previous works, in this paper, we intend to introduce the distributed time delay as
a feedback controller into the chaotic Genesio system with the aim to realize the control
of chaos. The rest of this paper is organized as follows. In the next section, we present
the mathematical models of the Genesio system with distributed time delay feedback and
consider its local stability andHopf bifurcation. In Section , the stability of the bifurcating
periodic solutions and the direction of the Hopf bifurcation at the critical values of mean
time delay are determined by using the normal form method and the center manifold
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Figure 1 The attractor of Genesio systemwith a = –6, b = –2.92, c = –1.2.

reduction due to Hassard et al. []. In Section , a numerical example is provided to
verify the theoretical results. Finally, some concluding remarks are given in Section .

2 Stability analysis and Hopf bifurcation of the Genesio systemwith
distributed delay feedback

The Genesio system, proposed by Genesio and Tesi [] and studied extensively in recent
years [, –], is described by the following three-dimensional autonomous system

⎧⎪⎪⎨
⎪⎪⎩
ẋ = y,

ẏ = z,

ż = ax + by + cz + x,

(.)

where a,b, c <  are parameters. System (.) exhibits chaotic dynamical behaviors when
a = –, b = –., c = –., as illustrated in Figure .
In order to apply feedback control, we consider system (.) with continuous distributed

delay feedback described by

⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) = y(t),

ẏ(t) = z(t) +M
∫ 
–∞(y(t) – y(t + s))k(–s) ds,

ż(t) = ax(t) + by(t) + cz(t) + x(t),

(.)

whereM ∈ R, a,b, c < ,
∫ +∞
 k(s) ds = ,

∫ +∞
 sk(s) ds < +∞.

It is easy to see that systems (.) and (.) have the same equilibrium points E(, , ),
E(–a, , ). Without loss of generality, let (x*, y*, z*) be the equilibrium point of system
(.), and let y(t) = x(t)–x*, y(t) = y(t)–y*, y(t) = z(t)– z*. Substituting them into system
(.) yields

⎧⎪⎪⎨
⎪⎪⎩
ẏ(t) = y(t),

ẏ(t) = y(t) +My(t) –M
∫ 
–∞ y(t + s)k(–s) ds,

ẏ(t) = ay(t) + by(t) + cy(t) + y (t) + x*y(t).

(.)

Rewrite system (.) as follows:

ẏ(t) = Ly(t) +
∫ 

–∞
F(s)y(t + s) ds +H(y), (.)
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where

y(t) =

⎛
⎜⎝
y(t)
y(t)
y(t)

⎞
⎟⎠ , L =

⎛
⎜⎝

  
 M 

a + x* b c

⎞
⎟⎠ ,

F(s) =

⎛
⎜⎝
  
 –Mk(–s) 
  

⎞
⎟⎠ , H(y) =

⎛
⎜⎝




y (t)

⎞
⎟⎠ .

The corresponding characteristic equation appears as

λ(λ – c)
(

λ –M +
∫ 

–∞
Mk(–s)eλs ds

)
– bλ –

(
a + x*

)
= . (.)

In this paper, we consider the weak kernel case , i.e., k(s) = αe–αs, where α > . The anal-
ysis for the general gamma kernel case is similar. We define the initial condition of system
(.) as follows:

⎛
⎜⎝
y(s)
y(s)
y(s)

⎞
⎟⎠ =

⎛
⎜⎝

φ(s)
φ(s)
φ(s)

⎞
⎟⎠ , –∞ < s ≤ .

The characteristic equation (.) under the weak kernel case then takes the form

λ + n(α)λ + n(α)λ + n(α)λ + n(α) = , (.)

where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n(α) = α –M – c,

n(α) =Mc – cα – b,

n(α) = –bα – a – x*,

n(α) = –(a + x*)α.

It follows from the well-known Routh-Hurwitz criterion that all the roots of Eq. (.)
have negative real parts if the following conditions are satisfied:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(α)≡ n(α) = α –M – c > ,

D(α)≡ n(α)n(α) – n(α) = (α –M – c)(Mc – cα – b) + bα + a + x* > ,

D(α)≡ n(α)D(α) – n (α)n(α) = (–bα – a – x*)[(α –M – c)(Mc – cα – b)

+ bα + a + x*] + α(a + x*)(α –M – c) > ,

D(α)≡ n(α)D(α) > .

It is easy to see that at E(–a, , ), we always have n(a) = aα < , thus the equilib-
rium point E(–a, , ) is unstable. In what follows, we only analyze the equilibrium point
E(, , ). Straightforwardly, we have the following result.
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Theorem The equilibriumpoint E(, , ) of system (.), where k(s) represents theweak
kernel, is locally asymptotically stable if the following conditions hold:

⎧⎪⎪⎨
⎪⎪⎩

α –M – c > ,

(α –M – c)(Mc – cα – b) + bα + a > ,

(–bα – a)[(α –M – c)(Mc – cα – b) + bα + a] + aα(α –M – c) > .

(.)

Let λi (i = , , , ) be the roots of Eq. (.), then we have

λ + λ + λ + λ = –n(α),

λλ + λλ + λλ + λλ + λλ + λλ = n(α),

λλλ + λλλ + λλλ + λλλ = –n(α),

λλλλ = n(α).

If there exists an α ∈ R+ such that D(α) =  and dD(α)/dα|α=α �= , then by the
Routh-Hurwitz criterion, there exists a pair of purely imaginary roots, say λ = λ = iω

(ω �= ), and the other two roots λ, λ satisfy: if λ, λ are real, then λ < , λ < ; if λ,
λ are complex conjugate, then Reλ = Reλ = –n(α)/. It is easy to calculate that

d(Reλ)
dα

∣∣∣∣
α

= –
n(α)

[n (α)n(α) + (n(α)n(α) – n(α))]
· dD(α)

dα

∣∣∣∣
α

,

thus the Hopf bifurcation occurs at E as α passes through α.

3 Direction and stability of bifurcating periodic solutions
In this section, we investigate the direction, stability and period of bifurcating periodic so-
lutions from the steady state by applying the normal form theory and the center manifold
theoremdeveloped byHassard et al. in []. Letμ = α–α, then system (.) undergoes the
Hopf bifurcation at E(, , ) near μ = . Assume that ±iω is the corresponding purely
imaginary roots of Eq. (.) at steady state E(, , ) for μ = .We transform system (.)
into an FDE in C((–∞, ],R) as

ẏt = A(μ)yt + R(μ)yt , (.)

where yt(θ ) = y(t + θ ), θ ∈ (–∞, ), y = (y, y, y)T , and operators A and R are defined as

A(μ)φ(θ ) =

⎧⎨
⎩

dφ(θ )
dθ , –∞ < θ < ,

Lφ(θ ) +
∫ 
–∞ F(s)φ(s) ds, θ = ,

R(μ)φ(θ ) =

⎧⎨
⎩
(, , )T , –∞ < θ < ,

(, , f)T , θ = ,

where

f = φ
 ().
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For ψ ∈ C([, +∞), (R)*), ψ(s) = (ψ(s),ψ(s),ψ(s))T ∈ C[, +∞), the adjoint operator
of A denoted by A* is defined as

A*(μ)ψ(s) =

⎧⎨
⎩
–dψ(s)

ds ,  < s < +∞,

LTψ() +
∫ 
–∞ FT (t)ψ(–t) dt, s = .

(.)

For φ ∈ C(–∞, ] and ψ ∈ C[, +∞), a bilinear inner product is defined as

〈ψ ,φ〉 = ψ̄T ()φ() –
∫ 

θ=–∞

∫ θ

ξ=
ψ̄T (ξ – θ )F(θ )φ(ξ ) dξ dθ .

In what follows, we need to calculate the eigenvector q of A associated with the eigen-
value iω and the eigenvector q* of A* associated with the eigenvalue –iω. Assume that
q(θ ) = (,β ,γ )Teiωθ is the eigenvector of A() corresponding to iω, then A()q() =
iωq(), namely

Lq() +
∫ 

–∞
F(s)q(s) ds

=

⎛
⎜⎝
  
 M 
a b c

⎞
⎟⎠

⎛
⎜⎝

β

γ

⎞
⎟⎠ +

∫ 

–∞

⎛
⎜⎝
  
 –Mk(–s) 
  

⎞
⎟⎠

·
⎛
⎜⎝

β

γ

⎞
⎟⎠ eiωs ds =

⎛
⎜⎝

β

Mβ + γ –Mβ + γ –MβJ ()

a + bβ + cγ

⎞
⎟⎠ =

⎛
⎜⎝

iω

iωβ

iωγ

⎞
⎟⎠ ,

where

J () =
∫ 

–∞
k(–s)eiωs ds =

α

α + iω
.

It is easy to calculate from the above equality that

⎧⎨
⎩

β = iω,

γ = α+iωb
iω–c

= –ω
 – iωM + iωMJ ().

Assume that q*(ζ ) =N(,β*,γ *)Teiωζ ,  ≤ ζ < +∞, then A*()q*() = –iωq*(), that is,

LTq*() +
∫ 

–∞
F*(s)q*(–s) ds

=

⎛
⎜⎝
  a
 M b
  c

⎞
⎟⎠

⎛
⎜⎝

N
Nβ*

Nγ *

⎞
⎟⎠ +

∫ 

–∞

⎛
⎜⎝
  
 –Mk(–s) 
  

⎞
⎟⎠

·
⎛
⎜⎝

N
Nβ*

Nγ *

⎞
⎟⎠ e–iωs ds =

⎛
⎜⎝

aNγ *

N +MNβ* + bNγ * –MNβ*J (–)

β*N + cNγ *

⎞
⎟⎠ =

⎛
⎜⎝
–iωN
iωβ

*N
iωγ

*N

⎞
⎟⎠ ,
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where

J (–) =
∫ 

–∞
k(–s)e–iωs ds =

α

α – iω
.

Hence we have
⎧⎨
⎩

β* = ω
+iωc
a = a–iω

a(iω–M+MJ(–)) ,

γ * = –iω
a .

We chooseN = 
+β*β̄+γ *γ̄+Mβ*β̄

∫ 
θ=–∞ θe–iωθ k(–θ ) dθ

, then 〈q*,q〉 = , 〈q*, q̄〉 =  hold. In what
follows, we follow the same notations as in []. We first construct the coordinates of the
center manifold � at μ = . Let

z(t) =
〈
q*,ut

〉
, w(t, θ ) = ut – Re

{
z(t)q(θ )

}
.

On the center manifold �, we have

w(t, θ ) = w(z, z̄, θ ),

where

w(z, z̄, θ ) = w(θ )
z


+w(θ )zz̄ +w(θ )

z̄


+ · · · , (.)

and z, z̄ are the local coordinates of the center manifold � in the directions of q* and q̄*

respectively.
Note that w is real if ut is real. We only consider real solutions. For the solution ut ∈ �

of (.), since μ = , we have

ż(t) = iωz(t) +
〈
q*,R

(
w + Re

{
z(t)q(θ )

})〉

= iωz(t) + q*
T
()R

(
w(z, z̄, ) + Re

{
z(t)q()

})
.

Rewrite the above equation as

ż(t) = iωz(t) + g(z, z̄),

where

g(z, z̄) = q*
T
()R

(
w(z, z̄, ) + Re

{
z(t)q()

})
. (.)

Expand the function g(z, z̄) on the center manifold � as

g(z, z̄) = g
z


+ gzz̄ + g

z̄


+ g

zz̄


+ · · · . (.)

By (.) and (.), we have

ẇ = u̇t – żq – ˙̄zq̄ = Aw – Re
{
g(z, z̄)q(θ )

}
+ R

(
w + Re

{
z(t)q(θ )

})
.

http://www.advancesindifferenceequations.com/content/2012/1/166
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Rewrite this as

ẇ = Aw +H(z, z̄, θ ),

where

H(z, z̄, θ ) = –Re
{
g(z, z̄)q(θ )

}
+ R

(
w + Re

{
z(t)q(θ )

})
. (.)

Expand the function H(z, z̄, θ ) on the center manifold � as

H(z, z̄, θ ) =H(θ )
z


+H(θ )zz̄ +H(θ )

z̄


+ · · · .

While

w + zq(θ ) + z̄q̄(θ ) =

⎛
⎜⎝

w()(θ ) + zeiωθ + z̄e–iωθ

w()(θ ) + zβeiωθ + z̄β̄e–iωθ

w()(θ ) + zγ eiωθ + z̄γ̄ e–iωθ

⎞
⎟⎠ .

Thus

R
(
w + Re

{
z(t)q(θ )

})
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝






⎞
⎟⎟⎠ , –∞ < θ < ,

⎛
⎜⎜⎝





f ()

⎞
⎟⎟⎠ , θ = ,

where

f () =
[
w()() + z + z̄

].
It follows from (.) that

g(z, z̄) =N
(
,β*,γ *

)
⎛
⎜⎝



f ()

⎞
⎟⎠ =Nγ *f () (z, z).

Hence

H(z, z, θ ) = –Re
{
Nγ *f () (z, z)q(θ )

}
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝






⎞
⎟⎟⎠ , –∞ < θ < ,

⎛
⎜⎜⎝





f ()

⎞
⎟⎟⎠ , θ = .
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From (.), we obtain

H(θ ) = –Re
{
Nγ *f (),zq(θ )

}
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝






⎞
⎟⎟⎠ , –∞ < θ < ,

⎛
⎜⎜⎝





f (),z

⎞
⎟⎟⎠ , θ = .

Notice that f (),z = , we have

H(θ ) = –Re
{
Nγ *q(θ )

}
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝






⎞
⎟⎟⎠ , –∞ < θ < ,

⎛
⎜⎜⎝






⎞
⎟⎟⎠ , θ = .

(.)

Similarly, we have

H(θ ) = Re
{
Nγ *q(θ )

}
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝






⎞
⎟⎟⎠ , –∞ < θ < ,

⎛
⎜⎜⎝






⎞
⎟⎟⎠ , θ = .

On the other hand, on the center manifold � near the origin, we have

ẇ(z, z) = wzż +wzż.

Expanding the above equation and comparing the corresponding coefficients, we get

(A – iωI)w(θ ) = –H(θ ),

Aw(θ ) = –H(θ ).
(.)

Define

w(θ ) =

⎛
⎜⎜⎝
w()
(θ )

w()
 (θ )

w()
 (θ )

⎞
⎟⎟⎠ , –∞ < θ < .
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Substituting (.) and (.) into (.), when –∞ < θ < , we have

⎛
⎜⎜⎝
iω – d

dθ  

 iω – d
dθ 

  iω – d
dθ

⎞
⎟⎟⎠

⎛
⎜⎜⎝
w()
(θ )

w()
 (θ )

w()
 (θ )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

–Re{Nγ *eiωθ }
–Re{Nγ *βeiωθ }
–Re{Nγ *γ eiωθ }

⎞
⎟⎟⎠ . (.)

When θ = , we obtain

⎛
⎜⎝
iω – 
 iω –M –
–a –b iω – c

⎞
⎟⎠

⎛
⎜⎜⎝
w()
()

w()
 ()

w()
 ()

⎞
⎟⎟⎠ –

∫ 

–∞

⎛
⎜⎝
  
 –Mk(–s) 
  

⎞
⎟⎠

·

⎛
⎜⎜⎝
w()
(s)

w()
 (s)

w()
 (s)

⎞
⎟⎟⎠ds =

⎛
⎜⎜⎝
H ()

 ()

H ()
 ()

H ()
 ()

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

–Re{Nγ *}
–Re{Nγ *β}

–Re{Nγ *γ } + 

⎞
⎟⎟⎠ . (.)

In order to guarantee the continuity of solutions, we further assume that

⎛
⎝ w()

(θ )

w()
 (θ )

w()
 (θ )

⎞
⎠ is con-

tinuous at θ = .
It follows from (.) that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dw()
(θ )
dθ = iωw()

(θ ) + Re{Nγ *eiωθ },
dw()

 (θ )
dθ = iωw()

 (θ ) + Re{Nγ *βeiωθ },
dw()

 (θ )
dθ = iωw()

 (θ ) + Re{Nγ *γ } – .

The solutions of the above equations take the form

⎛
⎜⎜⎝
w()
(θ )

w()
 (θ )

w()
 (θ )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

l
m

n

⎞
⎟⎟⎠ eiωθ +

⎛
⎜⎜⎝

l
m

n

⎞
⎟⎟⎠ eiωθ +

⎛
⎜⎜⎝

l
m

n

⎞
⎟⎟⎠ e–iωθ , (.)

where

⎧⎪⎪⎨
⎪⎪⎩
l = Nγ *e–iωθ

iω
,

m = βl,

n = γ l,

⎧⎪⎪⎨
⎪⎪⎩
l = Nγ *eiωθ

iω
,

m = βl,

n = γ l,

⎧⎪⎪⎨
⎪⎪⎩
l = w()

() – l – l,

m = w()
 () –m –m,

n = w()
 () – n – n.

Substituting (.) into (.) yields

⎛
⎜⎝
iω – 
 iω –M +MJ () –
–a –b iω – c

⎞
⎟⎠

⎛
⎜⎝
w()
()

w()
 ()

w()
 ()

⎞
⎟⎠ =

⎛
⎜⎝
G()



G()


G()


⎞
⎟⎠ ,
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where

⎧⎪⎪⎨
⎪⎪⎩
G()

 =H ()
 (),

G()
 =H ()

 () +M[(m +m)J () –mJ () –mJ (–)],

G()
 =H ()

 (),

and

J () =
∫ 

–∞
k(–s)eiωs ds =

α

α + iω
.

Let

B– =

⎛
⎜⎝
iω – 
 iω –M +MJ () –
–a –b iω – c

⎞
⎟⎠ .

Then

B =



⎛
⎜⎝
B B B

B B B

B B B

⎞
⎟⎠ ,

where  = det(B–) = –iω
 + (c –M +MJ ())ω

 + i(Mc –MJ () – b)ω – a, and

⎧⎪⎪⎨
⎪⎪⎩
B = (iω –M +MJ ())(iω – c) – b,

B = iω – c,

B = ,

⎧⎪⎪⎨
⎪⎪⎩
B = a,

B = –ω
 – iωc,

B = iω,
⎧⎪⎪⎨
⎪⎪⎩
B = –a(iω –M +MJ ()),

B = iωb + a,

B = iω(iω –M +MJ ()).

Therefore, the following can be determined:

⎛
⎜⎜⎝
w()
()

w()
 ()

w()
 ()

⎞
⎟⎟⎠ =




⎛
⎜⎜⎝
BG()

 + BG()
 + BG()



BG()
 + BG()

 + BG()


BG()
 + BG()

 + BG()


⎞
⎟⎟⎠ .

Following the similar analysis presented above, we have

⎛
⎜⎜⎝
w()
 (θ )

w()
 (θ )

w()
 (θ )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
p
q
r

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
p
q
r

⎞
⎟⎟⎠ eiωθ +

⎛
⎜⎜⎝
p
q
r

⎞
⎟⎟⎠ e–iωθ ,
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where

⎧⎪⎪⎨
⎪⎪⎩
p = Nγ *

iω
,

q = βp,

r = γ p,

⎧⎪⎪⎨
⎪⎪⎩
p = –Nγ *

iω
,

q = βp,

r = γ p,

⎧⎪⎪⎨
⎪⎪⎩
p = w()

 () – p – p,

q = w()
 () – q – q,

r = w()
 () – r – r.

The following can be calculated:

⎛
⎜⎜⎝
w()
 ()

w()
 ()

w()
 ()

⎞
⎟⎟⎠ =


–a

⎛
⎜⎜⎝
CG()

 +CG()
 +CG()



CG()
 +CG()

 +CG()


CG()
 +CG()

 +CG()


⎞
⎟⎟⎠ ,

where

⎧⎪⎪⎨
⎪⎪⎩
G()

 =H ()
 (),

G()
 =H ()

 () +M[q + q – qJ(–) – qJ()],

G()
 =H ()

 (),

and

⎧⎪⎪⎨
⎪⎪⎩
C =Mc –MJ ()c,

C = –c,

C = ,

⎧⎪⎪⎨
⎪⎪⎩
C = a,

C = ,

C = ,

⎧⎪⎪⎨
⎪⎪⎩
C = –Ma +MJ ()a,

C = a,

C = .

Next, we consider R(w(z, z, ) + Re{z(t)q()}), noticing

w(z, z, ) + Re
{
z(t)q()

}

= w()
z


+w()zz +w()

z


+ · · · + Re

{
z(t)q()

}

=

⎛
⎜⎜⎝
w()
()

w()
 ()

w()
 ()

⎞
⎟⎟⎠ z


+

⎛
⎜⎜⎝
w()
 ()

w()
 ()

w()
 ()

⎞
⎟⎟⎠ zz +

⎛
⎜⎜⎝
w()
()

w()
 ()

w()
 ()

⎞
⎟⎟⎠ z


+ · · · + Re

{
z(t)q()

}
.

While

f () =
[
w()
()

z


+w()

 ()zz +w()
()

z


+ · · · + z + z

]

.

Hence

g(z, z) = q*
T
()R

(
w(z, z, ) + Re

{
z(t)q()

})

= N
(
,β*,γ *

)
⎛
⎜⎝



f ()

⎞
⎟⎠

= Nγ *f () .
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Comparing the coefficients with (.), we obtain

g = Nγ *,

g = Nγ *,

g = Nγ *,

g = Nγ *
(
w()
() + w()

 ()
)
.

Therefore, the following values can be calculated

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c() = i
ω

[gg – |g| – 
 |g|] + g

 ,

μ = – Re{c()}
Re{λ′

(α)}
,

τ = – Im{c()}+μ Im{λ′
(a)}

ω
,

β = Re{c()},

(.)

which determine the quantities of bifurcating periodic solutions on the center manifold
� at the critical value α, i.e., μ determines the directions of the Hopf bifurcation: if
μ >  (μ < ), then the Hopf bifurcation is supercritical (subcritical) and the bifurcating
periodic solutions exist for α > α; τ determines the period of the bifurcating periodic
solutions: the period increases (decreases) if τ >  (τ < ); β determines the stability of
the bifurcating periodic solutions: the bifurcating periodic solutions are stable (unstable)
if β <  (β > ).

4 Numerical simulations
In this section, we shall perform somenumerical simulations to verify the analytical results
presented in the previous sections. Let us take a = –, b = –., c = –.,M = – in system
(.) and consider the weak kernel case, i.e.,

⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) = y(t),

ẏ(t) = z(t) –
∫ 
–∞(y(t) – y(t + s))k(–s) ds,

ż(t) = –x(t) – .y(t) – .z(t) + x(t),

(.)

with k(s) = αe–αs, α > . The initial conditions are given as x() = ., y() = ., z() = .;
y(t ≤ ) = .. We can easily determine by these parameters that α

.= .. For a very
small α, when α = ., we see in Figure  that the attractor of system (.) still exists.
But when α = . < ., as all the conditions in (.) are satisfied, the equilibriumpoint
E(, , ) in system (.) is asymptotically stable, which is illustrated in Figure . When
α = α

.= ., system (.) undergoes the Hopf bifurcation at E(, , ), as illustrated
in Figure . Moreover, from the formulae (.) presented in Section , it follows thatμ >
, β < , τ > , the Hopf bifurcation is supercritical and the direction of the bifurcation is
α > α. However, as α increases, when α = . > ., the third condition in (.) does
not hold, hence the equilibrium point E(, , ) in system (.) is unstable, as illustrated
in Figure .
As compared with the former method, a chaotic model with distributed delay feedback

is more general than that with discrete delay feedback [–], because the distributed delay

http://www.advancesindifferenceequations.com/content/2012/1/166
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Figure 2 The attractor of system (4.1) still exists when α = 0.00001.

Figure 3 The equilibrium point E0(0, 0, 0) of system (4.1) is asymptotically stable when
α = 1.3 < α0 = 1.40017.
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Figure 4 When α = α0
.
= 1.40017, a Hopf bifurcation occurs near the equilibrium point E0(0, 0, 0) of

system (4.1).

Figure 5 The equilibrium point E0(0, 0, 0) of system (4.1) is unstable when α = 1.5 > α0 = 1.40017.
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becomes a discrete delay when the delay kernel is a delta function at a certain time. The
distributed delay has found widespread applications in many fields such as neural net-
work [, ], complicated real models [], the modeling of aggregative processes involving
the flow of entities with random transit times through a given process [], and so on.
Therefore, it is of considerable significance to propose distributed delays as control input
to control the chaotic system.
From the numerical simulations, we see, as the distributed delay feedback is incorpo-

rated in the chaotic Genesio system, a rich spectrum of dynamical behaviors can occur by
adjusting the mean time delay values. Chaotic behaviors vanish and the orbitally asymp-
totically stable Hopf bifurcation occurs as the mean time delay reaches a certain value.
Also, we can determine the critical mean time delay value that the Hopf bifurcation oc-
curs at, which is of great help when choosing appropriate parameter values to realize Hopf
bifurcation control.

5 Concluding remarks
In this paper, the Genesio system with distributed time delay feedback has been studied.
It has been demonstrated that the Hopf bifurcation occurs near the steady state as the
average time delay crosses the critical value. The explicit formulae for determining the
direction, stability and period of bifurcating periodic solutions have been presented by
using the normal form theory and the center manifold theorem. A numerical example is
provided to verify the theoretical results.
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