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Abstract
In this paper, we use the homotopy method to establish the existence and
uniqueness of anti-periodic solutions for the nonlinear anti-periodic problem

{
ẋ + A(t, x) + Bx = f (t) a.e. t ∈ R,

x(t + T ) = –x(t),

where A(t, x) is a nonlinear map and B is a bounded linear operator from RN to RN .
Sufficient conditions for the existence of the solution set are presented. Also, we
consider the nonlinear evolution problems with a perturbation term which is
multivalued. We show that, for this problem, the solution set is nonempty and weakly
compact inW1,2(I,RN) for the case of convex valued perturbation and prove the
existence theorems of anti-periodic solutions for the nonconvex case. All illustrative
examples are provided.

Keywords: anti-periodic solution; evolution equation; Leray-Schauder alternative
theorem; measurable selection; continuous selection

1 Introduction
Anti-periodic problems have important applications in auto-control, partial differential
equations and engineering, and they have been studied extensively in the past ten years.
For example, anti-periodic trigonometric polynomials are important in the study of in-
terpolation problems [], and anti-periodic wavelets are discussed in []. Recently, anti-
periodic boundary conditions have been considered for the Schrödinger and Hill differ-
ential operator [, ]. Also, anti-periodic boundary conditions appear in the study of dif-
ference equations [, ]. Moreover, anti-periodic boundary conditions appear in physics
in a variety of situations, see [–].
The study of anti-periodic solutions for nonlinear evolution equations was initiated by

Okochi []. Since then, many authors have been devoted to investigation of the existence
of anti-periodic solutions to nonlinear evolution equations in Hilbert spaces. For the de-
tails, see [–] and the references therein. In [], Chen studied the anti-periodic solu-
tion for the following first-order semilinear evolution equation:

⎧⎨
⎩u̇ +Au(t) + f (t,u) =  a.e. t ∈ R,

u(t + T) = –u(t),
(.)
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where A : RN → RN is a matrix, f : R× RN → RN is a continuous function satisfying f (t +
T ,u) = –f (t, –u) for all (t,u) ∈ R × RN . Here they assume that f (t,u) is a uniform bound
with respect to u and T

 ‖A‖ < . We do not need these assumptions and consider the
following semilinear anti-periodic problem:

⎧⎨
⎩ẋ +A(t,x) + Bx = f (t) a.e. t ∈ R,

x(t + T) = –x(t),
(.)

whereA : RN → RN is a hemicontinuous function satisfyingA(t+T ,x) = –A(t, –x), f : R →
RN is ameasurable function satisfying f (t+T) = –f (t) for all t ∈ R andB is a bounded linear
operator from RN to RN . We will establish some sufficient conditions for the existence and
uniqueness of anti-periodic solutions of Eq. (.) by the theory of topological degree.
In addition, we also consider the following nonlinear evolution inclusion problem:

⎧⎨
⎩ẋ +A(t,x) + Bx ∈ F(t,x) a.e. t ∈ I,

x(T) = –x(),
(.)

where I = [,T]. We refer the reader to the work of [, ]. These works focused on the
problem in which the multivalued term F(t,x) is an even lower semi-continuous convex
function with a compact assumption. But, in this paper, we prove the existence theorems
of anti-periodic solutions for the cases of a convex and of a nonconvex valued perturbation
term which is multivalued based on the techniques and results of the theory of set-valued
analysis and the Leray-Schauder fixed point theorem. As far as we know, there are few
papers which deal with this type of anti-periodic problems. For recent developments in-
volving the existence of anti-periodic solutions of differential equations, inequalities and
other interesting results on anti-periodic boundary value problems, the reader is referred
to [–] and the references therein.
On the one hand, it is well known that the neural networks have been successfully

applied to signal and image processing, pattern recognition and optimization. However,
many neural networks with discontinuous neuron activation functions appear in the theo-
retical study on dynamics of neural networks, see [, ]. In order to solve some practical
engineering problems, people also need to present new neural networks with discontinu-
ous activation functions. Therefore, developing a new class of neural networks with dis-
continuous neuron activation functions and giving the conditions of the stability are very
valuable in both theory and practice. Motivated by the above discussions, in this paper, we
present a class of neural networks with discontinuous neuron activation functions. Based
on our results, the existence and uniqueness of the equilibrium point is investigated.
On the other hand, it has been well recognized that differential inclusions, which are

certainly of their own interest, provide a useful generalization of control systems governed
by differential/evolution equations with control parameters

ẋ = f (t,x,u), u ∈ U(t,x), (.)

where the control sets U(·, ·) may also depend on the state variable x. Let F(t,x) =
f (t,x,U(t,x)). Then Eq. (.) is reduced to ẋ ∈ F(t,x), which is a particular case of the
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inclusion relation in Eq. (.). Hence, we present an example of a nonlinear anti-periodic
distributed parameter control system with a priori feedback for our results.
This paper is organized as follows. In Section , we state some basic knowledge from

multivalued analysis. In Section , we first establish the existence of anti-periodic solutions
for an evolution equation by the theory of topological degree, and then, by applying the
Leray-Schauder fixed point theorem, we prove the existence of anti-periodic solutions
for convex and nonconvex cases. Finally, two examples for our results are presented in
Section .

2 Preliminaries
For convenience, we introduce some notations as follows. In Euclidean space, (·, ·) ex-
presses an inner product, while | · | expresses the Euclidean norm. Let L([,T];RN ) de-
note the set of the map x : [,T] → RN which satisfies

∫ T
 |x| dt < ∞, and the norm in

L([,T];RN ) is denoted by ‖x‖ = (
∫ T
 |x| dt)  .We recall some basic definitions and facts

frommultivalued analysis which we shall need in what follows. For details, we refer to the
book of Hu and Papageorgiou []. Let I = [,T], (I,�) be the Lebesgue measurable space
and X be a separable Banach space. Denote

P(w)kc(X) =
{
A ⊂ X : nonempty, (weakly) compact and convex

}
.

Let A ⊂ Pf (X), x ∈ X, then the distance form x to A is given by d(x,A) = inf{|x – a| :
a ∈ A}. A multifunction F : I → Pf (X) is said to be measurable if and only if, for every
z ∈ X, the function t → d(z,F(t)) = inf{‖z – x‖ : x ∈ F(t)} is measurable. A multifunction
G : I → X\{∅} is said to be graph measurable if GrG = {(t,x) : x ∈ G(t)} ∈ � × B(X) with
B(X) being the Borel σ -field of X. On Pf (X) we can define a generalized metric known in
the literature as the ‘Hausdorff metric’, by setting

h(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}

for all A,B ∈ Pf (X). It is well known that (Pf (X),h) is a complete metric space and Pfc(X)
is a closed subset of it. When Z is a Hausdorff topological space, a multifunction G : Z →
Pf (X) is said to be h-continuous if it is continuous as a function from Z into (Pf (X),h).
Let Y , Z be Hausdorff topological spaces andG : Y → Z\{φ}. We say thatG(·) is ‘upper

semicontinuous (USC)’ (resp. ‘lower semicontinuous (LSC)’), if for all C ⊆ Z nonempty
closed, G–(C) = {y ∈ Y :G(y) ∩ C 
= φ} (resp. G+(C) = {y ∈ Y : G(y) ⊆ C}) is closed in Y . A
USC multifunction has a closed graph in Y × Z, while the converse is true if G is locally
compact (i.e., for every y ∈ Y , there exists a neighborhoodU of y such that F(U) is compact
inZ). Amultifunctionwhich is bothUSC andLSC is said to be ‘continuous’. IfY ,Z are both
metric spaces, then the above definition of LSC is equivalent to saying that for all z ∈ Z,
y → dZ(z,G(y)) = inf {dZ(z, v) : v ∈G(y)} is upper semicontinuity as R+-valued function.
Also, lower semicontinuity is equivalent to saying that if yn → y in Y as n→ ∞, then

G(y) ⊆ limG(yn) =
{
z ∈ Z : limdZ

(
z,G(yn)

)
= 

}
=

{
z ∈ Z : z = lim zn, zn ∈ G(yn),n≥ 

}
.
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A set D ⊆ L(I,X) is said to be ‘decomposable’, if for every g, g ∈ D and for every J ⊆ I
measurable, we have χJ g + χJc g ∈ D. The following lemmas are still needed in the proof
of our main theorems.

Lemma . (see []) If X is a Banach space, C ⊂ X is nonempty, closed and convex with
 ∈ C, and G : C → Pkc(C) is an upper semicontinuous multifunction whichmaps bounded
sets into relatively compact sets, then one of the following statements is true:

(i) the set � = {x ∈ C : x ∈ λG(x),λ ∈ (, )} is unbounded;
(ii) the G(·) has a fixed point, i.e., there exists x ∈ C such that x ∈G(x).

Let X be a Banach space and let L(I,X) be the Banach space of all functions u : I → X
which are Bochner integrable. D(L(I,X)) denotes the collection of nonempty decompos-
able subsets of L(I,X). Now, let us state the Bressan-Colombo continuous selection the-
orem.

Lemma . (see []) Let X be a separable metric space and let F : X → D(L(I,X)) be a
lower semicontinuous multifunction with closed decomposable values. Then F has a con-
tinuous selection.

3 Main results
3.1 The evolution equation
In this section, let

CT =
{
x|R �→ RN is continuous,x(t + T) = –x(t)

}
,

W , =
{
x ∈ CT :

∫ T



(|x| + ∣∣ẋ(t)∣∣)dt < ∞
}
,

where ẋ is the weak derivative of x.CT is a Banach space under the norm ‖x‖c =maxt∈R |x|.
Equipped with the norm

‖x‖, =
(∫ T



(|x| + ∣∣ẋ(t)∣∣)dt) 

,

W , becomes a separable Banach space. The following is our main result of this part.

Theorem . Assume the following hold:
(i) f (t + T) = –f (t) and A(t + T , –x) = –A(t,x) for all (t,x) ∈ R× RN ;
(ii) t → A(t,x) is measurable and f ∈ L([,T];RN );
(iii) for each t ∈ R, the operator A(t, ·) : RN → RN is uniformly monotone and

hemicontinuous, that is, there exists a constant p >  such that
(A(t,x) –A(t,x),x – x) ≥ p|x – x| for all x,x ∈ RN , and the map
s→ (A(t,x + sz), y) is continuous on [, ] for all x, y, z ∈ RN ;

(iv) B : RN → RN is a bounded linear operator and there exists c ∈ R+ such that

(Bx,x)≥ c|x|, ∀x ∈ RN ,

then the problem (.) has a unique T-anti-periodic solution.
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In order to complete the proof of Theorem ., we need the following lemmas.

Lemma . (see []) Suppose � is a bounded open set of a normal space X, f is compact
in � and p ∈ X\f (∂�). Then the equation f (x) = p has at least one solution in �, provided
with deg(f ,�,p) 
= .

Lemma . Consider the equation

ẋ + Bx = f (t) a.e. t ∈ R, (.)

where B : RN → RN is a bounded linear operator, and there exists c ∈ R+ such that (Bx,x)≥
c|x| for all x ∈ RN , f (t + T) = –f (t) and f ∈ L([,T];RN ). Then the problem (.) has a
unique T-anti-periodic solution.

Proof Let x be a solution of (.) satisfying the boundary value condition x() = –x(T).
Then x is a T-anti-periodic solution of (.). Denote Lx = ẋ + Bx for all x ∈ W ,, then
L :W , → L([,T];RN ) is a linear operator.
Firstly, we show L :W , → L([,T];RN ) is one to one. Suppose L(x) = L(x), then ẋ +

Bx = ẋ + Bx a.e. t ∈ R, and so ẋ – ẋ + Bx – Bx =  a.e. t ∈ R. Take an inner product
above with x – x and note that

(ẋ – ẋ,x – x) + (Bx – Bx,x – x) = .

By using integration from  to T and the relation x() = –x(T), one can see that

∫ T


(ẋ – ẋ,x – x)dt = .

Since B is a linear bounded operator, then

(Bx – Bx,x – x) ≥ c|x – x|

for some constant c > . It follows that

 =
∫ T


(Bx – Bx,x – x)dt

≥
∫ T


c|x – x| dt

= c‖x – x‖
≥ .

Hence, x = x a.e. t ∈ R.
Next, we claim that L :W , → L([,T];RN ) is surjective. For this purpose, consider the

Cauchy problem

⎧⎨
⎩ẋ + Bx = f (t),

x() = η.
(.)

http://www.advancesindifferenceequations.com/content/2012/1/165
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It is well known that the above problem has a unique solution which can be written as
follows:

x(t) = eBtη +
∫ t


eB(t–s)f (s)ds.

Since –x() = x(T), then we have that

–η = eBTη +
∫ T


eB(T–s)f (s)ds.

By hypothesis (iv), one has that (–I – eBT )– exists; therefore, when we take

η =
(
–I – eBT

)– ×
∫ t


eB(t–s)f (s)ds,

the solution of the problem (.) is an anti-periodic solution of the problem (.). This
completes the proof. �

Proof of Theorem . Consider the homotopic systems of (.),

ẋ + Bx = λf (t) – λA(t,x), (.)

where λ ∈ [, ]. Obviously, λf (t) – λA(t,x) is hemicontinuous.
First, a priori bound of the solution set is derived. We claim that there is a priori bound

in W , for the possible solution x(t) of (.). Take the inner product with x(t), and then
integrate from  to T . It follows that

∫ T


(ẋ,x)dt +

∫ T


(Bx,x)dt = λ

∫ T


(f ,x)dt – λ

∫ T



(
A(t,x),x

)
dt.

Without loss of generality, we assume A(t, ) = . Since
∫ T
 (ẋ,x)dt = , and then

∫ T


(Bx,x)dt = λ

∫ T


(f ,x)dt – λ

∫ T



(
A(t,x),x

)
dt.

By hypothesis (iii), we deduce that

c‖x‖ ≤ λ‖f ‖‖x‖,

which implies

‖x‖ ≤ M (.)

for some constantM > . Hence, there is a constant τ ∈ [,T] such that

|x(τ )| ≤ M (.)

http://www.advancesindifferenceequations.com/content/2012/1/165
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for some constantM > . By (.), one has that

(ẋ,x) = λ(f ,x) – λ
(
A(t,x),x

)
– (Bx,x)

≤ λ|f | · |x| – λp|x|.

Integrating above from τ to t, we have that
∣∣∣∣
∫ t

τ

(ẋ,x)dt
∣∣∣∣ ≤

∫ T


|f | · |x|dt ≤ ‖f ‖‖x‖.

From
∫ t
τ
(ẋ,x)dt = |x(t)| – |x(τ )|, we know

∣∣∣∣x(t)∣∣ – ∣∣x(τ )∣∣∣∣ ≤ ‖f ‖‖x‖. (.)

By (.) and (.), we obtain that there is some constant M >  (independent of λ) such
that

∣∣x(t)∣∣ ≤ (∣∣x(τ )∣∣ + ‖f ‖‖x‖
) 
 ≤ M

for any t ∈ R. Thus,

‖x‖c =max
t∈R

∣∣x(t)∣∣ ≤ M. (.)

Since the operator A is hemicontinuous, and B is a bounded linear operator, we show that

‖ẋ‖ ≤ M,

‖x‖, ≤ M,

where the constantsM,M > . The claim is proved.
Secondly, we can prove the existence of anti-periodic solutions for Eq. (.). Set

� =
{
x ∈W , : ‖x‖, <M + 

}
.

Then � is a bounded open set inW ,. By Lemma ., it is easy to see that

L– : L
(
[,T];RN) →W ,

is well defined. We define the operatorN : � →W ,, N(x) = L–(f –A(t,x)). Obviously, N
is compact. Hence, the fixed point of N in � is the anti-periodic solutions of Eq. (.). Let
hλ(x) : � × [, ]→ W ,

hλ(x) = x – λN(x).

By (.), we obtain θ ∈h(∂�). So for each λ ∈ [, ], then we have that

deg(hλ,�, θ ) = deg(h,�, θ )

= deg(id –N ,�, θ )

http://www.advancesindifferenceequations.com/content/2012/1/165
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= deg(h,�, θ )

= deg(id,�, θ ) = ,

where id is the identity. Consequently, N has a fixed point in � by Lemma .. Namely,
Eq. (.) has an anti-periodic solution.
Next, we prove the uniqueness. Suppose that x, x are two solutions of Eq. (.). Then

ẋ +A(t,x) + Bx = ẋ +A(t,x) + Bx.

So,

ẋ – ẋ +A(t,x) –A(t,x) + Bx – Bx = .

Take an inner product above with x – x and note that

(ẋ – ẋ,x – x) +
(
A(t,x) –A(t,x),x – x

)
+ (Bx – Bx,x – x) = .

By using integration from  to T and the relation x() = –x(T), one can see that

 =
∫ T



(
A(t,x) –A(t,x),x – x

)
dt +

∫ T


(Bx – Bx,x – x)dt

≥
∫ T


(c + p)|x – x| dt

= (c + p)‖x – x‖
≥ .

Hence, x = x a.e. t ∈ R. This ends the proof. �

3.2 The evolution inclusions
Let I = [,T] andC(I;RN ) be all the continuous functions from I to RN with themax norm.
Let Cβ = {v(·) ∈ C(I;RN ) : v() = –v(T)}, and W ,(I,RN ) = {u(·) ∈ Cβ : u̇(·) ∈ L(I;RN )}.
W ,(I,RN ) is a separable Banach space under the norm ‖ · ‖,.
Consider the following anti-periodic problem:

⎧⎨
⎩ẋ +A(t,x) + Bx ∈ F(t,x) a.e. t ∈ I,

x(T) = –x(),
(.)

where A : RN → RN is a hemicontinuous function, B is a bounded linear operator from RN

to RN , and F : R × RN → RN is a multifunction. By a solution x of the problem (.), we
mean a function x ∈W ,(I,RN ), and there exists a function f (t) ∈ F(t,x(t)) such that

〈
ẋ(t), v

〉
+

〈
A

(
t,x(t)

)
, v

〉
+ 〈Bx, v〉 = 〈

f (t), v
〉

for all v ∈ RN and almost all t ∈ I .

http://www.advancesindifferenceequations.com/content/2012/1/165
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In this section, we prove two existence theorems under the hypothesis that the multi-
valued nonlinearity F is convex-valued (‘convex existence theorem’) or nonconvex-valued
(‘nonconvex existence theorem’). The precise hypotheses on the data of the problem (.)
are as follows:

H(A): A : I × RN → RN is a nonlinear function such that
(i) t → A(t,x) is measurable;
(ii) for each t ∈ I , the operator A(t, ·) : RN → RN is uniformly monotone and

hemicontinuous, that is, there exists a constant p >  such that
(A(t,x) –A(t,x),x – x) ≥ p|x – x| for all x,x ∈ RN , and the map
s �→ (A(t,x + sz), y) is continuous on [, ] for all x, y, z ∈ RN .

H(B): B : RN → RN is a bounded linear operator, and there exists c ∈ R+ such that

(Bx,x)≥ c|x|, ∀x ∈ RN .

H(F): F : R× RN → Pk(RN ) is a multifunction such that
(i) (t,x)→ F(t,x) is graph measurable;
(ii) for almost all t ∈ I , x → F(t,x) is LSC;
(iii) there exists an nonnegative function b(·) ∈ L+(I) and a constant c >  such

that

∣∣F(t,x)∣∣ = sup
{‖f ‖ : f ∈ F(t,x)

} ≤ b(t) + c|x|α ,

for all x ∈ RN , t ∈ T , where α <  or α =  with c < c (c in H(B)).
H(F): F : I × RN → Pkc(RN ) is a multifunction such that

(i) (t,x) → F(t,x) is graph measurable;
(ii) for almost all t ∈ I , x→ F(t,x) has a closed graph; and H(F)(iii) holds.

Theorem . If hypotheses H(A), H(B) and H(F) hold, then the problem (.) has a so-
lution x ∈W ,(I,RN ).

Proof Let Lx = ẋ + A(t,x) + Bx for all x ∈ W ,(I,RN ). By Theorem ., we have L :
W ,(I,RN ) → L([,T];RN ) is one to one and surjective, and so L– : L([,T];RN ) →
W ,(I,RN ) is well defined. So, we prove that

L– : L
(
[,T];RN) → L

(
[,T];RN)(

W ,(I,RN) ⊂ L
(
[,T];RN))

is completely continuous (i.e., it is continuous andmaps bounded sets into relatively com-
pact sets). To this end, let K ⊂ L([,T];RN ) be bounded. We shall show that L–(K) is
relatively compact in L([,T];RN ). For this purpose, let x ∈ L–(K), then x = L–(u) with
u ∈ K . By (.), we have ‖x‖ ≤ c‖Lx‖ = ‖u‖ ≤ c|K | = c sup{‖u‖ : u ∈ K} < +∞ and
‖ẋ‖ ≤ ‖u‖ + ‖A(x)‖ + ‖Bx‖ ≤ M for some constant M > . From these bounds we
infer that L–(K) is bounded in W ,(I,RN ). But W ,(I,RN ) is compactly embedded in
L([,T];RN ). Therefore, L–(K) is relatively compact in L([,T];RN ). Also, from the fact
that L– is a compact operator, L– : L([,T];RN ) → L([,T];RN ) is continuous.
Next, let N : L([,T];RN ) → L([,T];RN ) be the multivalued Nemitsky operator corre-

sponding to F and N be defined by N(x) = {v ∈ L([,T];RN ) : v(t) ∈ F(t,x(t))} a.e. on I .

http://www.advancesindifferenceequations.com/content/2012/1/165
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We claim that N(·) has nonempty, closed, decomposable values and is LSC. The closed-
ness and decomposability of the values of N(·) are easy to check. For the nonemptiness,
note that if x ∈ L([,T];RN ), by hypothesis H(F)(i), (t,x) → F(t,x) is graph measurable,
so we apply Aumann’s selection theorem and obtain a measurable map v : I → RN such
that v(t) ∈ F(t,x(t)) a.e. on I . By hypothesis H(F)(iii), v ∈ L([,T];RN ). Thus for every
x ∈ RN , N(x) 
= ∅. To prove the lower semicontinuity of N(·), we only show that every
u ∈ L([,T];RN ), x → d(u,N(x)) is a USC R+-valued function. Note that

d
(
u,N(x)

)
= inf

{‖u – v‖ : v ∈N(x)
}

= inf

{(∫ T



∣∣u(t) – v(t)
∣∣ dt) 


: v ∈N(x)

}

=
(∫ T


inf

{∣∣u(t) – v(t)
∣∣
 : v ∈ F(t,x)

}
dt

) 


=
(∫ T


d
(
u(t),F(t,x)

) dt) 


(see Hiai and Umegaki [] Th. .). We shall show that for every λ ≥ , the superlevel set
Uλ = {x ∈ L([,T];RN ) : d(u,N(x)) ≥ λ} is closed in L([,T];RN ). Let {xn}n≥ ⊆ Uλ and
assume that xn → x in L([,T];RN ). By passing to a subsequence, if necessary, we may
assume that xn(t) → x(t) a.e. on I as n → ∞. By hypothesis H(F)(ii), x → d(u,F(t,x)) is
an upper semicontinuous R+-valued function. So, via Fatou’s lemma, we have

λ ≤ lim
[
d
(
u,N(xn)

)] = lim
∫ T



[
d
(
u(t),F(t,xn)

)] dx
≤

∫ T


lim

[
d
(
u(t),F(t,xn)

)] dx
≤

∫ T



[
d
(
u,F(t,x)

)] dt = [
d
(
u,N(x)

)].
Therefore, x ∈Uλ and this proves the LSC of N(·).
We apply Lemma . and obtain a continuous map f : L([,T];RN ) → L([,T];RN )

such that f (x) ∈ N(x). To finish our proof, we only need to solve the fixed point problem:
x = L–f (x).
We claim that the set � = {x ∈ L([,T];RN ) : x = σL–f (x),σ ∈ (, )} is bounded. Let

x ∈ �, then x = σL–f (x). By hypothesis H(F)(iii), we can derive

∣∣f (x)∣∣ ≤ b(t) + c|x|α ,

then

∥∥f (x)∥∥ ≤ ‖b‖ + ‖c|x|α‖
≤ ‖b‖ +

(‖c‖ 
–α

∥∥|x|α∥∥ 
α

)/
= ‖b‖ + ‖c‖ 

–α
‖x‖α



= ‖b‖ + cT


–α ‖x‖α
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with α < . By (.), we get that

‖x‖ ≤ c‖f ‖,

for some constant c > . So, we have that

‖x‖ ≤ c‖b‖ + ccT


–α ‖x‖α
 .

Thus, we can find a constant c >  such that ‖x‖ ≤ c. If α = , we can also find a constant
c̄ = ‖b‖

c–c
>  such that ‖x‖ ≤ c̄. Similar to the estimation of (.), we have that

‖x‖c =max
t∈R

∣∣x(t)∣∣ ≤ c, (.)

for some constant c > . So, � is bounded in L([,T];RN ). Invoking Leray-Schauder’s
alternative theorem, we obtain there exists x ∈ W ,(I,RN ) such that x = L–f (x), x is a
solution of the problem (.). This ends the proof. �

Theorem . If hypotheses H(A), H(B) and H(F) hold, then the problem (.) has a so-
lution x ∈W ,(I,RN ). Moreover, the solution set is weakly compact in W ,(I,RN ).

Proof The proof is as that of Theorem .. So, we only present those particular points
where the two proofs differ.
In this case, the multivalued Nemistsky operator N : L([,T];RN ) → L([,T];RN ) has

nonempty closed, convex values in L([,T];RN ) and is USC. The closedness and con-
vexity of the values of N(·) are clear. To prove the nonemptiness, let x ∈ W ,(I,RN ) and
{sn}n≥ be a sequence of step functions such that

sn(t)→ x and
∣∣sn(t)∣∣ ≤ ∣∣x(t)∣∣ a.e. on I.

Then by virtue of hypothesis H(F)(i), for every n ≥ , t → F(t, sn) admits a measurable
selector fn(t). From hypothesis H(F)(iii), we have that there exists a constant c >  such
that

sup
fn∈F(t,sn)

‖fn‖ ≤ ‖b‖ + c‖x‖α
 .

So {fn}n≥ is uniformly integrable. By the Dunford-Pettis theorem, and by passing to a
subsequence if necessary, we may assume that fn → f weakly in L([,T];RN ). Then from
Theorem . in [], we have

f (t) ∈ conv lim
{
fn(t)

}
n≥ ⊆ conv limF(t, sn) ⊆ F(t,x) a.e. on I (.)

the last inclusion being a consequence of hypothesisH(F)(ii). So f ∈N(x). Thus we prove
the nonemptiness of N(·).
Next, we show that N(·) is USC from W ,(I,RN ) into L([,T];RN )w. Let C be a

nonempty and weakly closed subset of L([,T];RN ). We need to show that the set

N–(C) =
{
x ∈D(L) :N(x)∩C 
= φ

}

http://www.advancesindifferenceequations.com/content/2012/1/165
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is closed. Let {xn}n≥ ⊆ N–(C) and assume xn → x in W ,(I,RN ). Passing to a subse-
quence, we can get that xn(t) → x(t) a.e. on I . Let fn ∈ N(xn) ∩ C, n ≥ . Then by virtue
of hypothesis H(F)(iii) and the Dunford-Pettis theorem, we may assume that fn → f ∈ C
weakly in L([,T];RN ). As before, we have

f (t) ∈ conv lim
{
fn(t)

}
n≥ ⊆ conv limF(t,xn)⊆ F(t,x) a.e. on I,

then f ∈N(x)∩C, i.e.,N–(C) is closed inW ,(I,RN ). This proves the upper semicontinuity
of N(·) fromW ,(I,RN ) into L([,T];RN )w.
We consider the following fixed point problem:

x ∈ L–N(x).

Recalling that L– : L([,T];RN ) → L([,T];RN ) is completely continuous, we see that
L–N : L([,T];RN ) → Pkc(L([,T];RN )) is USC and maps bounded sets into relatively
compact sets. We easily check that the set

� =
{
u ∈ L

(
[,T];RN)

: u ∈ σL–N(u),σ ∈ (, )
}

is bounded, as in the proof of Theorem .. Invoking Lemma ., there exists u ∈
W ,(I,RN ) such that u ∈ L–N(u). Evidently, this is a solution of the problem (.).
Let S denote the solution set of the problem (.). As in the proof of Theorem ., we

have that |S| = sup{‖u‖, : u ∈ S} ≤ M, whereM > . By virtue of hypothesisH(F)(iii) and
the Dunford-Pettis theorem, wemay assume that un → uweakly inW ,(I,RN ). As before,
we have

Lu ∈ conv lim {Lun}n≥ ⊆ conv limF(t,un) ⊆ F(t,u) a.e. on I,

then u ∈ S, hence S is weakly compact inW ,(I,RN ). �

4 Examples
As an application of the previous results, we introduce two examples. Consider a class of
neural networks described by the system of differential equations

ẋ = –Bx(t) +Ag(x) + I(t), (.)

where x = (x,x, . . . ,xN )T ∈ RN is the vector of neuron state, A = diag(a,a, . . . ,aN ) is an
N × N diagonal matrix, where ai < , i = , , . . . ,N , are the neuron self-inhibitions; B =
(bij) is an N × N positive definite matrix, which represents the neuron interconnection
matrix. Moreover, g(x) = (g(x), g(x), . . . , gN (xN ))T : RN → RN is a mapping where gi : i =
, , . . . ,N , represents the neuron input-output activation and I(t) = (I(t), I(t), . . . , IN (t))T :
R → RN is the mapping of neuron inputs.
We set A(t,x) = –Ag(x). It is easy to check A(t,x) satisfies the condition of Theorem ..

Moreover, I(t) is bounded and B is a positive definite matrix. Thus, by Theorem . we
easily obtain the following theorem.

http://www.advancesindifferenceequations.com/content/2012/1/165
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Theorem . If for any x, x̄ ∈ RN , there exists a constant α ∈ R+ such that (g(x) – g(x̄),x –
x̄) ≥ α|x – x̄|, and g(–x) = –g(x), I(t + T) = –I(t) for all t ∈ R, x ∈ RN , then the problem
(.) has a unique anti-periodic solution.

Discontinuous dynamical systems, particularly neural networks with discontinuous ac-
tivation functions, arise in a number of applications. Further, we need the following as-
sumptions.

H(C): We have Ii ∈ �, for any i = , , . . . ,N , where� denotes the class of functions fromRN

to R which are monotone nondecreasing bounded and have at most a finite number
of jump discontinuities in every compact interval.

We note that if I satisfies H(C), then any Ii, i = , , . . . ,N , possesses only isolated jump
discontinuities where Ii is not necessary defined. Hence for all x ∈ RN , we have

�
[
I(x)

]
=

([
I

(
x–

)
, I

(
x+

)]
,
[
I

(
x–

)
, I

(
x+

)]
, . . . ,

[
IN

(
x–N

)
, IN

(
x+N

)])
where Ii(x–i ) = limε→xi Ii(ε), Ii(x

+
i ) = limε→xi Ii(ε). Thus the differential equations (.) be-

come the following differential inclusions:

ẋ ∈ Ag(x) – Bx(t) +�
[
I(x)

]
. (.)

The existence and the stability of the equilibrium point of (.) were first discussed in
[] (I(t) is constant). In [], the authors proved the existence of periodic solutions of
(.) when I(t) is the continuous periodic input and g(x) is discontinuous.
We set F(t,x) = �[I(x)], it is easy to check F(t,x) satisfies H(F). Thus, by Theorem .,

we obtain the following theorem.

Theorem . If for any x, x̄ ∈ RN , there exists a constant α ∈ R+ such that (g(x) – g(x̄),x –
x̄) ≥ α|x – x̄|, and H(C) hold, then the problem (.) has a nonempty set of solutions x ∈
W ,(I,RN ).

Next, we present an example of a nonlinear anti-periodic distributed parameter control
system, with a priori feedback (i.e., state dependent control constraint set). Let T = [,b],
ẋ = (ẋ, ẋ, . . . , ẋN ). We consider the following control system:

⎧⎪⎪⎨
⎪⎪⎩
ẋ + a(t,x)x + Bx = g(t,x)u(t) a.e. t ∈ T ,

x() = –x(b)

u(t) ∈ U(t,x(t)) a.e. t ∈ T ,

(.)

where B is a positive definite matrix. The hypotheses on the data (.) are as follows:

H(a): a : T ×RN → R+, g : T × RN → R are Carathéodory functions such that, for almost
all t ∈ T ,

 < θ ≤ a(t,x)≤ θ,∣∣g(t,x)∣∣ ≤ η(t) + η(t)|x|α ,

http://www.advancesindifferenceequations.com/content/2012/1/165
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with θ, θ > ,  < α < , η(t) ∈ L+(T), η(t) ∈ L∞(T).
H(U): U : T × RN → Pk(RN ) is a multifunction such that

(i) for all x ∈ RN , t →U(t,x) is measurable;
(ii) for all t ∈ T , x →U(t,x) is h-continuous;
(iii) for almost all t ∈ T and all x ∈ RN , |U(t,x)| ≤ γ , with γ > .

Let A : T × RN → RN be the operator defined by A(t,x) = a(t,x)x. Evidently, using hy-
pothesis H(a), it is straightforward to check that A satisfies hypothesis H(A), B satisfies
hypothesis H(B). Also, let F : T × RN → Pk(RN ) be defined by

F(t,x) =
{
y ∈ RN : y(t) = g

(
t,x(t)

)
u(t),u(t) ∈U

(
t,x(t)

)
, a.e. on T

}
.

Using hypothesesH(a) andH(U), it is straightforward to check that F satisfies hypothesis
H(F).
Rewrite the problem (.) in the following equivalent evolution inclusion form:

⎧⎨
⎩ẋ +A(t,x(t)) + Bx ∈ F(t,x) a.e. t ∈ T ,

x() = –x(b).
(.)

We can apply Theorem . on the problem (.) and obtain:

Theorem . If hypotheses H(a) and H(U) hold, then the problem (.) has a solution
x ∈W ,(I,RN ).
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