Park and Saadati Advances in Difference Equations 2012, 2012:162 ® Advances in Difference Equations
http://www.advancesindifferenceequations.com/content/2012/1/162 a SpringerOpen Journal

RESEARCH Open Access

Approximation of a generalized additive
mapping in multi-Banach modules and
isomorphisms in multi-C -algebras: a
fixed-point approach

Choonkil Park! and Reza Saadati?’

“Correspondence: rsaadati@eml.cc
’Department of Mathematics, Iran
University of Science and
Technology, Tehran, Iran

Full list of author information is
available at the end of the article

@ Springer

Abstract

Let X, Y be vector spaces. It is shown that if an odd mapping f: X — Y satisfies the
functional equation

rf<w)+ y ff(M)

r _ r
1(j)=0,1
XL =l
d
=(g1CG=g1 G + 1) Z f(x)) (0.1)
j=1

then the odd mapping f: X — Y is additive, and we use a fixed-point method to
prove the Hyers-Ulam stability of the functional equation (0.1) in multi-Banach
modules over a unital multi-C -algebra. As an application, we show that every almost
linear bijection h: A — B of a unital multi-C-algebra A onto a unital
multifC*falgebra Bisa C*falgebra isomorphism when h(f—: uy) = h(f—:u)h(y) for all
unitaries u € U(A),ally e A,andn=0,1,2,....

MSC: Primary 39B52; 46L05; 47H10; 47B48

Keywords: C -algebra isomorphism; fixed point; generalized additive functional
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1 Introduction
Throughout this paper we assume that r is a positive rational number and d, [ are integers
with1</< %’.

Let X and Y be Banach spaces. Consider a mapping f : X — Y such that f(¢x) is continu-
ousin ¢ € R for each fixed x € X, and assume that there exist constants § > 0 and p € [0,1)
with

[f e +9) = f@) =) < 0(Il” + lIylP), %y €X.
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Rassias [1] showed that there exists a unique R-linear mapping 7 : X — Y such that

@ -Tw] = 5=

lx|?, xeX.

Gévruta [2] extended the above theorem as follows: let G be an Abelian group, Y be a

Banach space and put

oo
ox,y) = Z 9(2x,2y) <o0, xyeG.
j=0

If f: G — Y is a mapping satisfying

Ifx+9) —f@x) -fO)| <o), xyeG,

then there exists a unique additive mapping 7' : G — Y such that

)—A

/@) -T@)| =

—o(x, xe@q.

5% P (x,x),

Park [3] applied Gévruta’s result to linear functional equations in Banach modules over a
C’-algebra. Several functional equations have been investigated in [4, 5] and [6]. In 2006
Baak, Boo and Rassias [7] solved the following functional equation:

A(52). 3 o(E0

21:1 ‘(I =

d
=(421C —a-1 Ca +1) Zf(xj) (L1)

j=1

(any solution of (1.1) will be called a generalized additive mapping) and proved its Hyers-
Ulam stability in Banach modules over a unital C -algebra via the direct method. These
results were applied to investigate C -algebra isomorphisms in unital C"-algebras.

In this paper, we prove the Hyers-Ulam stability of the functional equation (1.1) in multi-
Banach modules over a unital multi-C"-algebra via the fixed-point method. These results

are applied to investigate C’-algebra isomorphisms in unital multi-C" -algebras.

2 Fixed-point theorems
We recall two fundamental results in the fixed-point theory.

Theorem 2.1 [8, 9] Let (X,d) be a complete metric space and let ] : X — X be strictly

contractive, i.e.,
dx,Jy) < Ld(x,y), xy€X

or a Lipschitz constant L < 1. Then
P
(1) the mapping ] has a unique fixed point x" € X,
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(2) the fixed point x is globally attractive, i.e.,

lim J"x=x, xe€X,

n—00

(3) the following inequalities hold:

for all x € X and nonnegative integers n.

Let X be a non-empty set. A function d : X x X — [0, 00] is called a generalized metric
on X if for any x,y,z € X, we have:

(1) dx,y)=0ifand onlyifx =y,

(2) d(x,y) =d(y, %),

(3) d(x,2) <d(x,y) +d(y,z2).

Theorem 2.2 [8,10] Let (X, d) be a complete generalized metric space and let ] : X — X be
a strictly contractive mapping with a Lipschitz constant L < 1. Then, for each x € X, either

d(]”x,]””x) =00, n>0

or there exists a positive integer ny such that:
(1) dy"x,J"x) < 00, n = no,
(2) the sequence (J"x) converges to a fixed point y of ],
(3) y' is the unique fixed point of ] in the set Y = {y € X : d(J"x,y) < 0o},
4) diy,y) < 77d0. ) ye Y.

3 Multi-normed spaces

The notion of a multi-normed space was introduced by Dales and Polyakov [11]. This con-
cept is somewhat similar to an operator sequence space and has some connections with
operator spaces and Banach lattices. Motivations for the study of multi-normed spaces
and many examples are given in [11-13].

Let (£, ]| - ||) be a complex normed space and k € N. We denote by £ the linear space
ED---®E consisting of k-tuples (x3, . ..,xx), where xy, ..., x; € £. The linear operations on
E¥ are defined coordinate-wise. The zero element of either £ or £ is denoted by 0. Finally,
we denote by Ny the set {1,...,k} and by X the group of permutations on k symbols.

Definition 3.1 [11, 14] A multi-norm on {£X: k € N} is a sequence

(116 = (I - s : k € N)

such that || - ||x isanorm on EK for k € N, || - || = || - ||, and for any integer k > 2, we have
(AD) 1oy, s %o@)llx = 161, )k 0 € Ty X150, %% € E,
(A2) [I(arxt, .. oux) [k < (Maxeny eI, ..o 1o 0, - 0k € Coxy.xp €E,
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(A3) Nl(xr, .21, Ok = 11y -y X1 k=15 %15+ s 41 €,
(Ad) [1Gers s -t %) Ik = 1L 2o Xkt o1y X1+ ¥ko1 €
A sequence ((EX, || - |lx) : k € N) is then said to be a multi-normed space.

Lemma 3.2 [11, 13] Suppose that (EX, | - |Ix) : k € N) is a multi-normed space. Then for
any k € N, we have
(ﬂ) ”(xr“-rx)”k = ”x”» X € 5,

k
(b) maxen, [l < (en, .. o) le < Doy ill < kmaxieny 1]l %1, ..., %% € E.

From Lemma 3.2(b), it follows that if (£, | - ||) is a Banach space, then (€5, || - [l) is a
Banach space for each k € N (in this case we say that (€%, | - |Ix) : kK € N) is a multi-Banach
space).

Now, we recall two important examples of multi-norms (see [11, 12]).

Example 3.3 The sequence (|| - ||z : k € N) on {EX : k € N} defined by

”(xl,...,xk) ”k = 51611%2( lx:ll,  *1,...,%k €E

is a multi-norm called the minimum multi-norm. The terminology ‘minimum’ is justified

by property (b) from Lemma 3.2.

Example 3.4 Let {(|| - ¥ : k € N) : a € A} be a (non-empty) family of all multi-norms on
{EF: k e N}. For k € N, set

|||(x1,...,xk)H|k = suE” (%1, + 005 %0) :, X1,...,% €E.
oE.

Then (||| - lllx : kK € N) is a multi-norm on {EX : k € N} called the maximum multi-norm.

Lemma 3.5 [14] Suppose that k € N and (x,,...,x;) € EX. Foreachj e {1,...,k}, let (x’;,)neN
be a sequence in £ such that lim,,_, o, %), = x;. Then for each (y1,...,yx) € EX we have

lim (xil — 1Kk = Yk) = %1 = Y100 s Xk — V).

n—00

Definition 3.6 [12, 14] Let (£, | - |lx) : kK € N) be a multi-normed space. A sequence
(®4)nen in & is said to be a multi-null sequence if for each ¢ > 0, there exists an 7y € N
such that

Sup||(xm~~rxn+k—l)”k<8; n=ng.
keN

We say that the sequence (x,),en is multi-convergent to x € £ and write lim,_, o x, = % if
(%y — %) en is a multi-null sequence.

Definition 3.7 [11, 14] Let (A, | - ||) be a normed algebra such that ((AX, || - [|x) : k € N) is
a multi-normed space. Then ((AX, || - ||x) : k € N) is called a multi-normed algebra if

”(tllbl,...,akbk)”kf ||(a1,...,ak)||k- H(bl,...,bk) keN,al,...,ak,bl,...,bkeA.

1
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The multi-normed algebra ((A%, | - ||x) : k € N) is said to be a multi-Banach algebra if
((A5 1] - 1lx) : k € N) is a multi-Banach space.

Example 3.8 Let p, g be such that 1 <p <g < oo and A = ¢#. The algebra A is a Banach
sequence algebra with respect to coordinate-wise multiplication of sequences (see Exam-
ple 4.1.42 of [15]). Let (|| - |lx : k € N) be the standard (p, g)-multi-norm on {AX : k € N}
(see [11]). Then ((AX, || - |lx) : kK € N) is a multi-Banach algebra.

Definition 3.9 Let (A%, | - ||x) : k € N) be a multi-Banach algebra and assume that A is a
(unital) C -algebra. If the involution * satisfies

keN,ay,...,ar € A,

(@i, = e
then ((AX, || - [x) : k € N) is called a (unital) multi-C’-algebra.

Definition 3.10 Let ((A%, |- ) : kK € N) be a multi-Banach algebra and (X%, || - ) : k € N)
be a multi-Banach space. Assume also that X is a Banach left module over .A. We say that
(X%l - ) : k € N) is a multi-Banach left module over ((AX, || - ||x) : k € N) if there is an
M > 0 such that

||(d1xl)~-;ak~xk)||kEM”(alw--:ﬂk)”k' ||(xlt'~¢xk)||k
forallkeN, ay,...,ar € A, x1,...,% € X.

4 Stability of an odd functional equation in multi-Banach modules over a
multi-C"-algebra

Throughout this section, we assume that ((AX, || - ||x) : k € N) is a unital multi-C"-algebra,

and (X5, || - lx) : k € N) and (Y5, || - ll«) : k € N) are multi-Banach left modules over ((A¥,

Il - lx) : k € N). Moreover, by U(A) we denote the unitary group of A.

Lemma 4.1 [7] Let X and Y be vector spaces. An odd mapping f : X — Y satisfies (1.1) for
all x1,...,x4 € X ifand only if f is additive.

Corollary 4.2 [7] Let X and Y be vector spaces. An odd mapping f : X — Y satisfies

o (22) st 100, myex
if and only if f is additive.

Given a mapping f : X — ), we set

Dif (%1, %4) : —rf<21d1 x,) 3 f< Y (-1 ux,)

1(j)=0,1
Y=t

d
— (421G =41 G + 1) Z uf (x))
j=1

forall u € U(A) and x1,...,x5 € X.
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Theorem 4.3 Letr #2 and f: X — Y be an odd mapping such that for every k € N there
is a function ¢y : X** — [0, 00) with

| 7 2/ o) o) 2/
im—, X1l eees 5 K1ldr oo es SKkls oo or X =0, 4.1
j—>002/¢k<r1 oo Rl e e kd) (4.1)
”(Duf(xll’---rxld)’-uyDuf(xkli---’xkd))Hk

< QX1 e X1y Xk - - Kkd) (4.2)

forallu e U(A) and x11,...,%14,..., %11, - .., %kd € X. If there exists an L <1 such that

d d

2 2 2 2
Dk —*11» _xll)“'roxu'r_xkl) _xkl)“'ro
r r r r

d d

2
= ;L(pk(xllrxlb“w();--~1xk17xklr'~10)

forallk e Nand xy,...,x1q € X, then there is a unique A-linear generalized additive map-
ping L: X — Y with

1 (£G) =f ), o L) —f () |
1

< (pk(xlrxlyO;H')Oy“«’xk»xk;0;~~»0) (43)
2(42C1 =42 C 2 + 1)1 - L) — —
d-2 times d-2 times

forallk e Nand x,,...,x € X.
Proof Put

X={L: X =)}
and

d(L,h) = inf{C eR,: || (,C(xl) —h(x1),..., Llxx) —h(xk)) ||k
d d
< C(pk(xl,xl,o,...,0,...,xk,xk,0,...,0),k eN,xp,...,xc € X}

for all £,/ € X. It is easy to show that (X, d) is a complete generalized metric space.
Define a mapping / : X — X by

JL(x) = gﬁ(%yc) LeX,xeX.

Analysis similar to that in the proof of Theorem 3.1 in [8] (see also the proof of Lemma 3.2
in [12]) shows that

dJL,Jh) <Ld(L,h), L,heX.

Page 6 of 14
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Fix k € N. Putting u =1 € U(A), x1 =xn =x, and x;3 =--- =x;y =0 for i € {1,...,k} in
(4.2), we have

[ (20) 20 () - 0)

< 1
d2C =42 Cp+1

k

(pk(xl;xl,0,-..,0,...,xk,xk, O)“"O))
—_—— —_——

d-2 times d-2 times

because f isodd and t:=4_5 C;—3-2 Cp2 + 1 =41 C; —4-1 Cj_1 + 1. We thus get

H (f(xl) - Ef@xl) ) - 5f(§xk))

30,00, X%, 0,...,0),  Xq,...,x0 € X,
——

k

’
N

1
< —@r(x1,%1,0,...
= 2t§0k( 1, %1

d-2 times d-2 times

and therefore,

1
aif,Jf) < % (4.4)

Consequently, by Theorem 2.2, there exists a mapping £: X — J such that
(1) £ is a fixed point of ], i.e.,

r

2 2
E(;x) =—L(x), xei, (4.5)
and £ is unique in the set
Y= {EeX:d(f,£)<oo}.

This means that £ is a unique mapping satisfying (4.5) such that there exists a C € (0, 00)
with

1(L@1) = f @), ... L) = f () Hk < Cor(x1,%1,0,...,0,..., %K %, 0,...,9)

d-2 times d-2 times

forallk e Nand xq,...,x € X.
(2) d(J"f, L) — 0 as n — oo. This implies the equality

lim ﬁ (i—nx) =Lx) xei. (4.6)

(3) d(f, L) < X-d(f,Jf), which together with (4.4) gives

1-L

W)= 5t o

and therefore, inequality (4.3) holds for all x;,...,x, € X.


http://www.advancesindifferenceequations.com/content/2012/1/162

Park and Saadati Advances in Difference Equations 2012, 2012:162 Page 8 of 14
http://www.advancesindifferenceequations.com/content/2012/1/162

Next, note that the fact that the mapping f is odd and (4.6) imply that £ is odd. Moreover,
by (4.1) and (4.2), we get

|| (Dlﬁ(xllr v ;xld); v ,Dlﬁ(xkl, cee ’xkd)) “k

2" 2" 2"
<D1f< LIVERE r—xld>1---)le(r_nxk11---) r_nxkd>)

. r" 2" 2" 2" 2"
< —_— — —_— —_— — =
im Ok rnxu,...,rnxld,...,rnxkl,...,rnxkd 0

n—>o0 QN

k

for all k e Nand xy3,...,%14,- ., %K1, - . -, Xka € X, and therefore, L is a generalized additive

mapping.
Fix u € U(A) and x € X. Using (4.1) and (4.2), we have

[(DuL(x0,..,0),., DL, ..., O)

d-1 times d-1 times
. 2" 2"
= hm—n (DJ(—nx,O,...,O yeeos Dyf —nx,O,...,O
n—oo 2 r h,_/ 7 R/—/ X
d-1 times d-1 times

r’ 2" 2"

< lim —¢x|( —«,0,...,0,...,—x,0,...,0 ) =0,
n—o00 27 M —— M ——
d-1 times d-1 times

and consequently,

ux
(@-1C1 a1 Cr1 + l)fﬁ(T) = (4-1C1 =g Cro1 + DuLl(x).

Since L is a generalized additive mapping, from Lemma 4.1 it follows that £ is additive,
and therefore,

L(ux) = rc(”—r") —ul(x), wel(A),xecdX.

As in the proof of Theorem 3.1, in [7] one can now show that £ is an 4-linear mapping.
O

Corollary 4.4 Letr #2 and 0,p € (0,00). Assume also that p > 1 for r > 2, and p <1 for
r<2.Iff : X — Y is an odd mapping such that

d
| (Duf @11y 210), o, Dif i1, 300)) | < (anl,np -+Z||xk,»||f’)
j=1

forallue U(A), keN, and x11,...,%14,- .., %K1, - - - »Xka € X, then there exists a unique A-
linear generalized additive mapping L : X — ) with

(L) = fer), s Llxx) = f ) ||
- rP-1o
T (P =2 (40 Cr—gn Crp + 1)

(o ll? + - - + [l [17)

forallk e Nandx,,...,x € X.
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Proof Putting L = 3;,7—: and

(pk(xlh cesKidy oo s Xkl o o kad)
d d
=0 <Z NSRS ||xk;||1’),
j=1 j=1

forall k e Nand xy3,...,%14,...,%k1, ..., %kq € X, in Theorem 4.3, we get the desired asser-
tion. O

Theorem 4.5 Let r #2. Let f : X — Y be an odd mapping for which there is a function
@ XX 5 [0,00) such that

2 (v v v 7
llm— —X1lseeer =Kldseeer Kkly e oo X =0,
fagd 7190(2/ 11 > 1d > k1 > kd)
|| (Dl»tf(xllw~')xld)t'"rDuf(x/d;“')xkd)) ||k

f(P(xlly~~,x1d:---;xk1;---;xkd) (4’7)

for all u € U(A) and all x1,...,%14, ..., %k15---,%ka € X. If there exists an L <1 such
that

d d d

roor r r r r
@ Exu; Exu, .0, Exm; §x217---’07 cees Exkb Exklr---’o

d d d

r
S EL(p(xllixllr”oy01x21:x21!'~~:0y~~:xk1!xk1’-~y0)

for all x11,%51,...,x10 € X. Then there exists a unique A-linear generalized additive map-
ping L: X — Y such that

iﬂg” (L) =f @), L) —f(0) |

L

<su o(x1,%1,0,...,0,..., %%, 0,...,0)
keg 24 2Cl—g2 Cro+ 1) A1) V222 —

d-2 times d-2 times
forall xy,...,xx € X.
Proof Note that f(0) = 0 and f(—x) = —f(x) for all x € X since f is an odd mapping.

Let u =1 € U(A). Putting 3 = x5 =% and ;3 = --- = %, = 0, 1 < i < k in (4.7), we
have

H (rf(%m) o), ..,rf(éxk) - 2f<xk>)

< 1
d2C =42 Cy+1

k

o(x1,%1,0,...,0,...,%,%,0,...,0).
—— ——

d-2 times d-2 times

Page 9 of 14
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Letting ¢t :=4_5 C; —4-2 Cj_2 + 1, we get

H (f(xl) - Ef(%x) ) - %f(gxk»

k
- 1 r o r 0 0 r r 0 0
—o| =1, =%1,0,...,0,..., =%, =%, 0,...,
=P\l D eyt D D
d-2 times d-2 times
L
S_(p(xl,xl,O,...,O,...,xk,xk,0,...,0)
2t — — N e’
d-2 times d-2 times
for all xy,...,x, € X.
The rest of the proof is similar to the proof of Theorem 4.3. d

Corollary 4.6 Letr <2, and let 6 and p > 1 be positive real numbers, or let r > 2, and let 6
and p <1 be positive real numbers. Let f : X — Y be an odd mapping such that

d
| (Duf G s %10), -, D Gty -, 62)) | < (anl,np -+Z||xk,-||P)
j=1

forallu € U(A)and all x11,...,%14, ..., %1, ..., %kq € X. Then there exists a unique A-linear
generalized additive mapping L : X — Y such that

sup|[(L(x1) —f (%1), ..., L) —f (x)) |,

keN

P10
<su
keg (271 =P ) (42Cr =42 Cia + 1)

(lall? + - -+ [l 17)
forallx e X.

Proof Define

d
QXL H1ds o r XKkl Fkd) (anl,np -+Z||xk,-||1’).
j=1

Putting L = ;—j in Theorem 4.5, we get the desired result. O
Now we investigate the Hyers-Ulam stability of linear mappings for the case d = 2.

Theorem 4.7 Let r #2. Let f : X — Y be an odd mapping for which there is a function
@ X% — [0, 00) such that

vy 2y Y
]grgoww( XY K ;n) =

(o7 () o oy () o - ) ) |

< (p(xliyl;-u)xk;yk) (4‘8)

Page 10 of 14
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forallu e U(A) and all x1,...x1,51 ..., yx € X. If there exists an L < 1 such that
2 2 2 2 2 2 2
P\ X X X~y b 6 | S L, 21, 00,0, X K)
ror o r r

for all x1,...,xr € X. Then there exists a unique A-linear generalized additive mapping
L:X — Y such that

iu§|| (L) = f 1) L) = fx0)) |

@1, %1, .., Xiey X1)

L
su
= en2(-1L)

forallx,...,x € X.

Proof Letu =1 € U(A). Putting x = y in (4.8), we have

(4(%9@1) _ 2f(x1),...,rf(%xk> - 2f(xk)>

forallx € X. So

< @(X1, X1, 0, Xk Xk )
k

r (2 r (2 1
-—fl - ey -=f| - < - 3 X1y e o3 Xks
H (f(xl) 2f<rx1>, S (i) 2f(rxk)) = S PR, X X)
forallx € X.
The rest of the proof is the same as in the proof of Theorem 4.3. d

Corollary 4.8 Letr>2, and let 6 and p > 1 be positive real numbers, or let r < 2, and let 0
and p <1 be positive real numbers. Let f : X — Y be an odd mapping such that

H( 7 () - o) = e () <) - ) )

k
<60 (lal” + lly;11?)
j=1

k

forallu € U(A) and for all xy,...,xx € X. Then there exists a unique A-linear generalized
additive mapping L : X — Y such that

r’-16 k
L(x1) — yeees L) — < —_— g
ilelg”( (1) = (1) L) = ) [ P ]Z:;le,ll

forallx,...,x € X.

Proof Define ¢(x1,y1,...,%k, k) =0 Z]/ll(”xjnp + |l5j1I”), and apply Theorem 4.7. Then we
get the desired result. O
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Theorem 4.9 Letr #2. Let f : X — Y be an odd mapping for which there is a function
@ : X% = [0, 00) such that

Yy (¥ P voor
lim qo( =Vsees -xk;gyk>:

Jj—0o0 r/ 2/ 2/ 2
H ( (”’“ = 1) — 1)~ wf ), ,rf(”xk 2 k) - o) - uf(yk)>
k
S(p(xl’ylr"'rxkryk)r (4'9)

forallu € U(A) and all xy,...,%,9,...,9x € X. If there exists an L <1 such that

r r r r r r r
P 330 SH0 5 X2 S X2 Sk S Xk SELw(xl,xl,xz,xz,..‘,xk,xk)

for all x,...,xx € X. Then there exists a unique A-linear generalized additive mapping
L:X — Y such that

(p(xl’xlv .. ,Xk,xk)

1
i2§|| (L(x1) = f (1), L) —f @) [, < T

forall x,...,x¢ € X.

Proof Let u=1€ U(A). Putting x = y in (4.9), we have

H () -2t (2 ) - 7050

for all xq,...,x, € X. So

-3z 5(2)

< QX1 X155 Xk Xk
k

<1 r r r r
-\ =X, =X1,. .. =Xk =X,
k_rfﬂ 2121 Zka

1
< SLo@nx, .. %0 %)
for all xy,...,x, € X.
The rest of the proof is similar to the proof of Theorem 4.3. O

Corollary 4.10 Letr > 2, and let 6 and p > 1 be positive real numbers. Or let r < 2, and let
0 and p <1 be positive real numbers. Let f : X — Y be an odd mapping such that

|( (") = o = 0o (2% ) - s - 00|

k
<6 (lal” + lly;11?)
j=1

forall u € U(A) and all x,,...,xx € X. Then there exists a unique A-linear generalized
additive mapping L : X — Y such that

i“;%’” (L) = f @), L) = f@0) ||, < P S Z 117
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forallx,...,x¢ € X.

Proof Define ¢(x1,y1,...,%6Yk) = 6 Zf=1(||x,-||1’ + [lyj117), and apply Theorem 4.9. Then we
get the desired result. g

5 Isomorphisms in unital multi-C"-algebras
Throughout this section, assume that .4 and B are unital multi-C"-algebras with unit e.
Let U(.A) be the set of unitary elements in .A.

We investigate C’-algebra isomorphisms in unital multi-C"-algebras.

Theorem 5.1 Let r #2. Let h: A — B be an odd bijective mapping satisfying h(f—Zuy) =
h(f—:u)h(y) forallue U(A), ally € A and n=0,1,2,..., for which there exists a function
@ A — [0, 00) such that

Yoy 2 2 2
HOOQ/P 2 115 > 1dreees " Kloeves p” kd ,

” (Duh(xu, e ,xld), e ,Duh(JC]d, e ,Xkd)) Hk

=< (p(xll)~'-Jxldwu;xkl!'u;xkd),

2, 27\’ 2", 27\’
H <h<_nul) _h<_ul> "H’h(_uk> _h(_uk) )
r rm rm rm

2" 2" 2" 2"
< — — — -
=@ rnbtl,...,rnbtl,...,r btk,...,rnblk

k

n

d times d times

forallpe S :={(AeC| Al =1}, allu,...,ux € U(A), n=0,12,...,and all x11,...,%14 € A.
Assume that lim,,_, o, ;—’:,h(i—:e) is invertible. Then the odd bijective mappingh: A — Bisa
C’-algebra isomorphism.

Proof Consider the multi-C"-algebras A and B as left Banach modules over the unital
multi-C’-algebra C. By Theorem 4.3, there exists a unique C-linear generalized additive
mapping H : A — B such that

21115“ (h(x1) = Hxr),. o her) = Hx)||,

1
Ssup 90(961:961;0;---,0,...,xk,xk,0,...,0)
keN 2(a2Cr —4-2 Ci_2 + 1) N NI
d-2 times d-2 times

forall %y, ...,x¢ € A in which H : A — B is given by

v 2}’1
H(x) = lim r—h(—x)
n—o0 QN rm

forallx € A.
The rest of the proof is similar to the proof of Theorem 4.1 of [7]. g

Corollary 5.2 Letr > 2, and let 0 and p > 1 be positive real numbers. Or let r < 2, and let
0 and p < 1 be positive real numbers. Let h : A — B be an odd bijective mapping satisfying
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h(Zuy) = (% u)h(y) for all u € U(A), all y € A, and all n=0,1,2,..., such that

d
” (D/Ah(xlly v 1x1d))‘ . ~1D;4h(xkl»« . uxkd)) “k =< 0 Z(”xl]”p L ”xkjnp)’
j=1

2, 27\’ 2", 27\’
() () (i) - ) )
" " " "

forallp € SY,allu € U(A), n=0,1,2,...,and all x11, ..., %14 € A. Assume thatlim,_, ;—Z X

Vil
<kd—0

ren

k

h( E—Ze) is invertible. Then the odd bijective mappingh : A — Bisa C -algebra isomorphism.

Proof Define @(X11,...,X1d, -+ Xkl - -1 Xkd) = 0 Z;il(ﬂxl,»llp + -+ + [lxg]1”), and apply Theo-
rem 5.1. Then we get the desired result. O
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