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Abstract
In this work, we study the existence and multiplicity of positive solutions for a
second-order p-Laplacian boundary value problem involving impulsive effects. We
establish our main results via Jensen’s inequality, the first eigenvalue of a relevant
linear operator and the Krasnoselskii-Zabreiko fixed point theorem. Some examples
are presented to illustrate the main results.
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1 Introduction
Second-order differential equations with the p-Laplacian operator arise inmodeling some
physical and natural phenomena and can occur, for example, in non-Newtonian mechan-
ics, nonlinear elasticity, glaciology, population biology, combustion theory, and nonlinear
flow laws, see [, ]. Recently, many cases of the existence andmultiplicity of positive solu-
tions for boundary value problems of differential equations with the p-Laplacian operator
have appeared in the literature. For details, see, for example, [–] and the references
therein.
In [], Lian and Ge investigated the Sturm-Liouville-like boundary value problem

⎧⎨
⎩(ϕp(u′(t))′ + f (t,u(t)) = ,  < t < ,

u() – au′(ξ ) = , u() + βu′(η) = ,
(.)

and by virtue of Krasonsel’skii’s fixed point theorem, they obtained the existence of pos-
itive solutions and multiple positive solutions under suitable conditions imposed on the
nonlinear term f ∈ C([, ]× [, +∞), [, +∞)).
In [], Xu et al. studied the existence of multiple positive solutions for the following

boundary value problem with the p-Laplacian operator and impulsive effects

⎧⎪⎪⎨
⎪⎪⎩
(φp(u′(t))′ + q(t)f (t,u(t)) = , t �= tk ,  < t < ,

�u|t=tk = Ik(u(tk)), k = , , . . . ,m,

au() – bu′() =
∑l

i= αiu(ξi), u′() =
∑l

i= βiu′(ξi),

(.)

© 2012 Ding and O’Regan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2012/1/159
mailto:dingyouzheng@139.com
http://creativecommons.org/licenses/by/2.0


Ding and O’Regan Advances in Difference Equations 2012, 2012:159 Page 2 of 12
http://www.advancesindifferenceequations.com/content/2012/1/159

where the nonlinear term may be singular on u = . The main tools are fixed point index
theorems for compact maps in Banach spaces. They stated the proofs by considering an
approximating completely continuous operator.
In [], Feng studied an integral boundary value problem of fourth-order p-Laplacian dif-

ferential equations involving the impulsive effect�y′|t=tk = –Ik(y(tk)), k = , , . . . ,m. Using
a suitably constructed cone and fixed point theory for cones, the existence ofmultiple pos-
itive solutions was established. Furthermore, upper and lower bounds for these positive
solutions were given.
Motivated by the aboveworks, in this paper, we investigate the existence andmultiplicity

of positive solutions for the second-order p-Laplacian boundary value problems involving
impulsive effects

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ϕp(u′(t)))′ = –f (t,u(t)),  < t < , t �= tk ,k = , , . . . ,m,

�u|t=tk = Ik(u(tk)), k = , , . . . ,m,

�u′|t=tk = , k = , , . . . ,m,

u() = u′() = ,

(.)

where J = [, ], J ′ = J \ {t, t, . . . , tm}, tk (k = , , . . . ,m, wherem is a fixed positive integer)
are fixed pointswith  < t < t < · · · < tk < · · · < tm < ; ϕp(t) is the p-Laplacian operator, i.e.,
ϕp(t) = |t|p–t, p > , (ϕp)– = ϕq, p– +q– = ; �u|t=tk denotes the jump of u(t) at t = tk , i.e.,
�u|t=tk = u(t+k ) – u(t–k ), where u(t

+
k ) and u(t–k ) represent the right-hand limit and left-hand

limit of u(t) at t = tk , respectively. In addition, we suppose that Ik ∈ C([, +∞), [, +∞)),
f ∈ C([, ]× [, +∞), [, +∞)).
The main features of this paper are as follows. Firstly, we convert the boundary value

problem (.) into an equivalent integral equation so that we can construct a special cone.
Next, we consider impulsive effect as a perturbation to the corresponding problemwithout
the impulsive terms, so that we can construct an integral operator for an appropriate linear
Robin boundary value problem and obtain its first eigenvalue and eigenfunction, which
are used in the proofs of main theorems by Jensen’s inequalities. Finally, employing the
Krasnoselskii-Zabreiko fixed point theorem, we establish the existence andmultiplicity of
positive solutions of (.). Although our problem (.) merely involves Robin boundary
conditions, our methods are different from those in [, , ], and our main results are
optimal.
This paper is organized as follows. Section  contains some preliminary results. Sec-

tion  is devoted to the existence and multiplicity of positive solutions for (.). Section 
contains some illustrative examples.

2 Preliminaries
Let PC[J ,R] := {u|u : J → R is continuous at t �= tk ,u(t–k ) = u(tk) and u(t+k ) exist,k = , , . . . ,
m}. Then PC[J ,R] is a Banach space with norm ‖u‖ = maxt∈[,] |u(t)|. We denote Br :=
{u ∈ PC[J ,R] : ‖u‖ < r} for r >  in the sequel.
A function u ∈ PC[J ,R]∩C(J ′,R) is called a solution of (.) if it satisfies the boundary

value problem (.).
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Lemma . (see []) Let f and Ik be as in (.). Then the problem (.) is equivalent to

u(t) =
∫ t


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds +

∑
tk<t

Ik
(
u(tk)

)
. (.)

It is clear that u′(t) = ϕq(
∫ 
t f (τ ,u(τ )) dτ ) > , t ∈ J ′ and Ik > , which implies that u(t) is

increasing on [, ]. Furthermore, for given s, s ∈ J ′ with s ≤ s, we have u′(s) ≤ u′(s).
Hence, u′(t) is nonincreasing on J ′, and thus

u() – u()


≤ u(t) – u()
t

, t ∈ (, ],

i.e., u(t) ≥ tu() = t‖u‖. Therefore,

u(t) ≥ t‖u‖, ∀t ∈ [, ], in particular, u(t) ≥ t‖u‖, ∀t ∈ [t, tm]. (.)

We denote P by

P :=
{
u ∈ PC[J ,R] : u(t) ≥ t‖u‖, t ∈ [, ]

}
. (.)

Then P is a cone on PC[J ,R].
Define an operator A : P → PC[J ,R]

Au(t) :=
∫ t


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds +

∑
tk<t

Ik
(
u(tk)

)

=
∫ t


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds +

m∑
k=

H(t, tk)Ik
(
u(tk)

)
,

where

H(t, tk) =

⎧⎨
⎩, tk < t,

, tk ≥ t.

Clearly, the operator A is a completely continuous operator, and the existence of positive
solutions for (.) is equivalent to that of positive fixed points of A. Moreover, it is easy to
see A(P) ⊂ P by (.).
In what follows, we consider the following eigenvalue problem:

⎧⎨
⎩–u′′ = λu, t ∈ [, ],

u() = u′() = ,
(.)

where λ is a parameter. We easily know that (.) has a nontrivial solution if λ > . Fur-
thermore, we have

u(t) = c cos
√

λt + c sin
√

λt,
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where c, c are constants and c + c �= . u() = u′() =  implies that cos
√

λ = , and thus
λ = (–π

 + kπ ), k = ,  . . . . λ–
 := (–π

 + × π ) = π

 and sin(π t
 ) are called the first eigen-

value and the corresponding eigenfunction associatedwith λ, respectively. Consequently,
it is easy to have the following result:

Lemma . If ψ(t) := sin(π t
 ), then

∫ 


G(t, s)ψ(t) dt =


π ψ(s), (.)

where G(t, s) =min{t, s}, t, s ∈ [, ].

Lemma . (see []) Let E be a real Banach space and W a cone of E. Suppose A : (BR \
Br)∩W →W is a completely continuous operator with  < r < R. If either
() Au� u for each ∂Br ∩W and Au� u for each ∂BR ∩W or
() Au� u for each ∂Br ∩W and Au� u for each ∂BR ∩W ,

then A has at least one fixed point in (BR \ Br)∩W.

Lemma . (Jensen’s inequalities, see []) Let θ > , n ≥ , ai ≥  (i = , , . . . ,n), and
ϕ ∈ C([a,b], [, +∞)). Then

(∫ b

a
ϕ(t) dt

)θ

≤ (b – a)θ–
∫ b

a

(
ϕ(t)

)θ dt and

( n∑
i=

ai

)θ

≤ nθ–
n∑
i=

aθ
i , ∀θ ≥ ,

(∫ b

a
ϕ(t) dt

)θ

≥ (b – a)θ–
∫ b

a

(
ϕ(t)

)θ dt and

( n∑
i=

ai

)θ

≥ nθ–
n∑
i=

aθ
i , ∀ < θ ≤ .

3 Main results
Let p* := max{,p – }, p* := min{,p – }, κ := p*–, κ := (m)p*–, κ := p*–, κ :=

(m)p*–, κ := 
pp*
p– –, κ := (m)p*–. We now list our hypotheses.

(H) There exist r >  and a ≥ , a ≥  satisfying

a
p*
p–
 κ +

π


ap* t

p*
 κ

m∑
k=

cos

(
π tk


)
>

π


,

such that

f (t, y) ≥ ayp–, Ik(y) ≥ ay, ∀t ∈ [, ],  < y < r. (.)

(H) There exist c >  and b ≥ , b ≥  satisfying

b + b �= , b
p*
p–
 κ +

πbp
*

 κ
∑m

k= cos(
π tk
 )


∫ 
 tp

* sin(π t
 )dt

<
π


,
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such that

f (t, y) ≤ byp– + c, Ik(y) ≤ by + c, ∀t ∈ [, ], y≥ . (.)

(H) There exist c >  and a ≥ , a ≥  satisfying

a
p*
p–
 κ +

π


ap* t

p*
 κ

m∑
k=

cos

(
π tk


)
>

π


,

such that

f (t, y) ≥ ayp– – c, Ik(y) ≥ ay – c, ∀t ∈ [, ], y≥ . (.)

(H) There exist r >  and b ≥ , b ≥  satisfying

b + b �= , b
p*
p–
 κ +

πbp
*

 κ
∑m

k= cos(
π tk
 )


∫ 
 tp

* sin(π t
 )dt

<
π


,

such that

f (t, y) ≤ byp–, Ik(y) ≤ by, ∀t ∈ [, ],  < y < r. (.)

(H) There exists ρ >  such that  ≤ y≤ ρ , and t ∈ [, ] implies

f (t, y) ≤ ηp–ρp–, Ik(y) ≤ ηkρ,

where η,ηk ≥  and  < η +
∑m

k= ηk ≤ .
(H) There exists ρ >  such that tρ ≤ y ≤ ρ , and t ∈ [, ] implies

f (t, y) ≥ ηp–ρp–, Ik(y) ≥ ηkρ,

where η,ηk ≥ , (ηp–(p – )( – t)p/(p–) +
∑m

k= ηk) > .

Theorem . Suppose that (H)-(H) are satisfied. Then (.) has at least one positive
solution.

Proof If (H) is satisfied, then we obtain u� Au for all u ∈ P ∩ ∂Br . Indeed, if the claim is
false, there is a u ∈ P ∩ ∂Br such that u≥ Au, i.e.,

u(t) ≥
∫ t


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds +

m∑
k=

H(t, tk)Ik
(
u(tk)

)
.

Now apply Lemma . to obtain

up* (t) ≥
[∫ t


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds +

m∑
k=

H(t, tk)Ik
(
u(tk)

)]p*

≥ κ

[∫ t


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds

]p*
+ κ

[ m∑
k=

H(t, tk)Ik
(
u(tk)

)]p*

http://www.advancesindifferenceequations.com/content/2012/1/159
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≥ κ

∫ t



∫ 

s
f

p*
p–

(
τ ,u(τ )

)
dτ ds + κ

m∑
k=

Hp* (t, tk)I
p*
k

(
u(tk)

)

≥ κ

∫ 


G(t, s)f

p*
p–

(
s,u(s)

)
ds + κ

m∑
k=

H(t, tk)I
p*
k

(
u(tk)

)
. (.)

Multiply both sides of (.) by sin(π t
 ) and then integrate over [, ] and use (.) to obtain

∫ 


up* (t) sin

(
π t


)
dt ≥ κ

∫ 


sin

(
π t


)∫ 


G(t, s)f

p*
p–

(
s,u(s)

)
dsdt

+ κ

m∑
k=

∫ 


sin

(
π t


)
H(t, tk)I

p*
k

(
u(tk)

)
dt

≥ κ

π

∫ 


f

p*
p–

(
t,u(t)

)
sin

(
π t


)
dt

+
κ
π

m∑
k=

Ip*k
(
u(tk)

)
cos

(
π tk


)
. (.)

The above and (H) imply that

∫ 


up* (t) sin

(
π t


)
dt ≥ a

p*
p–
 κ

π

∫ 


up* (t) sin

(
π t


)
dt

+
ap* κ

π

m∑
k=

up* (tk) cos
(

π tk


)
. (.)

By (.), we have a
p*
p–
 κ
π ≤ . If a

p*
p–
 κ
π = , then u(tk) ≡ , k = , , . . . ,m, and in view of

the concavity and the nondecreasing nature of u, we find u(t) ≡ ,  ≤ t ≤ , contradicting

u ∈ P ∩ ∂Br . So,
a

p*
p–
 κ
π < .

Since u ∈ P ∩ ∂Br , up* (t) ≤ ‖u‖p* = rp* . Therefore,

∫ 


up* (t) sin

(
π t


)
dt ≤ rp*

∫ 


sin

(
π t


)
dt =

rp*
π

.

Combining (.) and (.), we obtain

(π – a
p*
p–
 κ)rp*

π ≥ ap* κrp* t
p*


π

m∑
k=

cos

(
π tk


)
.

Therefore, a
p*
p–
 κ +πap* t

p*
 κ

∑m
k= cos(

π tk
 ) ≤ π, which contradicts (H). Thus we have

u� Au, for any u ∈ P ∩ ∂Br . (.)

On the other hand, by (H), we shall prove that there exists a sufficiently large number
R >  such that u� Au, ∀u ∈ P ∩ ∂BR. Suppose there exists u ∈ P ∩ ∂BR such that u ≤ Au.

http://www.advancesindifferenceequations.com/content/2012/1/159
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This, together with Lemma ., yields

up
*
(t) ≤

[∫ t


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds +

m∑
k=

H(t, tk)Ik
(
u(tk)

)]p*

≤ κ

[∫ t


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds

]p*

+ κ

[ m∑
k=

H(t, tk)Ik
(
u(tk)

)]p*

≤ κ

∫ t



∫ 

s
f

p*
p–

(
τ ,u(τ )

)
dτ ds + κ

m∑
k=

Hp* (t, tk)I
p*
k

(
u(tk)

)

≤ κ

∫ 


G(t, s)f

p*
p–

(
s,u(s)

)
ds + κ

m∑
k=

H(t, tk)I
p*
k

(
u(tk)

)
. (.)

Multiply both sides of the above by sin(π t
 ) and integrate over [, ] and use (.) to obtain

∫ 


up

*
(t) sin

(
π t


)
dt ≤ κ

∫ 


sin

(
π t


)∫ 


G(t, s)f

p*
p–

(
s,u(s)

)
dsdt

+ κ

m∑
k=

∫ 


sin

(
π t


)
H(t, tk)I

p*
k

(
u(tk)

)
dt

≤ κ

π

∫ 


f

p*
p–

(
t,u(t)

)
sin

(
π t


)
dt

+
κ
π

m∑
k=

Ip
*

k
(
u(tk)

)
cos

(
π tk


)
. (.)

Combining this and (H), we get

∫ 


up

*
(t) sin

(
π t


)
dt ≤ κ

π

∫ 



(
bup–(t) + c

) p*
p– sin

(
π t


)
dt

+
κ
π

m∑
k=

(
bu(tk) + c

)p*
cos

(
π tk


)

≤ b
p*
p–
 κ

π

∫ 


up

*
(t) sin

(
π t


)
dt

+
bp

*

 κ

π

m∑
k=

up
*
(tk) cos

(
π tk


)
+ c, (.)

where c = c
p*
p– κ
π + cp

*
κ

π

∑m
k= cos(

π tk
 ). Consequently, by (.) we have

‖u‖p*(π – b
p*
p–
 κ

)∫ 


tp

*
sin

(
π t


)
dt ≤ (

π – b
p*
p–
 κ

)∫ 


up

*
sin

(
π t


)
dt

≤ πbp
*

 κ‖u‖p*
m∑
k=

cos

(
π tk


)
+ πc.

http://www.advancesindifferenceequations.com/content/2012/1/159
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Therefore,

‖u‖p* ≤ πc

(π – b
p*
p–
 κ)

∫ 
 tp

* sin(π t
 ) dt – πbp

*
 κ

∑m
k= cos(

π tk
 )

:= K > .

Choosing R > p*√K and R > r, we have

u� Au, for all u ∈ P ∩ ∂BR. (.)

Therefore, (.) and (.), together with Lemma ., guarantee that (.) has at least one
positive solution in (BR \ Br)∩ P. �

Theorem . Suppose that (H)-(H) are satisfied. Then (.) has at least one positive
solution.

Proof If (H) is satisfied, we will prove that there exists a sufficiently large number R > 
such that u� Au, ∀u ∈ P ∩ ∂BR. Suppose there exists u ∈ P ∩ ∂BR such that u ≥ Au, and
then

u(t) ≥
∫ t


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds +

m∑
k=

H(t, tk)Ik
(
u(tk)

)
.

In view of  < p*
p– ≤ , from (.), we know (aup–)

p*
p– ≤ (f + c)

p*
p– ≤ f

p*
p– + c

p*
p– . Accord-

ingly, f
p*
p– ≥ (aup–)

p*
p– – c

p*
p– . Similarly, Ip*k ≥ (au)p* – cp* . These and (.) imply that

∫ 


up* (t) sin

(
π t


)
dt ≥ κ

π

∫ 



[(
aup–(t)

) p*
p– – c

p*
p–

]
sin

(
π t


)
dt

+
κ
π

m∑
k=

[(
au(tk)

)p* – cp*
]
cos

(
π tk


)

≥ a
p*
p–
 κ

π

∫ 


up* (t) sin

(
π t


)
dt

+
ap* κ

π

m∑
k=

up* (tk) cos
(

π tk


)
– c, (.)

where c = c
p*
p– κ
π + κcp*

π

∑m
k= cos(

π tk
 ).

Now, we consider two cases.

Case . If  ≥ a
p*
p–
 κ
π , by (.) we obtain

(π – a
p*
p–
 κ)‖u‖p*
π

≥ (
π – a

p*
p–
 κ

)∫ 


up* (t) sin

(
π t


)
dt

≥ πap* t
p*
 κ‖u‖p*

m∑
k=

cos

(
π tk


)
– πc,

http://www.advancesindifferenceequations.com/content/2012/1/159
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i.e.,

‖u‖p* ≤
πc


a
p*
p–
 κ + πap* t

p*
 κ

∑m
k= cos(

π tk
 ) – π

:= K > . (.)

Case . If  < a
p*
p–
 κ
π , by (.) we have

cπ ≥ (
a

p*
p–
 κ – π)‖u‖p*

∫ 


tp* sin

(
π t


)
dt + π tp*‖u‖p*ap* κ

m∑
k=

cos

(
π tk


)
.

In view of 
π ≤ ∫ 

 t
p* sin(π t

 ) dt ≤ 
π
, we obtain

‖u‖p* ≤
πc


a
p*
p–
 κ + π

 ap* t
p*
 κ

∑m
k= cos(

π tk
 ) – π

:= K > . (.)

Choosing R >max{ p*
√
K, p*

√
K, r} (r is determined by (H)), we get

u� Au, ∀u ∈ P ∩ ∂BR. (.)

On the other hand, if (H) is satisfied, then u � Au, ∀u ∈ P ∩ ∂Br . If not, there exists
u ∈ P ∩ ∂Br such that u≤ Au. It follows from (.) and (H) that

∫ 


up

*
(t) sin

(
π t


)
dt ≤ κ

π

∫ 



(
bup–(t)

) p*
p– sin

(
π t


)
dt

+
κ
π

m∑
k=

(
bu(tk)

)p*
cos

(
π tk


)

≤ b
p*
p–
 κ

π

∫ 


up

*
(t) sin

(
π t


)
dt

+
bp

*

 κ

π

m∑
k=

up
*
(tk) cos

(
π tk


)
. (.)

Therefore,

‖u‖p*(π – b
p*
p–
 κ

)∫ 


tp

*
sin

(
π t


)
dt ≤ (

π – b
p*
p–
 κ

)∫ 


up

*
sin

(
π t


)
dt

≤ πbp
*

 κ‖u‖p*
m∑
k=

cos

(
π tk


)
,

i.e.,

b
p*
p–
 κ +

πbp
*

 κ
∑m

k= cos(
π tk
 )∫ 

 tp
* sin(π t

 ) dt
≥ π,
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which contradicts (H). Thus

u� Au, ∀u ∈ ∂Br ∩ P. (.)

By Lemma ., (.) and (.) imply that (.) has at least one positive solution in (BR \
Br)∩ P. �

Theorem . Suppose that (H), (H) and (H) are satisfied. Then (.) has at least two
positive solutions.

Proof If u ∈ P ∩ ∂Bρ , it follows from (H) that

‖Au‖ ≤
∫ 


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds +

m∑
k=

Ik
(
u(tk)

)

≤
∫ 


ϕq

(∫ 

s
ηp–ρp– dτ

)
ds +

m∑
k=

ρηk

≤ ρ

(
η
p – 
p

+
m∑
k=

ηk

)
< ρ

(
η +

m∑
k=

ηk

)
≤ ‖u‖,

from which we obtain

u� Au, ∀u ∈ ∂Bρ ∩ P. (.)

On the other hand, by (H) and (H), we may take  < r < ρ and R > ρ such that u� Au,
∀u ∈ P ∩ ∂Br and u � Au, ∀u ∈ P ∩ ∂BR (see the proofs of Theorems . and .). Now
Lemma . guarantees that the operatorA has at least two fixed points, one in (BR \Bρ)∩P
and the other in (Bρ \ Br)∩ P. The proof is completed. �

Theorem . Suppose that (H), (H) and (H) are satisfied. Then (.) has at least two
positive solutions.

Proof For any u ∈ P ∩ ∂Bρ , u(t)≥ t‖u‖ = tρ for all t ∈ [t, ]. It follows from (H) that

‖Au‖ =
∫ 


ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds +

m∑
k=

Ik
(
u(tk)

)

≥
∫ 

t
ϕq

(∫ 

s
f
(
τ ,u(τ )

)
dτ

)
ds +

m∑
k=

Ik
(
u(tk)

)

≥
∫ 

t
ϕq

(∫ 

s
ηp–ρp– dτ

)
ds +

m∑
k=

ηkρ

≥ ρ

(
ηp–(p – )( – t)p/(p–) +

m∑
k=

ηk

)
> ρ = ‖u‖. (.)

Thus,

Au� u, ∀u ∈ P ∩ ∂Bρ . (.)
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On the other hand, by (H) and (H), we may take  < r < ρ and R > ρ such that u� Au,
∀u ∈ P ∩ ∂Br and u � Au, ∀u ∈ P ∩ ∂BR (see the proofs of Theorems . and .). Thus
Lemma . indicates that the operator A has at least two fixed points, one in (BR \Bρ)∩P
and the other in (Bρ \ Br)∩ P. The proof is completed. �

4 Examples
Example . Consider the impulsive boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ϕp(u′))′ = –f (t,u), t �= 
 ,  < t < ,

�u|t= 

= I(u(  )),

�u′|t= 

= ,

u() = u′() = ,

(.)

where p = 
 .

Case . Let f (t,u) = uα ,  < α < 
 , I(u) = uα ,  < α < . Then

lim
u→+

f (t,u)
up–

= lim
u→+

uα

up–
= ∞, lim

u→+
I(u)
u

= lim
u→+

uα– = ∞. (.)

From (.) we see that (H) is satisfied. In fact, since p = / and t = /, p* = /, κ = κ =
/

√
. Taking a = , a = , we get

a
p*
p–
 κ +

π


ap* t

p*
 κ

m∑
k=

cos

(
π tk


)
>

π


.

Moreover,

lim
u→∞

f (t,u)
up–

= lim
u→∞

uα

up–
= , lim

u→∞
I(u)
u

= lim
u→∞uα– = . (.)

From (.) we see that (H) is satisfied, for example taking b = , b = 
 . All the assump-

tions in Theorem . are satisfied, and the problem (.) has at least one positive solution
by Theorem ..
Case . Take f (t,u) = uβ , β > 

 , I(u) = uβ , β > . One can easily verify conditions (H)
and (H). Thus the problem (.) has at least one positive solution by Theorem ..
Case . Let f (t,u) = uα+uβ

 ,  < α < 
 < β , I(u) = u

 . Thus, we get

lim
u→+

f (t,u)
up–

= lim
u→+

uα + uβ

up–
= ∞. (.)

From (.) we see that (H) is satisfied. Note

lim
u→∞

f (t,u)
up–

= lim
u→∞

uα + uβ

up–
= ∞. (.)

From (.) we see that (H) is satisfied. Take ρ = , η = 
 , η = 

 in (H), and note for
 ≤ u ≤ ρ and t ∈ [, ] that f (t,u) ≤ ρα+ρβ

 = 
 <


√


 = η

 , I(u) = u

 ≤ 
 = η. As a result,

(H) holds. From Theorem ., the problem (.) has at least two positive solutions.
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5. Cabada, A, Tomeček, J: Extremal solutions for nonlinear functional p-Laplacian impulsive equations. Nonlinear Anal.

67, 827-841 (2007)
6. Xu, J, Kang, P, Wei, Z: Singular multipoint impulsive boundary value problem with p-Laplacian operator. J. Appl. Math.

Comput. 30, 105-120 (2009)
7. Feng, M: Multiple positive solutions of four-order impulsive differential equations with integral boundary conditions

and one-dimensional p-Laplacian. Bound. Value Probl. (2011). doi:10.1155/2011/654871
8. Li, P, Chen, H, Wu, Y: Multiple positive solutions of n-point boundary value problems for p-Laplacian impulsive

dynamic equations on time scales. Comput. Math. Appl. 60, 2572-2582 (2010)
9. Zhang, X: Existence and successive iteration of positive solutions for some impulsive multi-point boundary value

problem with p-Laplacian on infinite interval. J. Syst. Sci. Math. Sci. 30, 619-632 (2010)
10. Yang, Z: Positive solutions for a system of p-Laplacian boundary value problems. Comput. Math. Appl. 62, 4429-4438

(2011)
11. Bai, L, Dai, B: Three solutions for a p-Laplacian boundary value problem with impulsive effects. Appl. Math. Comput.

217, 9895-9904 (2011)
12. Yang, Z, O’Regan, D: Positive solutions for one-dimensional p-Laplacian equations. Math. Comput. Model. 55,

1942-1950 (2012)
13. Xu, J, Yang, Z: Positive solutions for a fourth order p-Laplacian boundary value problem. Nonlinear Anal. 74,

2612-2623 (2011)
14. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, Orlando (1988)

doi:10.1186/1687-1847-2012-159
Cite this article as: Ding and O’Regan: Positive solutions for a second-order p-Laplacian impulsive boundary value
problem. Advances in Difference Equations 2012 2012:159.

http://www.advancesindifferenceequations.com/content/2012/1/159
http://dx.doi.org/10.1155/2011/654871

	Positive solutions for a second-order p-Laplacian impulsive boundary value problem
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Examples
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


